
© The Author 2014. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/iwc/iwu022

Idea Garden: Situated Support for
Problem Solving by End-User

Programmers†

Jill Cao
1,∗

, Scott D. Fleming
2
, Margaret Burnett

1

and Christopher Scaffidi
1

1School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
2Department of Computer Science, University of Memphis, Memphis, TN, USA

∗Corresponding author: caoch@eecs.oregonstate.edu
†An early version of portions of this paper appeared in Cao et al. (2011).

Although there have been many advances in end-user programming environments, recent empirical
studies report that programming still remains difficult for end-users. We hypothesize that one reason
may be lack of effective support for helping end-user programmers problem-solve their own way
around barriers they encounter. Therefore, in this paper, we describe the Idea Garden, a concept
designed to help end-user programmers generate new ideas and problem-solve when they run into
barriers. The Idea Garden has its roots in Minimalist Learning Theory and problem-solving theories.
Our proof-of-concept prototype of the Idea Garden concept in the CoScripter end-user programming
environment currently targets three barriers reported in end-user programming literature. It does
so using an integrated, just-in-time combination of scaffolding for problem-solving strategies, for
design patterns and for programming concepts. Our empirical results showed that this approach

helped end-user programmers overcome all three types of barriers that our prototype targeted.

RESEARCH HIGHLIGHTS

• We propose the Idea Garden concept to help users overcome barriers.
• We present a study that identified barriers end-user programmers encountered.
• We analyzed the barriers from the angles of problem-solving theories.
• We prototyped the Idea Garden for the CoScripter end-user mashup environment.
• An evaluation showed that the Idea Garden helped most users overcome barrier(s).

Keywords: development frameworks and environments; designing software; interactive learning
environments; computational thinking; informal learning

Editorial Board Member: Françoise Détienne

Received 16 April 2013; Revised 18 March 2014; Accepted 24 April 2014

1. INTRODUCTION

Over the decades, researchers have made remarkable strides
in bringing programming capabilities to ordinary end-users.
Today, there are numerous programming environments for
end-user programmers in both research and practice, with
spreadsheets and database systems being arguably the most
widespread examples. End-user programming has become so
widespread that, based on data from the U.S. Bureau of Labor
and Statistics, the number of people using spreadsheets and

databases at work has been estimated to be 55 million—more
than an order of magnitude greater than the number of
professional programmers (Scaffidi et al., 2005). Further,
research continues to make progress in designing programming
languages that are easier for end-users to use (e.g. Pane and
Myers, 2006), that help end-users find and reuse programs
(e.g. Brandt et al., 2010) and that even eliminate the
need for explicit programming altogether (e.g. Lieberman,
2001).

Interacting with Computers, 2014

 Interacting with Computers Advance Access published May 29, 2014
 by guest on June 1, 2014

http://iw
c.oxfordjournals.org/

D
ow

nloaded from

http://iwc.oxfordjournals.org/
sdf
Text Box
NOTICE: This is the author’s version of a work that was accepted for publication in Interacting with Computers. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Interacting with Computers, Volume 27, Issue 6, November 2015, DOI: 10.1093/iwc/iwu022.

2 Jill Cao et al.

However, despite this progress, empirical studies continue to
show that programming remains difficult for end-users (e.g. Cao
et al., 2010a,b; Gross and Kelleher, 2010; Ko et al., 2004). Prior
empirical investigations suggest that one reason barriers persist
is a lack of support in end-user programming environments
for helping users to develop problem-solving skills needed to
overcome barriers they encounter (Cao et al., 2010a,b).

To address this gap, we have been working on a concept
we call the Idea Garden, a design concept that extends end-
user programming environments with situated assistance to
help users form and develop ideas when problem solving,
without interrupting or taking control from users. In contrast
to prior approaches that attempt to solve problems for end-user
programmers, the Idea Garden supports end-users as they solve
problems for themselves.

This paper makes four contributions:

(i) The Idea Garden, a new design concept for
programming environments that is aimed at helping
end-user programmers problem-solve and generate
their own ideas.

(ii) The application of theories from problem-solving lit-
erature and creativity literature that revealed problem-
solving barriers end-user programmers encountered
in two end-user mashup programming environments
(Study 1).

(iii) A prototype instantiation of the Idea Garden for
the end-user programming environment CoScripter
(Lin et al., 2009; Little et al., 2007).

(iv) Empirical evidence of the Idea Garden’s strengths and
weaknesses in helping end-user programmers work
through barriers identified by Study 1 (Study 2).

2. RELATED WORK

Historically, a central goal in the design of end-user
programming environments has been to make programming as
easy as possible.

One approach aiming at this goal is to simplify programming
languages to make them easier for users to understand and
use. For example, the Natural Programming project promotes
designing programming languages to match users’ natural
vocabulary and expressions of computation (Myers et al.,
2004). One language in that project, the HANDS system
for children, depicts computation as a friendly dog who
manipulates a set of cards based on graphical rules, which
are expressed in a language carefully designed to match how
children described games (Pane and Myers, 2006).An empirical
study demonstrated that this language significantly increased
users’ ability to complete programming problems (Pane and
Myers, 2006).Another system,Vegemite, aims to make mashup-
programming easy by providing table data structures akin
to spreadsheets that remove the need for explicit iteration
constructs (Lin et al., 2009). In an early study, users said it

would be easy for them to create new mashups with the system
(Lin et al., 2009). Still other programming environments such
as Alice (Kelleher and Pausch, 2006) and AutoHAN (Blackwell
and Hague, 2001) incorporate visual programming languages
and direct or tangible manipulation to make programming easier
for end-users. Indeed, these and other novel programming-
environment designs have demonstrated considerable success
at easing programming, by reducing the need for users to learn
arcane language constructs and to memorize syntax.

Some environments are even designed with the goal
of eliminating the need for explicit programming. For
example, AgentSheets (Repenning and Ioannidou, 2008) and
CoScripter (Lin et al., 2009) are based on the approach called
programming by demonstration where end-users demonstrate
an activity from which the system automatically generates a
program (Lieberman, 2001; Cypher et al., 2010). Some such
environments provide a way for users to access the generated
code, but it is often not necessary for users to edit the code at all.

Another family of approaches seeks to delegate some of
the programming responsibilities to other people. For example,
meta-design aims at design and implementation of systems by
professional programmers such that the systems are amenable to
redesign through tailoring (configuration and customization) by
end-user programmers (Andersen and Mørch, 2009; Costabile
et al., 2009; Fischer, 2009). In some large organizations, an
expert end-user programmer, called a gardener,1 serves to
ease or eliminate programming among the organization’s end-
user community (Gantt and Nardi, 1992). Such a gardener
creates reusable code, templates and other resources, and
provides these to other users, whose programming tasks thereby
become substantially simpler. While gardeners each focus on
a particular end-user community, programming environments
facilitate delegation of programming across communities by
aiding reuse of code. For example, FireCrystal (Oney and
Myers, 2009) is a Firefox plug-in that allows a programmer
to select user interface elements of a webpage and view the
corresponding source code. FireCrystal then eases creation of
another web page by providing features to extract and reuse this
code, especially code for user interface interactions. Another
system, BluePrint (Brandt et al., 2010), is anAdobe Flex Builder
plug-in that semi-automatically gleans task-specific example
programs and related information from the web, and then
provides these for use by end-user programmers. Still other
systems are designed to emulate strategies or heuristics that
users themselves appear to employ when looking for reusable
code, thereby simplifying the task of choosing which existing
programs to run or reuse (e.g. Gross et al., 2010; Scaffidi
et al., 2009).

1Gantt and Nardi’s use of the term gardener is unrelated to our use of it with
respect to the Idea Garden. Idea Garden is also unrelated to a work known as
the ‘Answer Garden’ (Ackerman and McDonald, 1996) which, like Gantt and
Nardi’s work, is focused on a collaborative organizational setting, unlike our
work here.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 3

Although all of the above approaches help end-users
by simplifying, eliminating or delegating the challenges of
programming, none are aimed at nurturing end-users’ problem-
solving ideas. In essence, these approaches help end-user
programmers by lowering barriers, rather than by helping
people figure out for themselves how to surmount those
barriers.

However, there are some works aimed at helping professional
interface designers generate and develop ideas for their interface
designs. For example, DENIM is a system that allows designers
to sketch websites at a high level and thus helps the designers
develop their design ideas (Newman et al., 2003). As another
example, Diaz et al. created a visual language that helps web
designers develop their design ideas by suggesting potentially
appropriate design patterns along with possible benefits and
limitations of the suggested patterns (Díaz et al., 2010). Even
though professional interface designers are different from the
end-user programmer audience we target (in that interface
designers often do not engage in coding per se), as with that line
of work, we seek to help end-user programmers generate new
ideas and problem-solve about making their programs behave
as desired. Thus, our approach was inspired in part by this line
of work on interface designers.

Our work is also somewhat related to research that aims
to help naive users learn programming, often through the use
of new kinds of educational approaches, or special-purpose
programming languages and tools (Dorn, 2011; Guzdial, 2008;
Hudhausen et al., 2009; Kelleher and Pausch, 2006; Lee
et al., 2013; Repenning and Ioannidou, 2008). However, these
approaches aim to help users who aspire to learn programming
per se, whereas our approach aims at a different population:
those who do not wish to learn (more) programming, but are
willing to do just enough programming to accomplish other
tasks in their lives. One example of our target population could
be an accountant who does not aspire to learn more than she
already knows about spreadsheet formulas, but rather just wants
to get her budget working correctly.

Given this target population, the most relevant work is the
foundational research on Minimalist Learning Theory (MLT)
(Carroll, 1990, 1998; Carroll and Rosson, 1987; van der Meij
and Carroll 1998). Rooted in the constructivism of Bruner and
Piaget, MLT is an education theory that explains how (and
why) to design instructional materials for populations like the
accountant above: the theory terms people like this ‘active’
computer users. Active computer users are those whose primary
motivation is to do some computer-based task of their own,
not particularly to learn computing skills. Active users are so
focused on the task at hand that they are often unwilling to invest
time in taking tutorials, reading documentation or using other
training materials—even if such an investment would be rational
in the long term. This phenomenon is termed the ‘paradox of
the active user’ (Carroll and Rosson, 1987). Helping users who
face this paradox learn despite their lack of interest in learning
per se is the goal of MLT.

