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Gender	  Pluralism	  in	  Problem-‐Solving	  Software*	  	  

Abstract	  	  
Although there has been significant research into gender regarding educational and workplace 
practices, there has been little awareness of gender differences as they pertain to software tools, 
such as spreadsheet applications, that try to support end users in problem-solving tasks. Although 
such software tools are intended to be gender agnostic, we believe that closer examination of this 
premise is warranted. Therefore, in this paper, we report an end-to-end investigation into gender 
differences with spreadsheet software. Our results showed gender differences in feature usage, 
feature-related confidence, and tinkering (playful exploration) with features. Then, drawing 
implications from these results, we designed and implemented features for our spreadsheet 
prototype that took the gender differences into account. The results of an evaluation on this 
prototype showed improvements for both males and females, and also decreased gender 
differences in some outcome measures, such as confidence. These results are encouraging, but 
also open new questions for investigation. We also discuss how our results compare to 
generalization studies performed with a variety of other software platforms and populations.  
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1.	  Introduction	  	  	  
An important cultural issue in the technological world is gender [2, 29, 41]. From a feminist 
perspective, pluralism is the quality of designing artifacts that “resist any single, totalizing, or 
universal point of view” [2]. Pluralism implies that designers can produce more inclusive designs 
through sensitivity to marginal or marginalized users. To inform the design of gender-pluralist 
software, we are investigating gender differences in the ways males and females engage in 
problem solving and use problem-solving software.  

Understanding gender differences in problem-solving software may provide important benefits to 
the users of such software. If males and females work differently with problem-solving features, 
then a software environment may be unintentionally biased to the needs of one gender while 
marginalizing the other. Understanding such differences would reveal ways to design 
environments that serve both genders more equally—ideally without disadvantaging either 
gender.  

In this paper, we begin with a theory-based foundation (Section 2). Drawing from these theories, 
we then present investigations to understand whether and how gender differences manifest in the 
context of problem-solving software. Our core studies focus on spreadsheet testing and 
debugging because spreadsheets environments are ubiquitous and used by end users in tasks 
common for males and females in the workplace, such as accounting, budgeting, and calculating 
student grades. Moreover, researchers have observed high error rates in spreadsheets developed 
by end users [33], which suggests that problem-solving in that software context is difficult for at 
least some users. We therefore investigate software-based problem-solving through three studies 
in the context of spreadsheet debugging (Sections 3 and 4) that together address the four research 
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questions below. We then discuss several related studies (Section 5) that generalized the results 
from the first three research questions. 

RQ1: Are there gender differences as to which features males and females use in 
problem-solving software?  

RQ2: Are there gender differences as to males’ and females’ willingness to tinker and 
explore? 

RQ3: Are any such differences related to males’ or females’ technical problem-solving 
confidence? 

RQ4: If gender differences exist, is it possible to design problem-solving software that 
overcomes gender gaps without penalizing either gender? 

The answers to RQ1–RQ3 may have considerable implications for software product design, 
which we consider in RQ4.  For example, many software products are designed around the 
notions that the software’s problem-solving features are gender neutral, and that when users 
notice new features relevant to their tasks, they will often have enough confidence and interest to 
tinker with the new features. If these assumptions are not true for both males and females, 
software product designers will want to consider changing their products. Making such changes is 
likely to help both genders: research has shown that studying the needs of one subpopulation can 
provide benefits that extend beyond that subpopulation [27]. For example, phenomena that affect 
large numbers of females are likely to affect some males as well.   

As to how to follow up on implications of RQ1–RQ3, fortunately, theories offer not only 
explanations of why the differences we investigate here could occur, but also offer a useful 
framework for thinking about how to act upon the differences (RQ4). We therefore begin by 
considering these theoretical foundations.   

2.	  Theoretical	  Background	  	  

2.1	  Self-‐Efficacy	  Theory	  
Self-efficacy, a type of confidence, is a person’s belief in his or her ability to perform a specific 
task [1]. According to self-efficacy theory, self-efficacy distinguishes how individuals will 
approach and perform a task. In particular, self-efficacy affects performance when a task becomes 
challenging [1]. People with high self-efficacy tend to put in more effort, persist in challenging 
tasks, and have more genuine interest in the task than people with low self-efficacy. Ultimately 
self-efficacy affects performance outcomes, influencing whether or not an individual succeeds at 
the task.  

According to the theory, individuals with high self-efficacy on a task possess several 
characteristics that aid their success and that individuals with low self-efficacy lack [1]. One such 
characteristic is propensity for generating and trying alternative strategies when the current 
strategy is failing. Another characteristic is willingness to abandon faulty strategies (which 
generally implies determining an alternative strategy). In contrast, individuals with low self-
efficacy are less likely to abandon faulty strategies, and less likely to try alternative strategies.   

Computer self-efficacy refers to a person’s judgment of his or her capabilities to use computers in 
a variety of situations [18]. Researchers have reported gender differences in computer self-
efficacy across nationalities and across levels of computer expertise (e.g., [8, 14, 17, 19, 29, 41]).  



Computer self-efficacy is particularly pertinent to software tool design because a user’s computer 
self-efficacy influences how he or she will respond to design strategies intended, for instance, to 
encourage the user to learn about new or unfamiliar software features. For example, Lowenstein’s 
information-gap perspective on curiosity states that users will become curious and investigate 
when appropriately surprised. Designers applying this perspective rely on users having a certain 
level of confidence for the surprise to generate curiosity and follow-up rather than anxiety and 
avoidance [28]. Thus, in the context of problem solving with software, low self-efficacy may 
interfere with the user’s willingness to explore and ultimately adopt unfamiliar features (RQ1, 
RQ2). This potential effect of low self-efficacy also raises the question of whether any gender 
differences in feature usage may be due solely to differences in computer self-efficacy (RQ3).  

