
1

An Exploration of Design Opportunities for

―Gardening‖ End-User Programmers’ Ideas

Jill Cao, Scott D. Fleming, Margaret Burnett

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, Oregon, U.S.A.

 {caoch, sdf, burnett}@eecs.oregonstate.edu

Abstract—Despite recent advances in supporting end-user

programmers, empirical studies continue to report barriers that

end users experience in problem solving with programming

environments. We hypothesize that an important barrier that still

needs to be overcome is the lack of support for nurturing end-

user programmers’ ideas on how a program should be written or

on how to solve programming difficulties. Therefore, in this

paper, we present a qualitative empirical investigation and

triangulate the results with theories from problem solving and

creativity. Moreover, we explore design opportunities and a

design space for “idea gardening”, a new approach to nurturing

end-user programmers’ ideas and to helping them gradually gain

expertise as they overcome barriers. Our results suggest that

nurturing end-user programmers’ ideas is a fertile area for

research with an interesting, multidimensional design space.

Keywords—end-user programming; mashups; problem solving;

creativity; end-user software engineering.

I. INTRODUCTION

Over the decades, researchers have made remarkable strides
in bringing programming capabilities to ordinary end users
(e.g., [2, 11, 16, 20, 25]). Today, there are numerous
programming environments for end-user programmers in both
research and practice, with spreadsheets and database systems
being arguably the most widespread examples. End-user
programming has become so widespread that, according to the
U.S. Bureau of Labor and Statistics, by 2012 the number of
people using spreadsheets and databases at work will reach 55
million—an order of magnitude greater than the number of
professional programmers [29].

Approaches to end-user programming have been
particularly successful in overcoming three barriers: arcane
language constructs that are difficult to learn, syntax rules that
are difficult to memorize, and the difficulty of finding suitable
example programs that other end users have written. One
approach, programming by demonstration [20], removes both
the use of arcane language constructs and the need to memorize
syntax, as do many other kinds of visual programming
approaches. The Natural Programming methodology re-
envisions language constructs [25], as have spreadsheets. Many
modern environments for end users support repositories of
example programs (e.g., AgentSheets [27] and BluePrint [4]).
Mashup environments’ whole reason for existence is to enable
reuse of others’ programs.

Despite this progress, however, empirical results continue
to report that programming remains difficult for end users (e.g.,
[5, 6, 11, 17]). Perhaps one reason is that much of the past
work has focused on helping users to avert or solve lower-level
problems, but these kinds of help are not enough. The
challenges in programming also call for problem-solving skills,
creativity, and design thinking, and our prior empirical
investigations [5, 6] suggest that end-user programming
environments generally lack mechanisms to nurture these kinds
of skills.

In this paper, we therefore explore design opportunities for
a new concept we term idea ―gardening‖, which means helping
(end-user) programmers to initiate and develop ideas
themselves for programming solutions or for strategies for
arriving at programming solutions.

This paper makes the following contributions:

(1) A demonstration of how to apply theories from
problem-solving literature and creativity literature to recognize
problems in end-user programmers’ problem-solving
processes.

(2) The first empirical results of end-user mashup
programming from the perspective of end-user programmers’
problem-solving processes.

(3) A demonstration of how to apply problem-solving and
creativity theories to design solutions for helping end-user
programmers initiate and refine their own ideas, first with an
abstract solution and then with a rendition of the same solution
in CoScripter [21].

(4) A multidimensional design space for research into idea
―gardening‖.

II. RELATED WORK

As we have already pointed out, research in end-user
programming has developed programming approaches to lower
the barriers end users face. Outside of work on tutorials and on-
line help systems, these approaches generally aim at the design
of the language, example programs, or programming process.

Languages like AgentSheet [27] and CoScripter [21]
exemplify the programming-by-demonstration technique,
which allows users to demonstrate an activity that is stored as a
program by the system. Some other visual programming
languages for end users also use direct manipulation or even
tangible manipulation to ease the cognitive burden on users to
memorize syntax (e.g., Alice [16] and AutoHAN [2]). Natural

sdf
Typewritten Text
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

sdf
Typewritten Text

sdf
Typewritten Text

sdf
Rectangle

programming is a language design paradigm that reduces
language learning barriers by leveraging users’ natural
communication vocabulary and style, as in the Hands language
for children [25]. Table data structures akin to spreadsheets are
sometimes used to remove the need for iteration language
constructs (e.g., Vegemite [21]). These kinds of approaches all
aim to eliminate the need to learn arcane language constructs
and/or to memorize syntax.

Examples are another form of support for enabling end
users to overcome barriers. Gross and Kelleher investigated the
strategies end users adopted in locating functionalities in
unfamiliar code to inform the design of an interface aimed at
helping users decide what example code to reuse [11].
FireCrystal allows a programmer to select UI elements of a
web page to view the corresponding source code to facilitate
learning by reusing that web page as a life example [23].
BluePrint automatically gleans task-specific example programs
and related information from the Web [4]. HelpMeOut aids
novice programmers’ debugging of error messages by
recommending example solutions previously used by their
peers [12].