One way that MLT targets active users is to emphasize the
importance of task-focused activities. Specifically, it suggests
that effective learning activities for active users should (1)
permit self-directed reasoning, (2) be meaningful and self-
contained, (3) provide realistic tasks early on, (4) be closely
linked to the actual system and (5) provide for error recognition
and recovery.

To target active users like these, MLT rests upon four major
principles (van der Meij and Carroll, 1998):

MLT Principle 1: Choose an action-oriented approach.
Since MLT’s ‘active users’are by definition eager to act,
the theory recommends providing an immediate oppor-
tunity to act; encouraging self-directed exploration and
innovation; and designing instruction in a way that puts
the user’s own (sub)goals and activities first, rather than
putting the delivery of information first.
MLT Principle 2: Anchor the [learning] tool in the
task domain. Almost a corollary to MLT Principle 1 is
the recommendation that learning tools should use real
tasks as instruction activities. To accomplish this, the
theory also recommends that the structure or sequence
of instruction follow the structure or sequence of the
real task.
MLT Principle 3: Support error recognition and
recovery. MLT recommends that a tool should prevent
mistakes when possible, provide error information that
supports not only detection, but also diagnosis and
recovery, and provide immediate, ‘on-the-spot’ error
information.
MLT Principle 4: Support reading to do, study,
and locate. MLT explains that users’ reading style
of instructional materials can vary: some read just
enough to do something, others study in more
breadth and others look up what they were looking
for. Thus, MLT recommends designing for all
three styles. To do so, it recommends being very
brief, not spelling out everything and making each
instructional unit self-contained, without needing
cross-referencing/navigation to other sections of the
instruction.

In the next section, we will return to these four principles,
and explain how they have been embodied in the Idea Garden
concept.

3. THE IDEA GARDEN: CONCEPT

To achieve our goal of helping ‘active’ end-user programmers
generate new ideas and problem-solve in situ, when they are
engaged in programming, we have devised a concept called the
Idea Garden. The Idea Garden concept provides a new kind
of scaffolding for problem-solving strategies and programming
knowledge.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

4 Jill Cao et al.

Table 1. Constraints on Idea Garden features’ content, form and style.

Type of constraint Constraint
Content CC1: Idea Garden suggestions must contain

problem-solving strategies (see Section 5.2 for an
example)

CC2: Idea Garden suggestions must contain
programming concepts and design patterns (see
Section 5.2 for an example)

CC3: Any code examples must be intentionally
imperfect matches to the user’s needs (see
Section 5.2 for an example)

Form FC1: Idea Garden suggestions must follow the
appropriate template. These templates enumerate
suggestion content in a host-independent way (see
Section 5.2 for an example)

Interaction style ISC1: Interruption style: negotiated. Idea Garden
suggestions never pop up uninvited; instead,
an Idea Garden merely adds notifications that
suggestion content is available. These notifications
cannot pop up either; they can be added only when
the GUI would have needed to repaint for other
reasons (see Section 5.1 for an example)

ISC2: Personality: non-authoritative. An Idea
Garden feature’s appearance and suggestion tone
should not suggest that it is an automatic problem-
solver or an authoritative figure. (See Section 5.1
for an example)

We define an Idea Garden as

(i) a subsystem that extends a ‘host’ end-user program-
ming environment to provide suggestions that

(ii) follow the principles from MLT as per Idea Garden
Design Principles 1–4 (Section 3.1) and

(iii) follow the form, content and interaction style
constraints enumerated in Table 1. Specifically, Idea
Garden suggestions:

(a) provide guidance about problem-solving strategies,
programming concepts and design patterns (Table 1:
CC1 and CC2);

(b) are generated by combining host-independent tem-
plates (Table 1: FC1) with information about the user’s
task;

(c) are intentionally imperfect (Table 1: CC3) and
presented in a non-authoritative tone (Table 1: ISC2);

(d) are presented via a negotiated interruption style
(Table 1: ISC1).

The following subsections discuss the theoretical underpinnings
of the Idea Garden concept, as well as the principles that guide
and constrain an Idea Garden’s suggestions.

3.1. The Idea Garden’s adherence to the MLT principles

One element of the Idea Garden’s definition is that it must
conform to the MLT principles (which were enumerated in
Section 2), because that is the learning theory that addresses
the Idea Garden target population of ‘active’ computer users;
i.e. those who are more interested in doing their tasks than they
are in learning for the sake of learning computing skills (Carroll
and Rosson, 1987). The Idea Garden follows these principles in
the following ways.

Idea Garden Design Principle 1: Require self-directed
reasoning: This design principle was derived directly from MLT
Principle 1 (action-oriented instruction). This is one way the
Idea Garden contrasts with existing tools that attempt to solve
users’ problems automatically: such tools do not require users
to reason for themselves. The Idea Garden therefore aims to not
be helpful unless the user engages in self-directed reasoning.
Specifically, it suggests strategy alternatives (Table 1: CC1) and
provides (intentionally) incomplete or imperfect suggestions
(Table 1: CC3), all of which require the user to actively try things
out and problem-solve in order to make substantive progress on
the task at hand.

Another way the Idea Garden requires self-direction is in
leaving the workflow decisions to the user. In particular, the Idea
Garden contrasts with assertive instructional agents, such as
Microsoft Office’s Clippy, that violate users’ self-directedness.
Whereas Clippy uses immediate-style interruptions that hijack
the user’s attention whenever the system decides it has
something to say through, e.g. pop dialogs or animations,
the Idea Garden uses negotiated-style interruptions, which
inform users of pending messages but do not force the users
to acknowledge the messages (McFarlane, 2002; Table 1:
ISC 1). Negotiated-style interruptions, by definition, leave
the decision to the user as to whether and when to bring
up the new messages. Perhaps because of this characteristic,
negotiated-style interruptions have been shown to promote not
only learning of new features in an end-user programming
environment, but also debugging effectiveness better than
immediate-style interruptions (Robertson et al., 2004).

Idea Garden Design Principle 2: Based on the user’s own
tasks. We derived this principle from MLT Principle 2 (anchored
in task domain). Adherence to this principle is the reason the
Idea Garden customizes suggestions to the user’s own code as
it currently exists. Each suggestion is then, by definition, tied to
the task that the user has already chosen to initiate, thereby
giving suggestions relevance and realism. Adherence to this
principle is also the reason the Idea Garden extends, rather than
replaces, existing host environments.

Idea Garden Design Principle 3: Leave error messages and
recovery to the host environment. MLT Principle 3 points out the
importance of providing mechanisms for active users to recover
from errors. Since an Idea Garden extends an existing host, it
defers to the host for error recovery. We do not expect the Idea
Garden to replace error facilities in the host.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 5

Idea Garden Design Principle 4: For do-ers, studiers and
references. Because MLT Principle 4 recommends brief yet self-
contained content, Idea Gardens present as little information as
possible, and always leave out details that the user will have to
figure out themselves (Design Principle 1). At the same time,
much of its content is expandable, allowing studiers to see
more without navigating away ‘in place’. Finally, Idea Gardens
provide a context-free way to look up Idea Garden suggestions
even if the user’s current context is not one that would normally
trigger that suggestion.

3.2. Idea Garden’s constraints on form, content and style

An Idea Garden needs to be well integrated with its host
environments; thus, Idea Garden will not all look exactly alike.
Not only will the content of an Idea Garden’s suggestions
need to reflect the host-supported programming concepts and
paradigms (Table 1: CC2), but also the host’s GUI conventions
and affordances will vary. To allow the needed flexibility to
conform to the host, we include in the Idea Garden definition
a set of constraints, enumerated in Table 1. The constraints
mainly elaborate upon and supplement the Minimalist Learning
principles discussed above.

3.3. Idea Gardens as extensions to end-user
programming environments

An Idea Garden extends an existing end-user programming
environment. We chose this approach because the Idea Garden
is not intended to replace all the different kinds of helpful
information that a programming environment might offer, such
as tutorials for the novice user, examples and so on. Instead, its
goal is to supplement those kinds of information when the user
has run into barriers despite having those other resources.

The Idea Garden is general enough to extend any host
environment that allows enough communication to monitor
the user’s actions and code, and to add communications of
its own to that environment. Specifically, it can extend any
host environment that: (1) allows the Idea Garden to retrieve
the user’s data and code as it appears to the user (i.e. on the
screen) and as it appears to the machine (i.e. after parsing), that
(2) allows the Idea Garden to change the user’s code (e.g. by
inserting constants or lines of code) and that (3) allows the Idea
Garden to annotate the programming environment and/or user’s
code with interactive widgets (e.g. tool tips, buttons, graphics
or font changes).

4. STUDY 1: END-USER PROGRAMMERS’ IDEA
BARRIERS

Within this framework, we needed an understanding of what
kinds of ‘idea barriers’ end-user programmers encounter.
Toward that end, we began with a formative empirical
investigation. We chose mashup programming environments

as the context for the study, because web automation by end-
users has become increasingly popular (e.g. Cypher et al., 2010;
Scaffidi et al., 2008; Zang et al., 2008).

4.1. The Mashup environments

To help ensure the generality of our findings, we studied users
of two different mashup environments: IBM’s CoScripter tool
and Microsoft’s Popfly tool. Mashups are web applications
end-user programmers can create that interactively combine
data from multiple internet sources (Wong and Hong 2007).
Both environments aim to cater to end-user programmers by
adopting techniques for facilitating programming by end-user
programmers. Specifically, CoScripter produces scripts through
programming by demonstration where end-user programmers
demonstrate an activity from which the system automatically
generates a program (Lieberman, 2001). In contrast, Popfly
provides a drag-and-drop interface for programming in a visual
language.

4.1.1. CoScripter
CoScripter is an end-user programming-by-demonstration
environment for web scripting. In CoScripter (Fig. 1), users
demonstrate to the system how they would carry out a task
on the web by actually performing the task themselves. For
example, to demonstrate to the system how to find a list of local
restaurants, a user could go to restaurants.com, enter search
criteria, e.g. zip code, and hit the ‘Search’ button. The system
watches and translates users’ actions into a script (Fig. 1a). The
user can execute this script at a later time to perform the same
task again.

CoScripter enables mashup programming via the table
feature (Lin et al., 2009; Fig. 1b). Users can create scripts that
automatically copy data between the table and web pages. This
enables the user to combine data from multiple web pages in
the table and to effect flow of data from one web page to fill-in-
the-blank fields of another to compute additional information,
the essence of a mashup. For example, to calculate travel time
to restaurants, a user could create a script that loads a web page
listing all restaurants in an area (e.g. by using restaurants.com;
Fig. 1c), copy those restaurants’ addresses to a table (Fig. 1b),
send each restaurant address to another web page (e.g. Google
Maps) that computes travel time via public transit and, finally,
copy this output into the table column.