2.2	  Selectivity	  Hypothesis	  
The selectivity hypothesis synthesizes earlier theories of gender differences with respect to 
information processing [32]. According to the hypothesis, males tend to process information in a 
heuristic manner, paying particular attention to cues that are highly available and particularly 
salient in the focal context. In contrast, females process information in a comprehensive manner, 
attempting to assimilate all available cues. The hypothesis goes on to suggest that males may 
focus on themselves when processing information. This self-focus helps to streamline processing 
because memory processing of information pertaining to oneself has a particularly well-
developed and elaborate network of associations. According to the hypothesis, females may take 
a different approach, processing equally information relevant both to others (external world) and 
themselves. Meyers-Levy and others have presented empirical evidence that supports the 
hypothesis [32]. 

In the context of computer-based problem-solving environments, the selectivity hypothesis 
implies that males and females will respond differently to different cues and features in the 
environment, which should impact problem-solving decisions. Moreover, these differences imply 
that both what information the environment presents and how the environment presents 
information will impact the tool’s effectiveness differently for males versus females. With respect 
to our investigations, the theory not only predicts gender differences in feature usage (RQ1), but 
also suggests design remedies (RQ4) based on supporting both genders’ information processing 
styles.   

2.3	  Attention	  Investment	  Model	  
In contrast to the above theories, the attention investment model specifically attends to users’ 
decisions about technology usage. The model is an analytical model of problem-solving behavior 
that accounts for the perceived costs, benefits, and risks that a user considers in deciding how to 
complete a task in a software environment [9]. 

Gender comes into play because it potentially influences the perception of cost, benefit, and risk. 
For example, due to the self-efficacy differences discussed in Section 2.1, a female’s perception 
of the cost of learning a new feature may be higher than a male’s perceived cost to learn the same 
feature. Researchers have also pointed to differences in motivations to use technology [11], which 
suggest gender differences in perceived benefits.  

Regarding the risk factor, the model suggests that a user’s perception of risk may influence 
exploration of unfamiliar features while problem solving. For example, a user might notice an 
unfamiliar but potentially useful feature in the environment. However, the user may not try the 
feature if he or she perceives a substantial risk, such as the significant loss of time trying to learn 
the feature without ultimately succeeding.  



Gender differences in perceived risk have a rich literature. Research on risk perception suggests 
that females perceive more risk from everyday life decisions and situations than do males [3, 10, 
15, 20, 22]. Researchers have also found that females are more risk averse than males in making 
financial decisions [23] and in making informed guesses when a wrong guess produces negative 
consequences [15].  

These gender differences in perceptions of cost and risk suggest that females may be less likely to 
explore unfamiliar features than males (RQ2) and may therefore use different features than males 
(RQ1). The attention investment model also suggests a design remedy (RQ4) for users whose 
perceptions of costs or risks are inappropriately high: a software environment could help such 
users bring their perceptions of costs, benefits, and risks in line with reality, resulting in a better-
informed decision as to whether to try an unfamiliar feature.   

3.	  Studies	  #1	  and	  #2	  	  
Based on our survey of the theoretical literature, we conducted two studies to understand how 
gender differences manifest in the context of testing and debugging spreadsheets. 

3.1	  Study	  #1:	  Feature	  Use	  and	  Self-‐Efficacy	  	  
Our first study investigated gender differences in feature use (RQ1) and the influence of 
confidence on those differences (RQ3). In particular, we checked for differences in males’ and 
females’ willingness to use familiar versus unfamiliar features for testing spreadsheets. We also 
looked at how the differences we found related to self-efficacy in finding and fixing spreadsheet 
errors.  

3.1.1	  Spreadsheet	  Environment	  
We conducted the study in the context of the Forms/3 spreadsheet environment, which includes a 
number of features that have been previously shown to help users find and fix errors in 
spreadsheet formulas [12]. 

In Forms/3 (Figure 1), users can “check off” cells whose computed values they decide are correct 
(e.g., Exam_Avg). These decisions constitute “tests”. As the user checks off values as correct, 
cell border colors update to indicate how fully tested the cell is.  Although users may not realize 
it, these “testedness” colors reflect the use of a dataflow test adequacy criterion that measures the 
interrelationships in the formulas that have been covered by the users’ tests [35]. A cell is fully 
tested if all its interrelationships have been covered; if only some have been covered then the cell 
is partially tested. Along the top of the Forms/3 window, a progress bar shows the average 
percent “testedness” of all cells in the spreadsheet (e.g., 30% tested). 

The user can also “X off” cells with incorrect values (e.g., Course_Avg). The interior color of a 
cell indicates the likelihood that the cell contains a fault. A fault-likelihood bar (below the 
testedness bar) shows how much of the spreadsheet has particular levels of fault likelihood.  

[FIGURE 1 HERE] 

Arrows display dataflow relationships among cells (e.g., the arrow from Quiz5 to Quiz_Avg). 
The arrows follow the testedness color scheme to show how thoroughly a relationship between 
two cells has been tested. In Figure 1, the user has displayed Quiz5’s arrow showing that the 
formula in Quiz_Avg references Quiz5. The color of the arrow indicates that the user has not 
tested the relationship. 



3.1.2	  Participants	  and	  Procedures	  
The participants were 27 male and 24 female undergraduates, all of whom were familiar with 
spreadsheets. Most of the participants were business students, and none were studying computer 
science. Background data collected with a pre-experiment questionnaire indicated that the gender 
groups did not have significant differences in major, grade point average (GPA), or experience 
with spreadsheets, programming (as measured by number of classes and years of experience at 
the high school, college, and professional level), or the study’s spreadsheet environment.  (We did 
not collect background data relating to affinity for mathematics or computing because 
spreadsheets are expected to be used successfully in the workplace by males and females 
regardless of potential gender differences in such affinities.) The females were academically 
younger than the males by a small but significant margin (ANOVA: F(1,48)=4.53, p<.04). Post-
hoc analyses, however, showed that academic age was not predictive of any outcome measures. 