4.1.2. Popfly
In contrast to CoScripter’s programming-by-demonstration
paradigm, Popfly is a visual dataflow language. In Popfly, users
build mashups using programming constructs called blocks.
Users can choose from existing blocks, each of which performs
a set of operations such as data retrieval and data display.
A block’s operations each take input parameters. For example,
a Flickr block can retrieve photos from Flickr.com’s web
services based on input parameters such as photo names and

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

6 Jill Cao et al.

Figure 1. The CoScripter environment’s (a) script area, (b) table area and (c) browsing area.

photographer names. Users may connect blocks to form a
network in which blocks can use output from other blocks
as inputs. Figure 2 shows an example mashup in which the
Flickr block sends a list of images about ‘beaches’ with their
geographical coordinates to a Virtual Earth block (Fig. 2: top
and middle) to display them on a map (Fig. 2: bottom).

4.2. Empirical methods

The goal of our formative empirical study was to reveal the kinds
of programming barriers that end-users encounter. We obtained
the data by asking end-users to perform programming tasks
while we observed. For the Popfly tool, we had already
conducted such a study for another purpose2 (Cao et al., 2010a)
and were able to reanalyze the data set, as we describe in
detail below. For the CoScripter tool, we had not yet conducted
such a study and needed to collect a new data set. Our results
(Section 4.3) are based on our qualitative analysis of both data
sets together.

2The previous study adopted a design theory lens to understand end-user
programming.

4.2.1. Participants
In total, our CoScripter and Popfly data sets contained user data
from sixteen university students. The CoScripter data set had
six participants (three males, three females), and the Popfly
data set had ten (six males, four females). The participants were
from a variety of majors (e.g. graphic design, accounting, wood
science) and had little (e.g. high school Visual Basic) or no
programming experience. Below, we refer to participants with
identifiers, such as CoScripter-F2, to indicate the participant’s
environment (i.e. CoScripter or Popfly), gender (i.e. F or M)
and ID number within that environment (e.g. 2).

4.2.2. Programming tasks
Each study called for participants to create a mashup. The
CoScripter participants’ primary task was to create a mashup
script to automatically search for two-bedroom apartments
that are rented for under $800 per month and are within a
30-min drive of the Oregon State University campus. This task
required combining data from a search site, such as Craigslist
or Apartments.com, with data from a maps site, such as Google
Maps. The Popfly participants’ task was to create a mashup that
integrated movie-related information, such as movies currently

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 7

Figure 2. An example mashup in Popfly Mashup Creator. Top: the blocks. Middle: some of the blocks’ settings. Bottom: results generated by
pressing the Run button (not shown).

showing at local theaters, theater information and news stories
about each movie.

4.2.3. Procedures
For each environment, we conducted user sessions one
participant at a time using the think-aloud method. Participants
first filled out a background questionnaire and completed a
20-min hands-on tutorial that familiarized them with the mashup
environment. They then completed a self-efficacy questionnaire
(Appendix) based on Compeau and Higgins’ questionnaire
(Compeau and Higgins, 1995) that we adapted to the task
of creating a script. Participants practiced ‘thinking aloud’
before proceeding to the main task. Finally, they had 50 min
to complete their task.

To collect as much data as possible, we wanted to allow
participants to get past whatever current barrier was holding
them up, and move on reasonably soon, so that they might
reveal subsequent barriers. Toward that end, when users were
unable to overcome barriers in the tools, we provided assistance.
Specifically, when Popfly participants were unable to make
progress for 15 min, the researcher administered an extra
5-min mini-tutorial; half of these participants (two males, three
females) received the mini-tutorial. Some users still spent a lot of
time on barriers, so we revised the threshold for the second study
with CoScripter. For these participants, if they were unable to
make progress for at least 3 min, the researcher prompted them

with hints, such as suggesting that they try a different website or
try using the table; all of these participants received at least one
hint. We recorded audio and video of the participants as they
worked on the main task as well as video captured their screen
activity.

We analyzed the audio, video and screen-captured data using
content analysis (Seaman, 2008) to categorize these data into
the barriers users encountered, their problem-solving strategies,
and programming knowledge users applied or failed to apply
when faced with the barriers. We used as evidence of a bar-
rier a participant verbalizing a need for help, turning to the
programming environment’s help facility, asking the researcher
for help, or the researcher offering assistance from observing
a participant struggle without progress on a single subprob-
lem for at least 3 min. Our analysis revealed different patterns
of participant responses to barriers, with a demonstration of a
lack in problem-solving strategies, and programming knowl-
edge. We triangulated findings across participants and envi-
ronments to identify crosscutting phenomena, which we report
below.

4.3. Results and implications

According to Simon, two types of skills are necessary for
problem solving in a specific domain: domain-specific knowl-
edge and problem-solving strategies (Simon, 1980). He equates

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

8 Jill Cao et al.

domain-specific knowledge and general problem-solving
strategies to a pair of scissors: ‘… the scissors do indeed have
two blades and … effective professional education calls for
attention to both subject-matter knowledge and general skills’
(Simon, 1980). Bloom and Broder agreed, and showed that both
mathematical domain skills (e.g. how to multiply integers) and
general problem-solving strategies (e.g. establishing subgoals
of a problem) are indispensable to a successful math problem-
solver (Bloom and Broder, 1950).

Consistent with this prior work, we have organized our results
under the headings of problem-solving strategies and domain-
specific knowledge below, and we explain the relationship of
each result to applicable theories about problem solving.

4.3.1. Problem-solving strategies
In general, participants struggled the most when they failed
to consider whether their current approach to the problem
was succeeding. In other words, participants were stymied
when they demonstrated little metacognition: a person’s
conscious awareness and monitoring of his/her own thoughts,
understanding or learning (Flavell, 1979).

For example, CoScripter-F2 showed no sign of metacognition
regarding her problem-solving strategies. Her quote below
shows that she failed to reflect on her strategy when she was
having difficulty making progress:

CoScripter-F2: [Renames her script] “I don’t know how to do
it. Once I’ve done that [renaming script], I don’t know what
else to do.”

As a result, the researcher had to prompt her with hints to
help her make progress.

Participant Popfly-M3 likewise exhibited little use of
metacognition. His main strategy of overcoming problems he
ran into was to ‘try a different block’ whenever the mashup
stopped working. He never showed any signs of reflecting on
whether this strategy was a wise way of going about his problem
solving:

Popfly-M3: [Mashup shows nothing] “So I try a different one
maybe.” … “Try a different one that I know how to use ‘cause
none of them worked yet or I can get to work.” [Tries the
Image Scraper block. Still does not work]

Conversely, when participants did reflect on their problem-
solving approaches, doing so often helped. For example, Popfly-
M5 made a breakthrough in his problem solving after changing
his strategy to the use of incremental changes and testing:

Popfly-M5: “Simplicity” [Runs. Theater and movie info show]
“Oh, ok. There we go. I was getting way too complicated.” …
“It works well to run the program at each step.”

The demonstration of low metacognition by some partici-
pants may, in turn, have been due to low self-efficacy: a person’s

confidence in their ability to succeed at a specific kind of task
(Bandura, 1977). According to self-efficacy theory, people with
low self-efficacy tend to be less flexible in their problem-solving
strategies than those with high self-efficacy, such as staying with
a known approach even if when it is not paying off.

In both studies, low self-efficacy participants indeed
demonstrated this inflexibility. For example CoScripter-F3, who
had the lowest self-efficacy score in that study (3.4, vs. an
average of 3.77 for all participants), did not even consider
switching from a conventional Google search to some other
approach—such as using a table, as she had just practiced during
the hands-on tutorial—until the researcher’s prompt nudged her
into reconsidering her problem-solving strategy:

CoScripter-F3: (after several trials with Google searches)
“We can set the price range, and how many bedrooms but
I don’t know how to say how far from OSU.” (continues to
ponder the search screen

Researcher prompts with a question “If you were to find
out how far an apartment is from OSU, what would you do
normally?”

CoScripter-F3: “I’d go to Google Map or something, if I had
address and I wanted to know how far it was… Oh you showed
me how to do that using the table [from the tutorial]!”

Literature on problem solving emphasizes the inadvisability of
such inflexibility, explaining that when a person is stuck on a
problem, it is important to step back and analyze what he/she
has been doing (Wickelgren, 1974). Creative design literature
agrees, using the term ‘design fixation’to refer to the undesirable
situation where the designer becomes overly focused on one
idea, missing out on other opportunities (Jansson and Smith,
1991). Conversely, successful design requires periodically
approaching the problem from a different perspective, which is
called ideational fluency in creativity literature, and reframing
in design literature (Schön, 1983). Our results suggest that an
analogous challenge faces end-user programmers.

Viewed from the perspective of this literature, our results
suggest two possible ways to help struggling users increase their
problem-solving flexibility. One way is to entice such users
toward metacognition, for example, by suggesting problem-
solving strategies that the user has not yet considered. The
second way suggested by this literature is to enhance users’
self-efficacy.According to self-efficacy theory (Bandura, 1977),
an effective means to increase self-efficacy is through direct
experience. These two possibilities can actually converge if,
as above, an Idea Garden suggests a new strategy that a
struggling user succeeds with, and that success increases
the user’s self-efficacy. With increased self-efficacy, the
user may then become more flexible in his/her choices of
problem-solving strategies in the future, as Bandura’s theory
predicts.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 9

4.3.2. Programming domain knowledge
Problem-solving strategies cannot be applied without basic
knowledge in the domain where those strategies are to be applied
(Simon, 1980). In one sense, end-users are by definition domain
experts, and the goal of end-user programming is to bring
their domain expertise directly to a programming environment
without the need for intermediary professional programmers.
However, the other crucial domain here is programming
itself, and it has been widely reported that many end-user
programmers lack expertise in the domain of programming (e.g.
concepts of input and output, how to go about debugging),
or in the programming language (e.g. a mental model of the
programming paradigm being used).

Because the languages we studied, CoScripter and Popfly,
were created especially for end-users, one might not expect
issues of programming expertise to arise. Interestingly, however,
issues of programming knowledge arose many times and at
multiple levels.

At the language construct level, CoScripter-M1 had trouble
figuring out where the ‘repeat’ command should go when
he wanted his script to loop through the rows in his
table:

CoScripter-M1: “So I got my results [in the table]. I guess
you can repeat it then.”

[Adds “repeat” to the beginning of his script, which tells the
script to repeat every line instead of just table computations]

At a more abstract ‘design pattern’ level, Popfly-F3 did not
see a connection between the overall task she was trying
to accomplish and the availability of a ‘library’ of blocks
(analogous to a library of APIs) that could each perform a
different portion of the task. Without recognizing the concept
of bringing together component parts for a solution, she did not
see how to even get started:

Popfly-F3: Oh, my gosh! This is very hard! Can you give me
some reminders [hints]?

Likewise, several participants from the CoScripter study failed
to grasp the ideas of using multiple webpages, the CoScripter’s
equivalents to APIs, to accomplish their task. For example,
CoScripter-F1 did not try to use a second webpage like Google
Maps to calculate the driving time between the university and
the list of apartments she found from Apartments.com. Instead,
she fixated on finding the needed driving time together with the
apartments on Apartments.com.

Finally, at the program design level, participants experienced
difficulties in generating ideas that could be developed into
solutions. These difficulties played out in three ways: lack
of a sense for even how to get started (CoScripter-F2),
running out of design ideas to try very early (CoScripter-M2)

or choosing a starting idea that leads down a wrong path
(Popfly-F4).

CoScripter-F2: “I don’t know what to do…”
Researcher asks her to “show” the computer what she wants
the script to do.
CoScripter-F2: “Umm?…” [Still does not know what to do.]

CoScripter-M2: [Enter search term: “2 bedroom apartment
Corvallis OR”. Clicks the “Search” button.]
[Tries a few search results, e.g., www.mynewplace.com]
“Those don’t seem to work. I’m stuck.”

Popfly-F4: “Oh there’s no push pins [on the map]! These
push pins are gonna haunt my nightmares…Why does that not
work? Seems like it’d work but it doesn’t work.”
[continues to try to get her idea to work without progress]

These examples have in common missing programming
knowledge that was needed to move ahead, such as how ‘repeat’
actually works, how to compose a solution from parts and the
notion of making use of well-known design patterns. (Clearly,
an end-user programmer who lacks knowledge of a certain
design pattern cannot possibly apply it.) Consequently, helping
end-user programmers to problem-solve will necessarily also
require at least some support for proper usage of the language’s
constructs, and for concepts and design patterns available for
that programming language/environment.

5. AN INSTANTIATION OF THE IDEA GARDEN IN
COSCRIPTER

To build upon the findings of Study 1, we instantiated the Idea
Garden via a prototype to facilitate iterative development and
evaluation of the concept. We chose CoScripter as the host
environment for this prototype.

In the initial prototype of the Idea Garden, we designed
features to target three end-user programming barriers: not
having an idea of how to even start (How-to-Start), not
understanding how to compose existing modules and functions
to create a program (Composition), and not understanding how
to generalize from operating on a single data item to operating
on multiple data items (More-than-Once). We selected these
barriers because they occurred frequently in both Study 1 and
in prior end-user programming literature (e.g. Ko et al., 2004).

In this section, we show how the initial prototype fulfills each
of the constraints in Table 1, what the user sees in this prototype
and how the prototype constructs its suggestions.

5.1. The Idea Garden prototype’s interaction style

In the prototype, users interact with the Idea Garden as part
of their other interactions with the host environment (here,
CoScripter). The Idea Garden’s tight integration into the host

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

10 Jill Cao et al.

Figure 3. The Idea Garden inserts suggestions (highlighted text) directly into the CoScripter user interface. The Gardening Consultant icon is
circled here.

environment is because, as explained in Section 3.1, Idea
Garden adheres to the MLT principle (Carroll and Rosson, 1987)
that emphasizes the importance of the linkage of the materials
to the actual system where the user is working.

Recall from Section 3.1 that Idea Garden suggestions do
not pop up uninvited, like the infamous Clippy of Microsoft
Office would. Instead, Idea Garden communications follow
the Surprise-Explain-Reward approach (Wilson et al., 2003),
which includes the negotiated style of interruptions (Robertson
et al., 2004; Table 1: ISC1). Therefore, the Idea Garden never
interrupts: instead, it adds a small indication of the presence of
new information to the environment’s user interface (either in
unused whitespace or by extending the containing window),
with the indicator only appearing or disappearing when the
relevant CoScripter window refreshes after a user operation.
Thus, as per Surprise-Explain-Reward, the indicator is meant
to entice users in need of more information to pursue the
explanatory material it has available.

In keeping with the constraint of a non-authoritative
personality (Table 1: ISC2), The Idea Garden communicates
its suggestions via a non-authoritative character we call the
Gardening Consultant (Fig. 3). Imbuing such characters with
a personality can evoke emotions in the user, such as humor,
appreciation or social feelings, and when such emotions are
positive, they can enhance the quality and creativity of users’
ideas (Lewis et al., 2011; Nass and Moon, 2000). Also, a
recent study showed that end-user programmers respond well
to instructions given in a non-authoritarian voice (Lee and
Ko, 2011). Therefore, the Gardening Consultant’s icon looks
like a tentative, quizzical face, intended to provoke mild
humor. Some of the suggestions also contain questions, to
reinforce this non-authoritarian personality. The Gardening
Consultant understands the user’s problems in CoScripter about
as much as a teacher gardener understands problems in a
student gardener’s garden: a lot in general, but not that much
about that particular student’s soil, neighboring plants, resident
insects, etc.

For example, when the user starts with a new, blank script,
the Gardening Consultant icon in Fig. 3 appears. The reason
it appears is because the Gardening Consultant ‘knows’ that a
user facing a blank screen might be having trouble even getting

Figure 4. Start-with-a-column-name: This suggestion targets the
How-to-Start barrier. The user can view it by clicking a special ‘ideas
cell’ in the CoScripter table area (not shown). The idea is to nudge the
user into the beginning step of working backward from the ultimate
goal; the next suggestion, Fig. 5, encourages the next step.

Figure 5. Finder-page: If the user names a column with empty cells
and clicks or hovers on the Gardening Consultant icon in the script, the
Gardening Consultant suggests examples of a design pattern, which we
call the Finder pattern, to populate the column.

started, and has a suggestion about that, if the user is interested.
Clicking on the icon will reveal a suggestion for how to succeed,
such as the one in Fig. 4. Figures 5–7 show other suggestions
the user can access. Each of these suggestions is tailored to
the user’s current context, using mechanisms to be explained in
Section 5.3.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 11

Figure 6. Compute-value-with-web: When the user populates a
column, the Idea Garden infers the data type of the column and looks
up a list of web pages that take the data type to compute/display new
values. The user can view this suggestion by hovering over the table’s
special ‘ideas cell’ (not shown). The suggestion’s goal is not to produce
the perfect web page, but rather to help users think about websites as
computational tools that can compute an answer on demand (such as
distances or currency conversions).

Figure 7. Generalize-with-repeat: When a user has copied and pasted
one cell of a column into a web page to retrieve a value, the last recorded
line of the script displays the Gardening Consultant icon. The user can
click it to view the suggestion targeting the More-than-Once barrier.
The script example in this suggestion is incomplete so that the user
must actively engage with it by editing code.

5.2. Suggestion form and content

All suggestions follow a template, as per Table 1: FC1. For
example, the template used in our initial prototype is shown in
Fig. 8. Item 4 of that template also satisfies a content constraint
in Table 1, namely CC3, which says that any code examples
must be intentionally imperfect matches to the user’s needs.
As an example, a user who is looking for apartments is unlikely
to find WhitePages directly useful but the idea of looking up
additional information based on what the user already has in

Figure 8. Suggestion structure. (1) The Gardening Consultant
‘wonders’ about context and (2) comments on this context to provide
rationale for concrete examples in 4. (3) The Gardening Consultant
summarizes the gist/essence of the idea and (4) suggests concrete
examples as action items. (Start-with-a-column-name (Fig. 4) does
not include 1 and 2 because the user has already told the system their
context by the time he/she invokes this suggestion.)

his/her table (here, looking up people living at an address
through WhitePages) is applicable across tasks.

Using this template, the initial Idea Garden prototype offers
the suggestions enumerated in the column heads in Table 2. The
top section of the table maps each suggestion to the barriers it
targets.

The remaining sections of Table 2 show which suggestions
deliver each programming concept, design pattern and problem-
solving strategy (as per Table 1: CC1 and CC2) in our prototype.
Future prototypes could support additional concepts, patterns,
and strategies. We describe each of these content types below.

Programming concepts content. By programming concepts,
we do not mean syntax. The Idea Garden’s suggestions
are intended to fill conceptual, ‘beyond-syntax’ gaps in
programming knowledge. These gaps involve fundamental
programming concepts, such as gaps in notions of input/output,
dataflow and iteration (Cao et al., 2010b, 2011; Ko et al.,
2004; Zang and Rosson, 2009). In the context of CoScripter,
these concepts arise in the guise of retrieving data from web
pages, passing data between tables and web pages, and iterating
through all the rows of a table. For example, the suggestion in
Fig. 7 introduces the concept of iteration.

Design pattern content. Generally, patterns are reusable
solutions to the common design problem (Alexander, 1979),
and their use has become particularly popular in software design
(Gamma et al., 1995). This first instantiation of the Idea Garden
aims to assist users in applying two particular patterns: Finder
and Repeat-Copy-Paste. The Finder pattern solves the design
problem of how to pull and store data from a web page, so
that data can be subsequently processed. Following the pattern,
a CoScripter programmer demonstrates and records loading a
web page and then (bulk) copies a list from the page to populate
a blank table. The Repeat-Copy-Paste pattern solves the design
problem of how to automatically push a table of data into a
web form. Following this pattern, a CoScripter programmer
writes script code such that, for each row in the table, the script
copy/pastes values from table to the web form and submits the

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

12 Jill Cao et al.

Table 2. The Idea Garden prototype for CoScripter provides suggestions that target three barriers.