Prior to the main study session, we assessed participants’ pre-task self-efficacy (pre–self-efficacy) 
by adapting Compeau and Higgins’ computer self-efficacy questionnaire for spreadsheet-
debugging tasks [18]. The original questionnaire consisted of a prompt, “I could complete the job 
using the software package if…” followed by ten different completions of the sentence, such as 
“… I had used similar packages before this one to do the same job.” Each completion reflected a 
different level of self-efficacy, and allowed responses on a 10-point scale from “not at all 
confident” to “totally confident”. To adapt this questionnaire to spreadsheet debugging, we 
changed the prompt to “Given a spreadsheet which performs common tasks (such as calculating 
course grades or payroll) I could find and fix errors if…” In each completion, we changed the 
word job to task and package to spreadsheet (e.g. “… I had used similar spreadsheets before this 
one to do the same task”). For consistency with other questions on our questionnaire, we also 
changed the response scale to a 5-point scale from “strongly disagree” to “strongly agree”. (Note 
that this scale change is a departure from the Compeau/Higgins questionnaire, implying that our 
results should not be compared with other researchers’ uses of this questionnaire. Therefore we 
compare our self-efficacy results within only our own participants and our own studies.)  

Participants then completed a hands-on tutorial to become familiar with Forms/3. The tutorial 
thoroughly covered Forms/3’s checkmarks and arrows features, but merely mentioned X-marks. 
Varying the coverage of these features enabled us to check for three levels of feature usage by 
participants: (1) use of previously familiar features (formula editing), (2) use of unfamiliar but 
taught features (checkmarks and arrows), and (3) use of unfamiliar and untaught features (X-
marks).  

For the main study tasks, participants were to find and fix errors in two spreadsheets, each seeded 
with five bugs. One spreadsheet, Gradebook, contained a teacher’s gradebook, and the other, 
Payroll, captured a real company’s method of calculating payroll checks. For each task, we 
instructed participants to “Test the ... spreadsheet to see if it works correctly and correct any 
errors you find.” Participants had 22 minutes to complete the Gradebook task and 35 minutes to 
complete the Payroll task. We assigned the tasks in random order. 

3.1.3	  Results	  	  
To address RQ1, we measured usage of familiar and taught features by counting number of uses 
(formula edits and feature toggles). From the taught-features count, we excluded repeated toggles 
on the same cell after ceasing formula edits because such toggling suggested an absence of 
intellectual involvement. We considered usage of the untaught features when a participant placed 
more than one X-mark and subsequently edited a colored cell’s formula. Because only about 60% 
of the participants exhibited this behavior and their frequency of usage was low (1 or 2 was 
typical), we classified participants as having used or not used untaught features rather than 



counting instances of use. Analysis revealed that females relied on familiar features significantly 
more than males (ANOVA: F(1,49)=4.979, p<.03) (Table 1). In contrast, males used both taught 
features (ANOVA: F(1,49)=4.971, p<.03) (Table 2) and untaught features (Fisher’s Exact Test: 
p<.001) (Table 3) significantly more than females.  
 
Table 1. Males versus females’ use of familiar features.  

Gender n Mean Std Dev 
Males 27 23.8 9.58 

Females 24 29.8 9.66 
 

 

Table 2. Males versus females’ use of taught features. Table 3. Males versus females’ use of untaught 
features. 

Gender n Mean Std Dev 
Males 27 123.41 68.27 

Females 24 87.54 47.67 
 

Gender n Num Who Used Pct Who Used 
Males 27 22 81.5% 

Females 24 11 45.8% 
 

 
How did the differences in feature usage play out in terms of success? There was no significant 
gender difference in the number of bugs fixed (Mann-Whitney: U=300.5, p<.651). However, 
females introduced significantly more bugs than males (Mann-Whitney: U=227.5, p<.011), and 
were significantly more likely than males to introduce bugs (Fisher’s Exact Test: p<.015). 
Table 4 summarizes these results. Females may have introduced more bugs than males simply 
because females edited formulas more. Note that editing formulas is the only way to introduce 
bugs in a spreadsheet. Thus, it stands to reason that if females had spent more time with the 
unfamiliar debugging features and less with formula editing, then they would have had fewer 
chances to introduce bugs. 

Table 4. Mean (standard deviation) performance of males and females on bugs fixed and new bugs introduced 
that still remained at the end of the task. 

Gender n Seeded Bugs Fixed (10 possible) New Bugs Introduced Num Who Introduced Bugs Mean Std Dev Mean Std Dev 
Males 27 5.815 2.167 0.111 0.424 2 

Females 24 5.667 2.014 0.583 0.974 9 
 

To address RQ3, we investigated whether self-efficacy played a role in participants’ feature 
usage. We analyzed the pre–self-efficacy questionnaires by summing each participant’s answers 
to all 10 questions and found that females had significantly lower pre–self-efficacy scores than 
males (Mann-Whitney: U=181, tied p<.018). Figure 2 depicts this difference.  

[FIGURE 2 HERE] 

For females, self-efficacy was a good predictor of feature usage. In particular, self-efficacy 
significantly predicted the final percent testedness for females (linear regression: F(1,22)=4.52, 
β=2.09, R2=.177, p<.046) (but not for males). Figure 3 depicts the relationships by gender. 
Percent testedness was a good measure of feature usage because it increased only if the 
participant strategically checked off values, indicating deliberate feature use. Spreadsheet 
testedness further predicted the number of bugs fixed by both males and females (linear 
regression: males: F(1,25)=16.60, β=.632, R2=.399, p<.0004; females: F(1,22)=6.818, β=.486, 
R2=.237, p<.016), suggesting important ties between self-efficacy, feature use, and success. 

[FIGURE 3 HERE] 



The results of Study #1 suggest that designers of problem-solving software should look for new 
ways to encourage users to consider relevant features they have not tried before. The 
(predominantly female) participants who favored the formula editor may have been drawn to the 
feature’s familiarity. Since many of the users who favored the familiar formula editor had low 
self-efficacy, possibilities include finding ways to reinforce users’ confidence in their success or 
finding ways to suggest that high certainty is not important in the use of particular features. We 
will discuss techniques that leverage these ideas in Section 4.   