Suggestions
Start-with-a-column-name Finder-page Compute-value-with-web Generalize-with-repeat

(Fig. 4) (Fig. 5) (Fig. 6) (Fig. 7)

Barriers targeted: How-to-Start X X
Composition X
More-than-once X

Programming concepts reflected in suggestions

Web page retrieval Retrieve web page (get
from URL and/or post web
form)

X

Dataflow Copy data between web
page and table, or between
web pages

X

Iteration Loop through rows of
table, operating on each
row

X

Design patterns reflected in suggestions

Finder Load web page and (bulk)
copy a list to populate a
blank table

X

Repeat-copy-paste For each row, copy-paste
value from table to web
page and submit

X

Problem-solving strategies reflected in suggestions

Work backward Identify specific goal, then
figure out how to achieve
that goal

X X

Analogy Find the solution to a
similar problem, and then
adapt it for problem at hand

X X

Generalization Solve the general class of
problems, of which the
problem is one instance

X

We designed suggestions with the intent of helping users with three programming concepts, two design patterns and three problem-solving
strategies. The programming concepts, design patterns and problem-solving strategies fulfill the content requirement of the Idea Garden design
concept as shown in Table 1. See Figs 4–7 for screenshots.

form. Thus, our design patterns represent common ways that
users structure their scripts to solve problems, a notion similar
to ‘programming plans’ (Soloway and Ehrlich, 1984). Prior
research has not identified a full range of patterns commonly
used by CoScripter users, but we have personally found the
two patterns above to be helpful when creating CoScripter
mashups. Therefore, we have chosen these two for our initial
prototype.

Problem-solving strategies content. The Gardening Consul-
tant’s suggestions attempt to help users adopt problem-solving
strategies that we identified from the problem-solving literature

(Levine, 1994; Polya, 1973; Wickelgren, 1974). We chose com-
mon strategies that appeared in multiple sources. The Idea Gar-
den’s suggestions try to make these strategies concrete. For
example, the working backward strategy involves starting with a
specific goal, then figuring out the step needed before that goal,
the one before that and so on. If the user consults the Gardening
Consultant on how to start the task, the Gardening Consultant
will nudge the user toward this strategy by suggesting that the
user work with the table’s end result first, by naming a table
column (Fig. 4). The Gardening Consultant then suggests the
next-to-last step (Fig. 5), and so on.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 13

Finally, as per the content requirement of Table 1: CC3, the
Idea Garden never tries to entirely solve users’problems with its
suggestions. Rather, it tries to fill the conceptual part of the gap,
and to nudge users into actively applying new programming
knowledge and problem-solving strategies to complete the
task at hand. For example, an Idea Garden suggestion usually
describes how to solve parts of a related problem. This is by
design: creativity theory posits that an essential part of arriving
at good ideas is gaining the ability to elaborate or adapt existing
ideas (Guilford, 1968). By doing so, the user engages in an
act of ‘association’ which is a way of enhancing ideational
fluency (Osborn, 1963). The hoped-for effect is that seeding
users’efforts with starter ideas will encourage them to elaborate
and adapt the suggested ideas to form new ideas toward solving
parts of the problem at hand.

5.3. Behind the scenes: architecture and a walk-through
of constructing a suggestion

The Idea Garden issues suggestions that provide ‘relevant’
examples with action items tailored to the user’s context.
To illustrate how the Idea Garden accomplishes this, we describe
the architecture of the Idea Garden and the construction of an
example of a Compute-value-with-web suggestion (Fig. 6) that
the initial prototype can provide.

As mentioned in Section 3, the Idea Garden is an extension
of a host environment and its host-independent architecture is
depicted in Fig. 9. As Fig. 9 shows, the relationship between
the Idea Garden and its host programming environment allows
the Idea Garden to contextualize its suggestions and make them
available to users of the host environment. On a high level, the
process is as follows: the host environment, e.g. CoScripter,
provides the Idea Garden with a stream of information about
what the user is doing, including the user’s code, data
and recent activities. Using this contextual information, Idea
Garden constructs context-appropriate suggestions for the user
(primarily via off-the-shelf components). Finally, the Idea
Garden makes the availability of new suggestions apparent in
the host environment unobtrusively so that the user can view
them at convenient times, if desired.

In this illustrative scenario imagine a user named Grace
who, like the users in Study 1, must create a script
that finds apartments near her campus. When Grace starts
CoScripter, the Idea Garden automatically starts too, and it
logs Grace’s activities as she works on her script. Suppose
that Grace searches Google for apartment websites that contain
information about driving time to campus. Grace might click on
several of these apartment websites, but perhaps none of them
has driving information. So, on the apartment website that seems
most relevant to her so far, she would select the apartment names
and their addresses, then click the CoScripter button to import
these addresses into a table. All of Grace’s actions, as well as
the data in her table and the code so far in her script (see Fig. 9,

Figure 9. Architecture for the Idea Garden.

Edge 1) would be passed along to the Idea Garden Controller
(Edge 2) from CoScripter.

Using this information, in Edges 1–2, the Idea Garden’s Con-
troller would need to issue relevant suggestions. To accomplish
this, the Idea Garden Controller passes the current tabular data
to the Information Processors (Edge 3), which return additional
information about the existing data (Edge 4). This information
could include, for example, information about how many cells
in each column are filled, or the inferred datatype of each col-
umn in the existing tabular data. The Idea Garden Controller
would then send all of the available data and information about
that data to the Suggestion Engine (Edge 5), which would be
responsible for returning suggestions in template form back to
the Controller (Edge 6). The Controller would fill in the tem-
plates to contextualize them before showing them to the user.

In the case of our illustrative scenario, the most useful
information provided back by the Information Processors would
be information about the datatypes of data in the table. To infer
datatypes, our current prototype uses TopeDepot (Scaffidi,
2010), an environment-independent tool that infers data types,
as one of its Information Processors. TopeDepot responds with
a ranked list of possible data types for each column. The
Controller uses the top guess. For our hypothetical user Grace,
cell values like ‘2645 Hard Road Columbus, OH 43235’ in a
column, TopeDepot would likely report that the column contains
‘address’ data.

Having information about the columns in the data would
make it possible for the Suggestion Engine to select template
suggestions appropriate for a given situation. In particular, in
this scenario, the Suggestion Engine would be configured so

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

14 Jill Cao et al.

that when the user’s table contains data of type ‘address’, then
the Engine should issue a Compute-value-with-web suggestion
(Fig. 6) along the lines of ‘People often use the following
websites when dealing with address…’.

An Idea Garden creator must configure the Suggestion Engine
with rules for generating appropriate suggestions in different
situations. We have found that this process was straightforward
for the CoScripter prototype. First, we considered what common
tasks people would want to perform with CoScripter (based
on our review of the literature about what users were doing
with CoScripter, e.g. Cypher et al., 2010; Zang et al., 2008),
which not only helped identify their work processes but also the
types of data that users would encounter. Secondly, we noted
the barriers that people encountered (Section 4). Thirdly, we
considered what state the user’s data might possibly be in when
the user encounters these barriers. For instance, in the case of
not having an idea of how to even start (How-to-Start), the user
likely would have an empty table. Not understanding how to
compose existing modules and functions to create a program
(Composition) would imply that the table contained some data
of particular types that we had identified based on user tasks
(above). Finally, we configured the Suggestion Engine to follow
the rules that we had identified.

To present suggestions to Grace, the prototype contextualizes
suggestions and integrates them with the programming
environment. For presentation, the Controller calls host APIs
to create widgets to hold the suggestion, and hence, create
the concrete suggestion for Grace (Edge 7). The host then
shows the availability of the concrete suggestion by displaying
the Gardening Consultant icon near Grace’s table columns.
If Grace becomes curious and hovers over the cell, the concrete
suggestion in Fig. 6 appears.

Recommendations for creating an Idea Garden for a specific
host environment can be found in Chapter 8 of (Cao, 2013).

6. STUDY 2: THE IDEA GARDEN MEETS END
USERS

To investigate the effectiveness of our approach with our target
audience and to guide refinements of our design of the Idea
Garden’s suggestions, we conducted an empirical study with
the following research question: When and how will the Idea
Garden help—or not help—end-user programmers overcome
their barriers?

6.1. Participants

We recruited 15 participants (undergraduate, non-CS students
with little to no programming experience) to create a script
using CoScripter, supported by a prototype of the Idea Garden.
We excluded from our analysis the data from six of the
participants because those six did not encounter barriers (and

thus did not generate data relevant to our research question).
Thus, we analyzed the data from a total of nine participants.

6.2. Procedure

The study procedure consisted of a tutorial, scripting task and
semi-structured interview at the end of the session.

The study took place over the course of several months, so that
we could continually evaluate and refine our prototype. With the
first five of the nine participants, we paired a paper prototype
of the Idea Garden with an executable version of CoScripter.
We transitioned to a fully integrated, executable system for
the other four participants. (We will indicate which prototype
each participant used in the Results section by identifying
participants of the paper Idea Garden as ‘Paper’ and those of
the fully executable prototype as ‘Exe’.) Each participant used
a newer prototype than the previous participant as the Idea
Garden features continued to evolve. Figure 10 shows the paper
prototype, and the previous sections have included screenshots
of the executable prototype.

The tutorial was hands-on and showed participants how
to create two CoScripter scripts: one to look up information
from a web page, and a more complex script that mashed up
information from two web pages using the table.

The main task was to create a script for finding 2-bedroom
apartments under a certain price and within a certain walking
time from the university. Participants talked aloud as they
worked. To make interactions with the paper part of the Paper
Idea Garden no more costly than interactions with the computer
part, participants who used the paper versions were not allowed
to use the computer keyboard and mouse. Instead, they told us
the actions they wanted, and a researcher then carried them out.

Participants had an hour to complete the task and were given
the scripts created in the tutorial for reference. If any participant
fixated for more than 5 min on an unsuccessful approach, we
gave him/her a hint to encourage trying another approach
(i.e. ‘How would you normally find apartments?’ or ‘Maybe
try a different website’). This allowed us to gather data from
subsequent parts of the task.

Finally, a semi-structured interview asked the following
question about each suggestion: ‘What did you think about
this suggestion?’ If necessary, we followed up with additional
questions for clarification. We videotaped the sessions and
collected the final scripts.

We collected video and audio recordings of the sessions that
captured how the participants approached the task and interacted
with the Idea Garden throughout as well as the interviews. Using
a method similar to what we used in Study 1, we identified
episodes where a participant encountered a barrier as indicated
by, e.g. the participant turning to the Idea Garden for help or
verbalizing a need for help. Unlike Study 1 in which we focused
on any barriers, we focused our analysis only on the episodes
where the participants encountered the barriers that our Idea
Garden features targeted.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 15

Figure 10. Example paper-prototype session with (1) a paper script and suggestions, and (2) a CoScripter table and webpage.