3.2	  Study	  #2:	  Tinkering	  and	  Self-‐Efficacy	  	  
Researchers in education [36] and other domains [30, 40] have found tinkering (playful 
exploration) in an environment to be beneficial for learning. Education research further suggests 
that gender may influence a person’s willingness to tinker; for instance, males reportedly tinker 
more frequently than females (e.g., [24]). However, such differences have not previously been 
investigated in problem-solving software. 

To understand the relationship between gender and tinkering in problem-solving software (RQ2), 
we empirically studied the tinkering behavior of males and females in the context of testing and 
debugging spreadsheets. Building upon Study #1, Study #2 also investigated the relationship 
between self-efficacy and tinkering (RQ3). We thus used a 2-by-2 between-subjects design with 
two factors: gender and spreadsheet environment. The two variants of the spreadsheet 
environment were (1) a low-cost version and (2) a high-support version. The low-cost version 
encouraged tinkering for users by minimizing the cost of manipulating features (e.g., in terms of 
number of clicks). The high-support version provided greater support for debugging, but also 
increased the cost of tinkering. Comparing males and females’ tinkering in the low-cost 
environment versus the high-support environment enabled us to observe the influence that feature 
design can have on tinkering.  

3.2.1	  Low-‐Cost	  and	  High-‐Support	  Spreadsheet	  Environments	  
The low-cost variant of Forms/3 is the version described in Section 3.1.1. Its acting/tinkering cost 
was low: it required only a single action to toggle (or undo) a testing decision for cells (left-click 
for checkmark and right-click for X-mark), and it kept tooltip explanations as brief as possible. 

The high-support variant emphasized support for the debugging features, but also increased the 
cost of acting/tinkering. The X-mark/checkmark box on each cell now enabled users to denote 
“maybe” values, but at a cost of two clicks (Figure 4). Expandable tooltip explanations provided 
information about the current state of the spreadsheet and possible actions the user might take 
(Figure 5). A “Help Me Test” feature could recommend test inputs to improve coverage of 
untested logic in the spreadsheet. 

[FIGURE 4 HERE] 

[FIGURE 5 HERE] 

3.2.2	  Participants	  and	  Procedures	  
Participants comprised 36 males and 40 females with spreadsheet experience and minimal 
programming experience. They were recruited from a university community, had a variety of 
educational backgrounds, and ranged in age from under 20 to older than 60. Prior to the main 
study session, participants completed a pre-experiment questionnaire that collected background 
data on GPA, spreadsheet experience, and programming experience, and also measured pre–self-
efficacy. We randomly assigned the males and females each into the two treatment groups (low-
cost and high-support), using the background data only as needed to balance the groups. The low-



cost group comprised 20 males and 17 females, and the high-support group comprised 16 males 
and 23 females. The groups showed no significant differences in the background data. 

The main study session began with a 35-minute hands-on tutorial to familiarize participants with 
the appropriate version of Forms/3. Next, participants performed the same two tasks as in Study 
#1 (randomly ordered): debugging the Gradebook and Payroll spreadsheets. Participants had 22 
minutes and 35 minutes to work on Gradebook and Payroll tasks, respectively. After each task, 
participants filled out questionnaires regarding how they perceived their performance. Finally, 
participants completed a post-experiment questionnaire that measured post–self-efficacy and 
comprehension of the debugging features. 

3.2.3	  Results	  
To address RQ2, we analyzed whether the relationship between tinkering and performance on 
task was the same for females as for males. In educational settings, such exploration has been 
encouraged for improved performance [36]. Although our context was different, we expected the 
trend to hold—that is, we expected that participants who tinkered more would exhibit better 
performance. 

To measure tinkering, we operationally defined a tinkering instance as turning a feature on and 
then immediately turning it off, e.g., placing a checkmark on a cell and then removing the 
checkmark. A participant’s tinkering frequency for a task comprised the total number of tinkering 
instances. A tinkering episode comprised a sequence of one or more tinkering instances, 
terminated by a cell edit or the end of the task. A participant’s episode count served as a measure 
of his or her consistent usage of tinkering. Finally, a participant’s tinkering rate averaged his or 
her tinkering frequency per episode and was interpreted as commitment to tinkering within 
episodes. The first three rows of Table 5 summarize the tinkering results. 

Table 5. Results for tinkering and task outcomes: means (standard deviations).  

Dependent variable Low cost High support 
Male Female Male Female 

Tinkering frequency 27.3 (27.0) 13.7 (9.2) 10.1 (8.0) 11.7 (9.0) 
Tinkering episodes 9.5 (5.8) 7.9 (4.0) 5.1 (3.1) 6.0 (3.7) 

Tinkering rate 2.6 (1.9) 1.7 (0.7) 1.8 (0.7) 1.9 (0.9) 
Bugs fixed 5.9 (3.1) 6.3 (3.1) 6.5 (2) 5.3 (3.2) 

Percent testedness 61.9 (25.8) 67.9 (20.3) 63.2 (17.2) 65.3 (22.2) 
Understanding of features 7.4 (2.8) 7.2 (2.3) 7.3 (3.1) 7.5 (2.7) 

 
We considered three measures of performance: bugs fixed, percent testedness, and understanding 
of debugging features (as measured on the post-experiment questionnaire). The last three lines of 
Table 5 summarize the results for these task outcomes. 

Correlating tinkering with performance, we were surprised to find that the relationship for 
females was essentially the opposite of the relationship for males. Tinkering positively predicted 
debugging effectiveness for females, whereas it negatively predicted debugging effectiveness for 
males. For females, tinkering episodes significantly predicted percent testedness (linear 
regression: F(1,38)=4.63, R2=.11, p<.05). In contrast, no measure of tinkering predicted percent 
testedness for males; however, tinkering rate negatively predicted bugs fixed for them (linear 
regression: F(1,34)=8.04, R2=.19, p<.01). For females, tinkering episodes also predicted 
understanding (linear regression, frequency: F(1,38)=4.56, R2=.11, p<.05; episodes: 
F(1,38)=4.44, R2=.10, p<.05). In contrast, no measure of tinkering correlated with males’ 
understanding of the features.  



To understand why males’ tinkering correlated negatively with their performance, we considered 
two types of tinkering: exploratory and repeated. Repeated tinkering instances are the number of 
tinkering instances in a sequence of two or more consecutive tinkering instances on the same 
feature and the same cell. For example, turning the arrows for a cell on and then immediately 
back off again three times in a row is three repeated tinkering instances. Hence, the repetitions 
can only repeat information already revealed by the previous tinkering instances. Exploratory 
tinkering instances, which we define as the difference between total tinkering instances and 
repeated tinkering instances, potentially can impart new information.  

An increase in female exploratory tinkering (which accounted for 91% of their overall tinkering) 
was a significant predictor of increased understanding (linear regression: F(1,38)=4.61, R2=.11, 
p<.05). In contrast, males’ exploratory tinkering oddly was not statistically predictive of 
understanding or of any of the effectiveness measures. 

As Figure 6 shows, repeated tinkering instances accounted for a significantly greater proportion 
of the low-cost males’ tinkering than in any other group, with a significant effect of interaction 
between gender and treatment (ANOVA: F(1,72)=5.82, p<.05). In fact, nearly 17% of the low-
cost males’ tinkering instances were of the repeated type, almost twice as many as for the next 
highest group.  

[FIGURE 6 HERE] 

The high-support treatment, with its increased tinkering cost, not only reduced males’ tinkering, 
but also selectively reduced their ineffective repeated type of tinkering. Because it did not affect 
the females’ tinkering effectiveness, this approach appears to be the better of the two treatments 
for both genders, albeit for different reasons. 

Still, the different types of tinkering alone do not explain the inverse relationship between 
tinkering and performance for males. Education research suggests a second reason: the males may 
not have reflected enough. Research has shown that when students have a “wait-time” of three 
seconds or more to process a classroom response, their critical thinking improves [36]. To see 
whether such wait-times also apply in this context, we likewise defined pauses as three or more 
seconds of inactivity after a user action.1  

Overall, females had significantly more pauses than males (ANOVA: MMale=109, MFemale=220, 
F(1,74)=4.22, p<.05). Thus, males did not take time that might have been used to reflect upon the 
feedback from their actions as often as the females did. These pauses mattered; participants who 
paused long enough to reflect on the environment’s responses showed evidence of understanding 
the features better and used them more effectively. For both genders, more frequent pauses were 
predictive of greater effectiveness as measured by bugs fixed (linear regression: F(1,74)=5.36, 
R2=.07, p<.05), final percent testedness (linear regression: F(1,74)=31.3, R2=.30, p<.01), and 
understanding of features (linear regression: F(1, 74)=14.11, R2=.16, p<.01). Males’ tendency to 
tinker more appears to be useful only when they make regular use of pauses. In our study, their 
tendency to pause too little may have interfered with the potential benefits of tinkering.  

To address RQ3, we considered changes in participants’ self-efficacy before and after they 
completed the tasks. We expected that increased tinkering would increase females' post–self-
efficacy, as would the set of features in the high-support treatment. Surprisingly, females using 
the high-support treatment experienced a dramatic fall in self-efficacy (Figure 7) that was 
significant (paired t test: DF=22, t=3.19, p<.01). The other groups showed little to no change in 
                                                        
1 We considered pauses after any action (not just tinkering instances), because every action provides 

feedback. 



their self-efficacy between pre–self-efficacy and post–self-efficacy. The relationships between 
tinkering and post–self-efficacy were also surprising. For high-support females, the rate of 
tinkering per episode was predictive of the drop in self-efficacy reported above (linear regression: 
F(1,21)=6.32, R2=.23, p<.05).  

[FIGURE 7 HERE] 

One possible reason for the high-support females’ extreme drop in self-efficacy is that they did 
not perceive tinkering as helpful for understanding how their debugging environment worked. 
Therefore, the more they tinkered, the more they reinforced this perception of their inability to 
understand what was happening in the environment. Taken in combination with the other 
tinkering/effectiveness results of this study, it appears that the tinkering issue for females is 
complex. Females were better than the males at consistently extracting problem-solving benefits 
from tinkering, but were worse than the males at maintaining their self-efficacy levels. 

Since tinkering was not a straightforward win for females, one implication for products in which 
there is an underlying assumption that adopting new features will start by people tinkering with 
them is that designers could provide alternative ways to enable users to become comfortable with 
new features, such as by tutorial snippets. Additional design remedy possibilities include finding 
ways to encourage pauses for reflection during exploratory tinkering while reducing the incidence 
of repetitive tinkering, which our results suggest are particularly important for males.   We 
consider these possibilities in the next section.   

4.	  Study	  #3:	  Gender-‐Pluralist	  Design	  	  
Our third study investigated whether it is possible to close the gender gaps revealed in Studies #1 
and #2 in ways that do not penalize either gender (RQ4). We introduced variants of the 
testing/debugging features described earlier and investigated their influence on the feature use, 
effectiveness, and confidence of male and female problem-solvers. 

The experiment was a 2-by-2 between-subjects design with two factors: gender and version of the 
spreadsheet environment (treatment versus control). The treatment and control groups both used 
the Forms/3 environment, but the treatment group’s version contained the two additional features: 
“maybe” marks (described in Section 3.2.1) and a strategy-explanation feature. 

4.1	  Gender-‐Conscious	  Spreadsheet	  Environment	  
The design of the treatment features was motivated by both theoretical and empirical research 
relating to gender differences in problem-solving environments. 