Table 3. Participants’ interactions with suggestions and results.

Suggestion: Start-with-a-column-name Finder-page Compute-value-with-web Generalize-with-repeat Steps complete
Barriers: How-to-start Composition More-than-once

Step numbers: 1 1 2 2,3

Paper-F1 + − 1
Paper-F2 + 1, 2
Paper-F3 + + 1, 2
Paper-M1 − − − + 1, 2
Paper-M2 − + 1, 2
Exe-F1 − − 1
Exe-F2 − − + 1, 2
Exe-F3 + − + + 1, 2, 3
Exe-M1 + + 1, 2

+: participant followed suggestion and made progress.
−: participant did not follow suggestion, or did not make progress from following it.

6.3. Results

To find out when and how the Idea Garden did and did not
help our participants overcome their barriers, we counted the
participants’ interactions with the suggestions (i.e. they brought
up the suggestion by hovering/clicking to see the content).
These data showed that every participant interacted with 1–4
of the prototype’s suggestions, for a total of 22 interactions
(Table 3).

Using the videos, we then categorized each interaction with
a progress criterion: Did the participant follow the suggestion
and add something actually useful to their emerging mashup?

According to this criterion, 12 interactions led to progress in
accomplishing the task (interactions marked ‘+’ in the table;
interactions marked ‘−’ did not satisfy the progress criterion).
As Table 3 shows, eight participants made progress. These
participants either were able to progress to the next step, or could
make tangible progress within the current step, as illustrated by
the examples and quotes in Section 6.3.1.

Participants’ overall success in completing the final script
is enumerated in the rightmost column of the table. The task
required three steps. Step 1 was to get a list of apartments from
a web page into the table, Step 2 was to use a web page to
compute walking time for each apartment and Step 3 was to

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

16 Jill Cao et al.

iterate over the addresses in the table rows and paste the walking
times into another column. Steps 2 and 3 required participants
to use the repeat command. As Table 3 shows, one participant
completed all three steps, six completed the first two steps and
two completed only one step.

6.3.1. When and how the suggestions helped
Helping with the How-to-Start Barrier. The How-to-Start
barrier proved to be enough of a struggle that six participants
turned to the Gardening Consultant. The suggestions targeting
this barrier are Start-with-a-column-name and Finder-page.
Finder-page was not helpful to anyone, but Start-with-
a-column-name helped two of the participants. Specifically,
Paper-F1 and Exe-F3 used Start-with-a-column-name as
a springboard to getting apartment information into their
tables. Recall that the Start-with-a-column-name encourages
participants to use the problem-solving strategy of working
backward. Both participants showed evidence of adopting this
strategy.

For example, Paper-F1 immediately followed the Start-with-
a-column-name suggestion after first encountering it; she named
a blank column ‘number of bedrooms’. Out of her own volition,
she changed it to ‘address’, and then proceeded to naming
the second column ‘price’ and the third column ‘number of
bedrooms’. At this point, she started asking herself what might
be a possible website to retrieve housing information from:

Paper-F1 [min 14]: What is the website for searching [for a]
house?

Not knowing which websites provided housing information,
she made a website up:

Paper-F1 [min 14]: Maybe “houseForRent.com” or some-
thing?

Interestingly, even with this made-up website, she made
progress. HouseForRent.com did indeed exist, and eventually
led her to rent.com, where she found data that she used to
populate her table. Thus, she succeeded by working backward,
just as the suggestion was intended to promote.
Helping with the Composition Barrier. Participants encountered
the Composition barrier when expanding scripts to pass data
from the table into a new web page during Step 2, which was
needed to compute the walking distance for each apartment.
Three of the six participants who viewed Compute-value-with-
web overcame this barrier.An interesting story was shared by the
three participants (Paper-F3, Exe-F3 and Exe-M1). They first
tried to accomplish Step 2 through the web page they used for
Step 1, hoping to directly specify the walking distance from the
university in their web queries, but this approach did not work
because apartment search engines do not support that parameter.

Stymied at first, all three of these participants turned to
the Gardening Consultant for a suggestion—and subsequently

acted on the Gardening Consultant’s idea of using websites to
perform calculations (e.g. calculations that Bing Maps is willing
to perform). After each of the three participants acted upon this
idea, he/she began to make progress by effecting the flow of
addresses from the apartment search pages to a map page, an
application of the dataflow concept:

Exe-F3 [Interview]: “this [suggestion] was very helpful
because this was what I used to go to, Bing Map, in order
to find driving time and distance. So I thought it was very
useful.”

Generalizing to Overcome the More-than-Once barrier. The
most successful suggestion was Generalize-with-repeat, which
nudges the user into generalizing a single table manipulation
across the rest of the rows by providing a script (albeit an
imperfect one). Seven participants ran into the More-than-Once
barrier and turned to this suggestion—and all seven benefited
from it.
Six succeeded in editing the provided code to complete Step 2
and, in Exe-F3’s case, Step 3 as well. Three participants even
elaborated on the code—that is, by making an existing idea
better by enhancing or expanding it. Such elaboration is a key
aspect of both learning and creativity. For example, Paper-F2
experimented with four different ways of placing the suggested
code within her own code, ultimately completing Step 2 by
finding the correct placement.

Learning is characterized by the ability to transfer knowledge
used in an early setting to a later setting, and two participants
demonstrated that ability after having worked with the
Generalize-with-repeat suggestion. Both Paper-F3 and Exe-F3
later created an additional repeat loop by themselves, without
the help of the suggestion. In doing so, they demonstrated
knowledge of the iteration concept as well as the repeat-copy-
paste pattern.

Where did this knowledge come from? Our interpretation of
why users overcame the barriers after interacting with the Idea
Garden features is that they learned new strategies and gained
new knowledge that the features aimed to convey. In these two
clear cases, after they interacted with the Idea Garden, these
users were able to solve similar problems on their own. Also, in
a separate study, we directly measured effects of the Idea Garden
on users’ learning (Cao et al., 2012). That study measured
learning directly, and found that the Idea Garden helped nine out
of ten users learn relevant problem-solving strategies, patterns
and programming concepts.

6.3.2. And when the suggestions did not help
Not all suggestions were helpful. In seeking help for the How-
to-Start barrier, Exe-F1 and Exe-F2 saw the Start-with-a-
column-name suggestion but decided to ignore it. Fortunately,
they were able to eventually overcome the barrier without
assistance.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 17

The suggestion with the lowest success was the Finder-page:
every participant who read it decided to ignore it. All missed
the relevance of the design pattern it was trying to convey to the
task at hand:

Paper-M2 [Interview]: “I didn’t need any restaurants and
there was no ‘apartments.com’ that I was going to go to.”

Users failing to see the pertinence of a suggestion also arose
with the Compute-value-with-web suggestion:

Exe-F2 [Interview] “I wasn’t sure how it was related to what
I was doing… ‘cause I wasn’t looking for business ratings or
jobs.”

Exe-F1 also looked at the Compute-value-with-web sugges-
tion; however, she looked at the suggestion only briefly and then
dismissed it. The suggestion was designed to help with the sec-
ond step of the task. And she even looked at the suggestion at
the ideal moment: when she had just completed the first step
(i.e. gathering an initial list of apartments). But she apparently
did not see the suggestion’s relevance.

In the above cases, we (the designers of these suggestions)
knew that the suggestions were relevant to the task at hand.
Obviously, in at least some cases, the suggestions failed to
convey their relevance.

7. TOWARD IDEA GARDEN 2.0

The results of Study 2 suggest several possibilities for the Idea
Garden’s future.

7.1. Using context to support a user’s problem frame

Schön’s concept of a problem frame (Schön, 1983) may help
to explain why some participants failed to see the relevance of
certain suggestions. According to Schön, when facing a ‘messy’
problem that is not well defined, people often impose a frame
on the problem based on their own interpretations of what it
entails. Thus, a frame is a boundary within which people work
to solve the messy problem. Framing, the process of setting the
frame, is in essence the problem solver’s perceived definition
of the problem to be solved.

For example, Exe-F1’s remark as she dismissed the Compute-
value-with-web suggestion implies that she framed the problem
differently from the suggestion content’s focus:

Exe-F1 [min 48]:You are just saying, like, if it has addresses or
zip codes that are close to it [viewing the Compute-value-with-
web suggestion], but I’m still just trying to write the script.

In this case, the Gardening Consultant’s suggestion may
have failed to help Exe-F1 because the suggestion made the
underlying assumption that the user, having gotten this far,

lacked the concept of computing with a web page. This problem
might be avoided by having multiple suggestions available for
each user context, each based on a different assumption about
the user’s current frame. For example, a different assumption
about Exe-F1’s frame would be that she was trying to create
the script using multiple web pages. Thus, a suggestion based
on that assumption might include an example snippet of script
(e.g. similar to the snippet in Fig. 7 suggestions) that uses more
than one web page together to solve a problem.

7.2. Understanding user behavior with attention
investment

Because relevance to context was a pervasive theme for both
the helpful and unhelpful occurrences of our suggestions, it
is useful to consider relevance from the perspective of the
model of Attention Investment (Blackwell, 2002). According
to this model, users’ perceptions of the benefits, costs and risks
of pursuing a particular path predict the probability of their
following that path. Perceived benefit seems likely to align with
perceived relevance.

For example, recall that the Generalize-with-repeat sugges-
tion was our most successful suggestion: All the participants
who saw it engaged with it and made progress in their task.
One possible reason for its success is that it became viewable
in a circumstance that matched the user’s current context very
well. The suggestion not only mentioned a step that all partic-
ipants were trying to complete (generalizing from one row to
all rows in the table), but the suggestion’s snippet of script also
included actions the user had just performed, helping to convey
the suggestion’s relevance.

Attention Investment’s cost and risk factors may also explain
why participants favored the Generalize-with-repeat feature.
The participants’perception of the cost (effort) and risk required
to copy and then fix the feature’s code snippet may have seemed
lower than the effort required to write the script from scratch.

7.3. Balancing ‘correct’ and (deliberately) ‘imperfect’
aspects of suggestions

Participants’ perceptions of a suggestion’s relevance may also
have been influenced by the Idea Garden’s deliberate use of
incomplete and/or imperfect suggestions.