We designed a strategy-explanation feature with video-snippet and hypertext media (Figure 8), 
drawing inspiration from research reporting that tutorial materials benefit females’ performance 
in software development [25, 38]. The explanations emphasized strategic debugging in the 
software environment, not feature-by-feature usage. The videos were developed according to self-
efficacy theory, which states that one way for people to gain confidence is through vicarious 
experience, i.e., watching other people like themselves succeed at a similar task. They aimed 
primarily to help low self-efficacy females gain confidence. Each video snippet involved a 
male/female pair and showed the female struggle and then succeed with a debugging situation. 
Also taking into account the attention investment model, we began each video with explicit lead-
ins to make explicit the benefit of viewing the video. We labeled the video snippets with their 
viewing times (usually a minute or less) to align users’ perceived costs with actual costs of 
viewing the videos. We also included hypertext variants of the same text as the videos to 



accommodate users and situations for which text was perceived as less costly or otherwise 
preferable. We combined this feature with “maybe” marks. (“Maybe” marks had also been used 
in Study #2, but were not explicitly evaluated in that study.) “Maybe” marks were intended to 
beckon to low self-efficacy users by suggesting that being certain was not required to be 
“qualified” to pare down possible locations of spreadsheet errors.  

[FIGURE 8 HERE] 

4.2	  Participants	  and	  Procedures	  
Participants comprised 67 male and 65 female undergraduate students from a variety of majors, 
about half of whom were science/engineering majors (e.g., mechanical and nuclear engineering) 
and about half non-technical majors (e.g., Spanish, theater arts, business administration). No 
computer science students were allowed to participate. Prior to the experiment, we gathered 
background data that included GPA, age, year in school, programming experience, spreadsheet 
experience, and self-efficacy, and we randomly assigned participants to treatment groups 
(balanced by gender). A post-hoc analysis showed no significant differences between genders or 
treatment groups on any of these background data except self-efficacy. (We handled the self-
efficacy difference by taking it into account statistically, as detailed below.) 

For the experiment, participants first completed a tutorial on their group’s variant of Forms/3 (30 
minutes). They then debugged the payroll spreadsheet from the first two studies (45-minute 
limit). For this study, we seeded the spreadsheet with 6 bugs. To ensure treatment participants 
used the strategy-explanation feature, we interrupted them after 30 minutes and asked them to 
view either a video or hypertext explanation of their choosing. Finally, participants completed a 
questionnaire that asked them to rate the usefulness of features, to describe how parts of the 
software affected their confidence in fixing bugs (open-ended question), and to answer the self-
efficacy questions again. 

4.3	  Results	  	  
Our analysis emphasized three comparison groups. First, we compared treatment females with 
control females to see if the treatment affected females’ outcomes. Second, we compared 
treatment males with control males to see if the features influenced males’ outcomes. Third, we 
compared treatment male/female gender gaps with control male/female gender gaps to see if the 
features affected the gender gap.  

Although males fixed significantly more bugs than females in this study (females: M=2.88, 
SD=1.75; males: M=3.84, SD=1.46; ANOVA: F(1,130)=15.67, p<.00013), this is not surprising 
given that the first two studies revealed barriers to females’ success in debugging spreadsheets. 
Complicating the situation, a self-efficacy background difference was present in this study. Thus, 
in making the comparisons, we statistically took into account potential confounds: 
gender/treatment group differences in pre–self-efficacy, and individual differences in minutes 
available for debugging. Females in the treatment group had significantly lower pre–self-efficacy 
than females in the control group (treatment females: M=36.82, SD=5.22; control females: 
M=40.13, SD=4.28; ANOVA: F(1,63)=7.96, p<.0064). Furthermore, control participants had 
more time to debug than the treatment participants because the latter spent time viewing 
explanations. All of our subsequent statistical tests accounted for these differences except where 
indicated otherwise. Taking these factors into account, our results showed that the feature 
changes helped to close the gender gap in usage of debugging features. Specifically, treatment 
females used both the checkmarks and X-marks significantly more than control females and 
closer to the males’ level (Table 6; illustrated in Figure 9) due to increased tinkering. We 
distinguished playful usage (e.g., quickly checking and unchecking a box) from lasting usage. We 



used ANCOVA (with pre–self-efficacy as a covariate) to test the difference in checkmark 
tinkering, whereas we used Wilcoxon rank-sum to test the difference for X-marks because the 
number of ties at zero made the distribution non-normal.  

 [FIGURE 9 HERE] 

Table 6. Tinkering and use of debugging features. 35 Treatment females, 30 Control females, 34 Treatment 
males, 33 Control males. **: p<.01, *: p<.05, ~: p<.1.  

 TF vs. CF TM vs. CM Test 
Playful checkmarks/minute TF more: F(2,62)=2.779, p<.022* not significant ANCOVA 
Playful X-marks/minute TF more: Z=-2.47, p<.014* TM more: Z=-2.02, p<.044* Wilcoxon 
Lasting checkmarks/minute not significant not significant ANCOVA 
Lasting X-marks/minute TF more: Z=-2.70, p<.070~ TM more: Z=-2.09, p<.037* Wilcoxon 
 TF vs. TM   
Low-conf marks/minute TF more: F(1,67)=3.977, p<.0503~  ANOVA 
 

The increased feature usage of the treatment group is noteworthy because females who used the 
features more achieved greater success. Specifically, the total (playful plus lasting) number of 
checkmarks used per debugging minute (accounting for pre–self-efficacy) predicted the 
maximum percent testedness per debugging minute achieved by females in the control group 
(total checkmarks per debugging minute: M=0.59, SD=0.43; ANCOVA: F(2,27)=18.04, 
p<.00001) as well as in the treatment group (total checkmarks per debugging minute: M=0.63, 
SD=0.53; ANCOVA: F(2,32)=31.11, p<.00001). We used testedness as a measure of success 
because it was a significant factor (accounting for pre–self-efficacy) in the number of bugs fixed 
(maximum percent testedness: M=0.57 (56.5% testedness), SD=0.22; bugs fixed: M=3.36, 
SD=1.65; ANCOVA: F(2,129)=8.88, p<.00024). This experiment did not tease apart the effects 
of the nuanced (“maybe”) judgments feature from the effects of the strategy explanations on 
success. We attempted to analyze the relationships between the number of minutes spent viewing 
explanations and measures of each participant’s success. However, assessing ties to success 
involved the interaction of participants’ use of strategies and their self-efficacy. These 
relationships were complex and non-linear, making interpretation difficult. However, although we 
were not able to separate the impacts of nuance from strategy explanations, we know that the 
combination was tied to quantifiable benefits for females.   

Turning to self-efficacy, we hypothesized that the features would positively influence female self-
efficacy, but not lead to inappropriately high self-efficacy. Low self-efficacy is only appropriate 
when it reflects an accurate assessment of the person’s ability. Thus, inappropriately low 
(underconfidence) or high (overconfidence) self-efficacy was our target because they can lead to 
problems with persistence and strategy decisions [1]. Recall also that Studies #1 and #2 suggested 
that females’ debugging outcomes were particularly susceptible to low self-efficacy.  

Indeed, the results suggest that the features provided the desired benefits to self-efficacy. 
Although nearly all participants’ self-efficacy decreased during the experiment (see Figure 10), 
we found suggestive evidence that treatment females’ decrease in self-efficacy was less than 
control females’ (control females: M=-4.05, SD=5.00; treatment females: M=-1.91, SD=5.14; 
ANOVA: F(1,63)=2.86, p<.096). Furthermore, Table 7 shows that treatment females (as well as 
both male groups) displayed appropriate post–self-efficacy given their debugging performance. In 
contrast, we found no such evidence that control females had appropriate confidence. 

[FIGURE 10 HERE] 



Table 7: Means, standard deviations, and results of linear regression tests comparing whether bugs fixed per 
debugging minute is predictive of post-self-efficacy for Control females, Control males, Treatment females, and 
Treatment males. 

CF CM TF TM 
Bugs: M=0.067, SD=0.042 
Post-SE: M=36.12, SD=5.55 

Bugs: M=0.092, SD=0.026 
Post-SE: M=39.50, SD=4.70 

Bugs: M=0.065, SD=0.039 
Post-SE: M=34.86, SD=6.49 

Bugs: M=0.084, SD=0.040 
Post-SE: M=39.12, SD=5.51 

F(1,28)=2.07 
β=34.46 
R2=.069 
p<.17 

F(1,31)=6.92 
β=76.79 
R2=.18 
p<.014* 

F(1,33)=3.62 
β=52.86 
R2=.099 
p<.066~ 

F(1,32)=6.33 
β=56.49 
R2=.17 
p<.018* 

 

Given the suggestive, but not overwhelming, evidence of positive effects on treatment females’ 
self-efficacy, we triangulated these results with the participants’ free-text responses on the post-
questionnaire. In particular, we focused on questions that asked which parts of the software 
affected participants’ confidence in their ability to fix bugs. To analyze the responses, we coded 
participant comments as positive or negative and as related to environmental conditions, user 
features, software feedback, information given, software usability, or experiment setup. Two 
researchers individually coded the same 20 participants’ answers using this scheme, achieving a 
91% agreement rate. Given the high agreement, a single researcher coded the remaining 
participants’ answers. 

Participant responses confirmed that the treatment environment fostered females’ confidence 
better than did the control environment. Treatment females said significantly more positive things 
than control females about the features and information’s effects on their confidence. Table 8 
summarizes the analysis results for females. 

Additionally, the results suggest that the features did not hinder treatment males. Overall, 
treatment males’ comments were not significantly more positive or negative than control males’. 
Moreover, treatment males spoke more positively about information than their control 
counterparts did (Wilcoxon rank-sum test: Z=-2.21, n=67, p<.028). 

Table 8: Means, standard deviations, and results of Wilcoxon rank-sum tests of 35 Treatment females’ and 30 
Control females’ responses regarding what influenced their confidence. 

 CF TF Result 
Positive statements overall M=0.63, SD=0.93 M=1.26, SD=1.20 TF more: Z=-2.29, p<.022*  
Negative statements about experiment M=0.40, SD=0.50 M=0.20, SD=0.47 TF less: Z=1.92, p<.055~ 
Positive statements about information M=0.03, SD=0.18 M=0.37, SD=0.65 TF more: Z=-2.70. p<.007** 
Positive statements about features M=0.10, SD=0.31 M=0.29, SD=0.52 TF more: Z=-1.63, p<.103 

5.	  Discussion:	  Generality	  	  	  
The three studies reported here together define our “core” results. However, they were all done in 
the context of one research prototype, allowing controlled manipulation of features of the 
software at a fine-grained level, but raising the issue of generality: whether our results would also 
apply to other software environments, other tasks, and other populations. Therefore, we ran a 
number of studies in other problem-solving contexts to assess the extent to which these results 
can be replicated in other environments and with other populations. We briefly summarize those 
results here. 

In our first such study, we closely replicated the procedure of Study #1, but in the context of 
Excel [6]. We generalized the population also, incorporating a population of Seattle-area 
experienced Excel practitioners rather than college students as in Study #1. We found that several 



of the results from Study #1 generalized to Excel. First, females’ self-efficacy predicted task 
success, but the same did not hold true for the males. Second, low self-efficacy females relied 
more heavily on the “familiar” type of features, particularly value edits: a relationship that did not 
hold for males. Third, these results could not be attributed to females being better judges of their 
weaknesses. Females’ comprehension of the software features was no different than the males’ 
and was not predicted by self-efficacy. This was the first study in a commercial environment, but 
the fourth study in total (including the three reported in this paper) in which we found that the 
effects of self-efficacy playing out differently for males and females.  