By design, most of the Gardening Consultant’s suggestions
have ‘correct’ and ‘imperfect’ parts. The parts that are not
problem-specific are correct in that they apply regardless
of whether the user is, say, looking up restaurants versus
apartments. Examples of such correct parts include the portions
that embody design patterns and problem-solving strategies,
which appear in the gist of the suggestion (recall Fig. 8). The
imperfect parts of suggestions are so specific that they are
unlikely to be exactly what the user needs. For example, the
Finder-page’s suggestion to use restaurants.com (Fig. 5) cannot
be used to find apartments.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

18 Jill Cao et al.

Unfortunately, the imperfect part of a suggestion sometimes
dominated participants’ perceptions of the suggestion’s
relevance. For example, Exe-F2 said that the Compute-value-
with-web suggestion (Fig. 6) was not relevant because she was
not looking for the types of things to which the suggestion
referred (i.e. people, places on a map and zip codes). Likewise,
recall that Paper-M2 decided that the Finder-page suggestion
was not relevant because ‘it said restaurants’ (instead of
apartments). Here, both participants rejected the suggestions
based on the specific examples, and did not see how the
suggestions might be relevant to them.

The ability to apply a schema during problem solving has
been shown to distinguish experts from novices (Sweller,
1988). A schema is a structure that allows problem solvers to
recognize a problem state as belonging to a particular category
of problem states that normally require particular moves.
Experts possessing schemas are able to categorize problems
according to those schemas, whereas novices without schemas
tend to resort to surface structures when classifying problems.
In our study, participants Exe-F2 and Paper-M2 (who, like all
our participants, were novice programmers) seemed to lack
schemas, focusing on surface-level details such as ‘restaurant’
or ‘jobs’, even though the schema (here, the notion of a Finder
pattern) was explicitly given in suggestions (Fig. 5).

Studies of information foraging provide another explanation
for why users fixate on details. They observed that for web users
engaged in information seeking, specific wording has stronger
‘scent’ (ability to attract information seekers’ attention) than
general wording (Spool et al., 2004). In our study, participant
Paper-F3 made foraging decisions based on specific words in a
suggestion:

Paper-F3 [min 27]: The reason why I chose ‘Walkscore[.com]’
was because it had the word ‘walk’ in it and I’m trying to find
walking distance.

Thus, although the (deliberately) concrete suggestion aimed
at encouraging problem solving by analogy, the participant was
unable to see past the concrete details.

To mitigate the problem of users not seeing relevance of the
concrete parts of the suggestions, the Idea Garden may need
to help users set the right expectation. This suggests a need to
make clear that these concrete examples are not meant to be
used ‘as-is’. Rather, the examples show a way of approaching
part of a programming task that might be useful to the users. To
give users more guidance, the Idea Garden might also suggest
alternative actions for users to follow if they find an example
irrelevant, e.g. ‘You can search for a web site that computes the
information you need’.

We have already begun to make some of these improvements.
The improved Idea Garden is presented in Cao (2013)
and has been evaluated in two follow-up studies focusing
on the effects of the Idea Garden on users’ learning
transfer (Cao et al., 2012, 2013). The studies showed

that the Idea Garden not only helped users overcome
programming barriers but also helped them learn the relevant
programming knowledge and problem-solving strategies that
they applied in solving new programming tasks. In addition to
demonstrating the generalizability of the Idea Garden across
different programming tasks, we showed the generalizability
of its software architecture by implementing a second
instantiation in the Gidget end-user programming environment
(Cao, 2013).

8. CONCLUSION

In this paper, we have presented the Idea Garden, a novel
approach for helping end-user programmers generate new ideas
and problem-solve when they run into programming barriers.
The Idea Garden’s design was informed by our empirical
observations of end-user mashup programmers from Study 1
and by theories from the literature, such as those on problem
solving and MLT. The Idea Garden is different from mixed-
initiative approaches like Microsoft’s Clippy, because in the
Idea Garden, all initiative and control belongs to the user, and
the Idea Garden never interrupts. The Idea Garden also is not
a replacement for online tutorials. Rather, it supplements such
materials with scaffolding for problem-solving strategies and
programming knowledge in the context of users’ actual tasks.
Finally, and most important, the Idea Garden is not an automatic
problem solver. Instead, it steers users toward learning to solve
programming problems themselves.

To explore and refine the Idea Garden approach, we
prototyped it in the CoScripter programming environment.
Our prototype targets three barriers identified by the end-user
programming literature: How-to-Start, Composition and More-
than-Once. To help users overcome these barriers, the features
include suggestions that support (1) three problem-solving
strategies, (2) two design patterns and (3) three programming
concepts.

Study 2 provided empirical evidence that the Idea
Garden helped end-user programmers apply several of the
strategies/concepts targeted by the approach. In particular, we
observed instances where participants interacted with the Idea
Garden and subsequently demonstrated the ability to apply one
or more of the following:

(i) the generalization and work backward problem-
solving strategies,

(ii) the repeat-copy-paste design pattern and
(iii) the dataflow and iteration programming concepts.

Although not all the Idea Garden’s suggestions worked equally
well, eight out of nine participants benefited from at least one
of them. Furthermore, our participants overcame instances of
all three types of barriers targeted. Although there is much
room for improvement in future work on the Idea Garden, these
results suggest that Idea Garden to be a promising approach in
helping end-user programmers incrementally build their skills,

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 19

just in time, to better solve problems with their programs on
their own:

Exe-F3: [The Idea Garden] definitely was useful… for
someone who’s utilizing the program [CoScripter]—maybe
by themselves.

ACKNOWLEDGEMENTS

We thank William Curran for helping with the paper prototype
study, and Forrest Bice and Hannah Adams for helping with the
implementation of the prototype.

FUNDING

This work was supported in part by NSF grants IIS-0917366,
CNS-1240957, and IIS-1314384.

REFERENCES

Ackerman, M.S. and McDonald, D.W.(1996) Answer Garden
2: Merging Organizational Memory with Collaborative Help.
Proc. ACM Conf. on Computer Supported Cooperative Work,
pp. 97–105. Boston, MA.

Alexander, C. (1979) The TimelessWay of Building. Oxford University
Press, New York.

Andersen, R. and Mørch, A. (2009) Mutual development: a case study
in customer-initiated software product development. In End-User
Development, pp. 31–49. Springer, Heidelberg.

Bandura, A. (1977) Self-efficacy: toward a unifying theory of
behavioral change. Psycholog. Rev., 84, 191–215.

Blackwell, A. (2002) First Steps in Programming: A Rationale
for Attention Investment Models. Proc. IEEE Symposium
on Human Centric Computing Languages and Environments,
pp. 2–10. Arlington, VA.

Blackwell, A. and Hague, R. (2001) AutoHAN: An Architecture
for Programming the Home. Proc. IEEE Symposium on Human-
Centric Computing Languages and Environments, pp. 150–157.
Stresa, Italy.

Bloom, B. and Broder, L. (1950) Problem-Solving Processes
of College Students. Supplementary Educational Monographs.
University of Chicago Press.

Brandt, J., Dontcheva, M., Weskamp, M. and Klemmer, S. (2010)
Example-Centric Programming: Integrating Web Search into the
Development Environment. Proc. 28th ACM Conf. on Human
Factors in Computing Systems (CHI), pp. 513–522. Atlanta, GA.

Cao, J. (2013) Helping enduser programmers help themselves: the
Idea Garden approach. PhD Thesis, Oregon State University.
http://hdl.handle.net/1957/38561.

Cao, J., Riche, Y., Wiedenbeck, S., Burnett, M. and Grigoreanu, V.
(2010a) End-User Mashup Programming: Through the Design
Lens. Proc. 28th ACM Conf. on Human Factors in Computing
Systems (CHI), pp. 1009–1018. Atlanta, GA.

Cao, J., Rector, K., Park, T., Fleming, S., Burnett, M. and Wiedenbeck,
S. (2010b) A Debugging Perspective on End-User Mashup
Programming. Proc. IEEE Symposium on Visual Languages and
Human-Centric Computing, pp. 149–156. Madrid, Spain.

Cao, J., Fleming, S. and Burnett, M. (2011) An Exploration of
Design Opportunities for ‘Gardening’ End-User Programmers’
Ideas. Proc. IEEE Symposium on Visual Languages and Human-
Centric Computing, pp. 35–42. Pittsburgh, PA.

Cao, J., Kwan, I., White, R., Fleming, S., Burnett, M. and Scaffidi, C.
(2012) From Barriers to Learning in the Idea Garden: An Empirical
Study. Proc. IEEE Symposium on Visual Languages and Human-
Centric Computing, pp. 59–66. Innsbruck, Austria.

Cao, J., Kwan, I., Bahmani, F., Burnett, M., Fleming, S., Jordahl, J.,
Horvath,A. andYang, S. (2013) End-User Programmers in Trouble:
Can the Idea Garden Help Them to Help Themselves? Proc. IEEE
Symposium on Visual Languages and Human-Centric Computing,
pp. 151–158. San Jose, CA.

Carroll, J. (1990) The Nurnberg Funnel: Designing Minimalist
Instruction for Practical Computer Skill. MIT Press, Cambridge,
MA.

Carroll, J. (ed.) (1998) Minimalism Beyond the Nurnberg Funnel. MIT
Press, Cambridge, MA.

Carroll, J. and Rosson, C. (1987) The Paradox of the Active User.
In Interfacing Thought: Cognitive Aspects of Human–Computer
Interaction, pp. 26–28. MIT Press, Cambridge, MA.

Compeau, D. and Higgins, C. (1995) Computer self-efficacy:
development of a measure and initial test. MIS Q., 19, 189–211.

Costabile, M., Mussio, P., Provenza, L. and Piccinno, A. (2009)
Supporting end Users to be Co-Designers of their Tools. In End-
User Development, pp. 70–85. Springer, Heidelberg.

Cypher, A., Nichols, J., Dontcheva, M. and Lau, T. (2010) No Code
Required: Giving Users Tools To Transform the Web. Morgan
Kaufmann, Los Altos, CA.

Díaz, P., Aedo, I., Rosson, M., Carroll, J. (2010) A visual tool for using
design patterns as pattern languages, ACM International Working
Conference on Advanced Visual Interfaces (AVI), pp. 67–74.

Dorn, B. (2011) ScriptABLE: Supporting Informal Learning
with Cases. ACM International Computing Education Research
Conference (ICER), pp. 69–76. Providence, Rhode Island.

Fischer, G. (2009) End-User Development and Meta-Design: Foun-
dations for Cultures of Participation. In End-User Development,
pp. 3–14. Springer, Berlin.

Flavell, J. (1979) Metacognition and cognitive monitoring. Am.
Psychol., 34, 906–911.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995)
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA.