Moving beyond spreadsheets, we have also investigated gender differences in the context of 
problem solving about the learned behaviors from machine learning systems. For example, email 
spam filters and recommender systems learn rules of computational behavior particular to one 
end user and these learned rules (which we term “learned programs”) sometimes require 
adjustment (“debugging”). We performed two studies in the context of an email sorter that learns 
how to help users sort emails into folders. We found gender differences in both of them. In our 
first study in this domain [37], males and females handled the same number of messages, but 
females spent significantly more time doing so. This was because females used the provided 
features more comprehensively (recall the selectivity hypothesis [32]), notifying the system of 
significantly more keywords than males did. Our second study in this domain [26] found that 
females had significantly lower self-efficacy, encountered more “selection” barriers (knowing 
what to do, but not which feature to use) and “design” barriers (cognitive difficulties, separate 
from the features) with the environment’s debugging features, and responded differently than 
males did in their attempts to overcome those barriers. For example, when females encountered a 
selection barrier, their next barrier was more likely than the males’ to be a selection barrier. Thus, 
although these two studies did not consider all the issues of the spreadsheet studies reported in 
this paper, the questions that they did consider produced results consistent with those found in the 
spreadsheet studies. 

Turning to the paradigm of web automation, in a study of end-user mashup programmers [16], as 
with the above studies, females had lower self-efficacy and focused their efforts on familiar 
webservice features (versus unfamiliar webservice features) significantly more than the males 
did. Rosson et al.’s study of web developers also showed suggestive gender differences in the use 
of novel web-based database features that are consistent with these findings [34]. 

Finally, we performed a multi-study that generalized beyond end-user problem solvers to a wide 
range of problem solvers ranging from administrators to professional programmers [13]. 
Specifically, in a gender-based analysis of almost 3000 participants from multiple studies’ data at 
a large software company, we considered the same three research questions as RQ1–RQ3 in the 
core studies of this paper, but across multiple platforms and populations. The multi-study covered 
a study of technical problem-solving practices of multiple populations (from administrators to 
professional software developers), two studies of hobbyist programmers using Visual Studio 
Express, and two studies of professional software developers using Visual Studio as well as a 
variety of other platforms. As with the three studies reported in this paper, we found significant 
gender differences across all programming environments and populations as to which features 
males and females elected to use, as to males’ and females’ willingness to tinker and explore, and 
between males’ or females’ technical problem-solving confidence. Furthermore, as with the other 
studies reported in this paper, the confidence differences were not the sole explanation for the 
differences in feature usage and tinkering. 

In summary, we have incorporated gender analyses in a variety of studies spanning multiple 
software environments and populations, and these studies have all found gender differences 



similar to those reported in this paper: in feature usage, in tinkering, and in how confidence plays 
out for males versus females. 

6.	  Conclusions	  	  
In this paper, we have reported three core studies investigating gender differences in problem-
solving environments. We also point to evidence that many of these results generalize, with 
similar results spanning ten other studies, seven problem-solving platforms, and thousands of 
participants ranging from end users to professional programmers. Our results were as follows: 

RQ1: There were significant gender differences as to which features males and females use in 
problem-solving software.  

RQ2: There were significant gender differences as to males’ and females’ willingness to tinker 
and explore. 

RQ3: Although there were significant differences between males’ or females’ technical problem-
solving confidence, these differences clearly were not the sole explanation for the differences in 
feature usage and tinkering. 

RQ4: Early results suggest that it is possible to design problem-solving software in a way that 
takes gender differences into account, such that it overcomes gender gaps without penalizing 
either gender. 

Our findings underscore the importance of taking gender differences into account when designing 
problem-solving software. For instance, software that assumes that users will discover advanced 
features solely through tinkering and exploring will likely marginalize females. Fortunately, our 
RQ4 results suggest that pluralist designs need not sacrifice the needs of one gender to serve the 
other: researchers have shown that taking gender differences into account in designing software 
features can benefit both genders. As an additional example, Tan et al. showed that displaying 
optical flow cues helped close a gender gap in virtual world navigation while benefiting both 
females and males [39]. Furthermore, education researchers found that pair programming, which 
was expected to help female computer-science students, not only reduced the gender gap but also 
increased success and reduced attrition among both male and female students [7, 31]. 

Finally, these gender differences do not suggest that males are somehow “better” software users 
than females. For instance, using unfamiliar features is not always better than using familiar ones, 
and tinkering is not always productive. Furthermore, although gender differences in feature 
usage, willingness to tinker, and confidence are all implicated in our results, an individual male or 
female generally does not bear every trait associated with his or her gender. Although our 
statistical analyses revealed gender differences, a portion of the males still exhibited traits 
associated with the majority of females, and vice versa. Thus, informing the design of problem-
solving software based on the differences revealed by our investigation need not penalize either 
gender—doing so can help everyone. 
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Figure 1. The user notices an incorrect value in Course_Avg—the value is obviously too low—and places an X-
mark in the cell. As a result, Forms/3 colors the eight cells that may have directly contributed to the error. 

  



 

Figure 2. Males’ and females’ pre-session self-efficacy (maximum was 50.) The center line of each box represents 
the median score. The boxes show the ranges encompassed by 50% of the scores of each gender. The whiskers 
extending above and below the boxes show the remaining upper and lower 25%. 



 
Figure 3. Self-efficacy as a predictor of final spreadsheet testedness. The regression lines show the females’ 
positive relationship of self-efficacy to spreadsheet testedness. For males, the relationship was not significant. 

  



 

Figure 4. Clicking on the decision box provides four decision options. The user can then click (from left to right): 
it is wrong, it seems wrong, it seems right, it is right. 

  



 

Figure 5. From the non-expanded tool tip (the first line) a user can click on the Tips expander to get the rest of 
the tool tip – which remains on the screen until dismissed. 

  



 

Figure 6. This interaction plot (of means only) illustrates the gender x treatment interaction in percentage of 
repeated tinkering.  

  



 

Figure 7. The change from pre–self-efficacy to post–self-efficacy. The High-Support females’ drop was 
significant. 
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Figure 8. The strategy-explanation feature includes video snippets of two people working on a spreadsheet (left) 
and hypertext content (right). 

  



 

Figure 9. Tinkering with X-marks (left) and checkmarks (right), in marks applied per debugging minute. Note 
the gender gaps between the Control females’ and males’ medians. These gaps disappear in the Treatment 
group.  

  



 

Figure 10. Change in self-efficacy for (left) Control participants and (right) Treatment participants.  
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