Gantt, M. and Nardi, B. (1992) Gardeners and Gurus: Patterns of
Cooperation Among CAD Users. Proc. Conf. on Human Factors
in Computing Systems (CHI), pp. 107–118. Monterey, CA.

Gross, P. and Kelleher, C. (2010) Non-programmers identifying
functionality in unfamiliar code: strategies and barriers. J. Vis.
Lang. Comput., 21, 263–276.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://hdl.handle.net/1957/38561
http://iwc.oxfordjournals.org/

20 Jill Cao et al.

Gross, P., Herstand, M., Hodges, J. and Kelleher, C. (2010) A Code
Reuse Interface for Non-Programmer Middle School Students.
Proc. 15th Int. Conf. on Intelligent User Interfaces, pp. 219–228.
Island of Madeira, Portugal.

Guilford, J. (1968) Intelligence, Creativity, and Their Educational
Implications. RR Knapp, San Diego.

Guzdial, M. (2008) Education: paving the way for computational
thinking. Commun. ACM, 51, 25–27.

Hundhausen, C.D., Farley, S.F. and Brown, J.L. (2009) Can direct
manipulation lower the barriers to computer programming and
promote transfer of training? An experimental study. ACM Trans.
Comput.-Hum. Inter., 16, 1–40.

Jansson, D. and Smith, S. (1991) Design fixation. Des. Stud., 12, 3–11.

Kelleher, C. and Pausch, R. (2006) Lessons Learned From Designing
a Programming System to Support Middle School Girls Creating
Animated Stories. Proc. IEEE Symposium on Visual Languages
and Human-Centric Computing, pp. 165–172. Brighton, UK.

Ko, A., Myers, B. and Aung, H. (2004) Six Learning Barri-
ers in End-User Programming Systems. Proc. IEEE Sympo-
sium on Visual Languages and Human Centric Computing,
pp. 199–206. Rome, Italy.

Lee, M. and Ko, A. (2011) Personifying Programming tool Feedback
Improves Novice Programmers’ Learning. Proc. 7th Int. Workshop
on Computing Education Research, pp. 109–116. Providence,
Rhode Island.

Lee, M., Ko, A., and Kwan, I. (2013). In-Game Assessments Increase
Novice Programmers’ Engagement and Level Completion Speed.
Proc. ACM ICER, pp. 153–160. San Diego, CA.

Levine, M. (1994) Effective Problem Solving. Prentice Hall,
Englewood Cliffs, NJ.

Lewis, S., Dontcheva, M. and Gerber, E. (2011) Affective
Computational Priming and Creativity. Proc.ACM Conf. on Human
Factors in Computing Systems (CHI), pp. 735–744.Vancouver, BC.

Lieberman, H. (2001) Your Wish Is My Command: Programming By
Example. Morgan Kaufmann, Los Altos, CA.

Lin, J., Wong, J., Nichols, J., Cypher, A. and Lau, T. (2009) End-
User Programming of Mashups with Vegemite. Proc. ACM Int.
Conf. on Intelligent User Interfaces, pp. 97–106. Island of Madeira,
Portugal.

Little, G., Lau, T., Cypher, A., Lin, J., Haber, E. and Kandogan,
E. (2007) Koala: Capture, Share, Automate, Personalize Business
Processes on the Web. Proc. ACM Conf. on Human Factors in
Computing Systems (CHI), pp. 943–946. San Jose, CA.

Nass, C. and Moon, Y. (2000) Machines and mindlessness: social
responses to computers. J. Soc. Issues, 56, 81–103.

Newman, M., Lin, J., Hong, J. and Landay, J. (2003) DENIM: an
informal web site design tool inspired by observations of practice.
Hum.-Comput. Inter., 18, 259–324.

McFarlane, D. (2002) Comparison of four primary methods for
coordinating the interruption of people in human-computer
interaction. Hum.-Comput. Inter., 17, 63–139.

van der Meij, H. and Carroll, J. (1998). Principles and Heuristics for
Designing Minimalist Instruction. In Carroll, J. (ed.), Minimalism

Beyond the Nurnberg Funnel, pp. 19–53. MIT Press, Cambridge,
MA.

Myers, B., Pane, J. and Ko, A. (2004) Natural programming languages
and environments. Commun. ACM, 47, 47–52.

Oney, S. and Myers, B. (2009) FireCrystal: Understanding Interactive
Behaviors in Dynamic Web Pages. Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing,
pp. 105–108. Corvallis, Oregon.

Osborn, A. (1963) Applied Imagination: Principles and Procedures of
Creative Problem-Solving. Scribner, New York, NY.

Pane, J. and Myers, B. (2006) More Natural Programming Languages
and Environments. In End User Development, pp. 31–50. Springer,
Berlin.

Polya, G. (1973) How To Solve It: A New Aspect of Mathematical
Method. Princeton University Press, Princeton, NJ.

Repenning, A. and Ioannidou, A. (2008) Broadening participation
through scalable game design. ACM SIGCSE Bull., 40, 305–309.

Robertson, T., Prabhakararao, S., Burnett, M., Cook, C., Ruthruff, J.,
Beckwith, L. and Phalgune, A. (2004) Impact of Interruption Style
on End-User Debugging. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI), pp. 287–294.Vienna,
Austria.

Scaffidi, C. (2010) Sharing, finding and reusing end-user code for
reformatting and validating data. J. Vis. Lang. Comput., 21,
230–245.

Scaffidi, C., Shaw, M. and Myers, B. (2005) Estimating the Numbers
of End Users and end User Programmers. Proc. IEEE Symposium
onVisual Languages and Human-Centric Computing, pp. 207–214.
Dallas, Texas.

Scaffidi, C., Cypher, A., Elbaum, S., Koesnandar, A. and Myers, B.
(2008) Using scenario-based requirements to direct research on
web macro tools. J. Vis. Lang. Comput., 19, 485–498.

Scaffidi, C., Bogart, C., Burnett, M., Cypher, A., Myers, B. and
Shaw, M. (2009) Predicting Reuse of End-User Web Macro Scripts.
Proc. IEEE Symposium on Visual Languages and Human-Centric
Computing, pp. 93–100. Corvallis, Oregon.

Schön, D. (1983) The Reflective Practitioner: How Professionals Think
in Action. Basic Books, New York.

Seaman, C.H. (2008) Qualitative Methods. In Shull, F., Singer, J. and
Sjøberg, D.I.K. (eds) Guide to Advanced Software Engineering.
Springer, Berlin.

Simon, H.A. (1980). Problem Solving and Education. Problem Solving
and Education: Issues in Teaching and Research, pp. 81–96.
Lawrence Erlbaum, London.

Spool, J., Perfetti, C. and Brittan, D. (2004) Designing for the Scent
of Information. User Interface Engineering, North Andover, MA.

Soloway, E. and Ehrlich, K. (1984) Empirical study of programming
knowledge. IEEE Trans. Softw. Eng., 10, 595–609.

Sweller, J. (1988) Cognitive load during problem solving: Effects on
learning. Cogn. Sci., 12, 257–285.

Wickelgren, W. (1974) How To Solve Problems: Elements of a Theory
of Problems and Problem Solving. WH Freeman, San Francisco.

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

Situated Support for Problem Solving by End-User Programmers 21

Wilson,A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook,
C., Durham, M., and Rothermel, G. (2003) Harnessing Curiosity to
Increase Correctness in End-User Programming. Proc. ACM Conf.
on Human Factors in Computing Systems (CHI), pp. 305–312.

Wong, J. and Hong, J. I. (2007) Making Mashups with Marmite:
Towards End-User Programming for the Web. Proc. ACM Conf.
on Human Factors in Computing Systems, pp. 1435–1444. San
Jose, CA.

Zang, N. and Rosson, M. (2009) Playing with Information: How
End Users Think about and Integrate Dynamic Data. Proc. IEEE
Symposium on Visual Languages and Human-Centric Computing,
pp. 85–92. Corvallis, Oregon.

Zang, N., Rosson, M. and Nasser, V. (2008) Mashups: Who?
What? Why? Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI)—Extended Abstracts,
pp. 3171–3176. Florence, Italy.

APPENDIX

The computer self-efficacy questionnaire used in Study 1.
Our questionnaire was based on Compeau and Higgins’
questionnaire (Compeau and Higgins, 1995) and adapted to the
task of script creation. For each question, Strongly Disagree
corresponds to a score of 1, whereas StronglyAgree corresponds
to a score of 5. We calculated a participant’s self-efficacy score
by taking the average of the ten scores.

The following questions ask you to indicate whether you
could use an environment for creating scripts (that automate
daily tasks you perform on the web) under a variety of
conditions. For each of the conditions please indicate whether
you think you would be able to complete the job using the
environment.

Given a description of what a script should do, I could figure out how to create the script:

… if there was no one around to
tell me what to do as I go

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if I had never seen a script like
it before

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if I had only the software
manuals for references

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if I had seen someone else
using it before trying it myself

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if I could call someone for help
if I got stuck

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if someone else had helped me
get started

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if I had a lot of time to complete
the task

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if I had just the built-in help
facility for assistance

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if someone showed me how to
do it first

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

… if I had used similar environ-
ments before this one to do this
same task

Strongly Disagree Disagree Neither Agree Nor Disagree Agree Strongly Agree

Interacting with Computers, 2014

 by guest on June 1, 2014
http://iw

c.oxfordjournals.org/
D

ow
nloaded from

http://iwc.oxfordjournals.org/

	INTRODUCTION
	RELATED WORK
	THE IDEA GARDEN: CONCEPT
	The Idea Garden's adherence to the MLT principles
	Idea Garden's constraints on form, content and style
	Idea Gardens as extensions to end-user programming environments

	STUDY 1: END-USER PROGRAMMERS' IDEA BARRIERS
	The Mashup environments
	Empirical methods
	Results and implications

	AN INSTANTIATION OF THE IDEA GARDEN IN COSCRIPTER
	The Idea Garden prototype's interaction style
	Suggestion form and content
	Behind the scenes: architecture and a walk-through of constructing a suggestion

	STUDY 2: THE IDEA GARDEN MEETS END USERS
	Participants
	Procedure
	Results

	TOWARD IDEA GARDEN 2.0
	Using context to support a user's problem frame
	Understanding user behavior with attention investment
	Balancing `correct' and (deliberately) `imperfect' aspects of suggestions

	CONCLUSION

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 175
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