From a programming process perspective, some researchers
have essentially ―refactored‖ the responsibility of designing
and programming. For example, meta-design pairs end-user
programmers with professional programmers, to reduce the
cognitive burden on end users by having them perform only
part of the programming process (e.g., [9]).

However, although these approaches lower cognitive
burden in one way or another, they do not attempt to nurture
end users’ program problem-solving ideas. The only work we
have found of this nature aims to support professional
designers. For instance, DENIM is a system that allows
designers to sketch web sites at a high level [22]. Diaz et al.
created a visual language to help web designers identify
suitable design patterns [8]. We believe these kinds of
approaches may be useful to a much wider range of audiences
than just professional designers, and works of this type have
helped to inspire this paper.

III. FORMATIVE INVESTIGATION

To begin our exploration, we conducted an empirical
investigation to understand concrete instances of the ―idea
barriers‖ end-user programmers encountered in the context of
mashup environments. Toward this end, we conducted a
qualitative study in CoScripter. We also performed a new
analysis of data obtained in an earlier study conducted in a
different mashup environment, Microsoft Popfly.

CoScripter is an end-user programming-by-demonstration
environment for web scripting and mashup building [21]. In
CoScripter (Fig. 1), users demonstrate to the system how they
would carry out a task on the Web (e.g., by filling out a form
online to reserve a shuttle ticket to the airport). The system
watches and translates users’ actions into an editable script
(Fig. 1-1), which the user can execute at a later time to perform
the same task again.

CoScripter enables mashup programming via a table feature
(Fig. 1-2). Users can create scripts that automatically copy data

between the table and existing web pages. This enables the user
to combine data from multiple web pages in the table and to
flow text from one web page to form fields of another.

We conducted the CoScripter study with six university
students (three males, three females) from a variety of majors
(e.g., graphic design, accounting, wood science). The
participants had little or no programming experience. We
conducted the study one participant at a time using the think-
aloud method. Participants first filled out a background
questionnaire and completed a 20-minute tutorial that
familiarized them with CoScripter. They then completed a self-
efficacy questionnaire [7] adapted to the task of scripting.
Participants then practiced ―thinking aloud‖ before proceeding
to the main task.

The participants’ task was to create a mashup script to
automatically search for two-bedroom apartments that rent for
under $800 per month and are within a 30-minute drive of the
Oregon State University campus. This required combining data
from a search site, such as Craigslist or Apartments.com, with
data from a maps site, such as Google Maps.

Participants had 50 minutes to complete this task. If they
were unable to make progress for at least three minutes, the
researcher prompted them with hints, such as suggesting that
they try a different website or try using the table. The purpose
of the hints was to maximize the data we were able to collect.
The hints enabled the participants to regain progress so that we
could go on to observe problems they encountered further
along in the task. All participants received hints. Due in part to
these hints, all participants finished the task. We collected
videos of the participants as they worked.

To increase the generality of our results, we also analyzed
videotapes from a qualitative study of Popfly that we
conducted about 18 months ago [6]. As with the CoScripter
study, we conducted the Popfly study with college students (six
males, four females) with little or no prior programming
experience. As in the CoScripter study, we used a think-aloud
design and started with a tutorial. The task was to create a
mashup that integrated movie-related information such as
which films were showing at local theaters and news stories
about each film. We videotaped the participants while they
worked. Details of the Popfly study procedures can be found in
[6]. No participants received hints. Participants had varying
degrees of success on the task, with one person fully achieving
all requirements.

Unlike CoScripter’s programming-by-demonstration
paradigm, Popfly is a visual dataflow language. In Popfly,
users build mashups using programming constructs called
blocks. Users can choose from existing blocks, each of which
performs a set of operations such as data retrieval and data
display. A block’s operations may take input parameters. Users
may connect blocks to form a network in which blocks can use
output from their adjacent blocks as inputs. Fig. 2 shows a
mashup example in which the Flickr block sends a list of
images about ―beaches‖ with their geographical coordinates to
the Virtual Earth block (Fig. 2: top and middle) to display them
on a map (Fig. 2: bottom).

Figure 2. The pre-task tutorial example mashup in Popfly Mashup Creator.

Top: the blocks. Middle: some of the blocks’ settings. Bottom: results

generated by pressing the Run button (not shown).

IV. RESULTS AND IMPLICATIONS

According to Simon, two types of skills are necessary for
solving problems in a specific domain: domain-specific
knowledge and general problem-solving strategies [32]. He
equates domain-specific knowledge and general problem-

solving strategies to the twin blades of a pair of scissors: ―the
scissors do indeed have two blades and … effective
professional education calls for attention to both subject-matter
knowledge and general skills‖ [32]. Bloom and Broder agreed,
and showed that both mathematical domain skills (e.g., how to
multiply integers) and general problem-solving strategies (e.g.,
establishing subgoals of a problem) are indispensible to a
successful math problem-solver [3].

Thus, we present our results, organizing along these two
skill sets, and triangulating with applicable theories related to
problem solving.

A. Problem-Solving Strategies

1) Results in Problem-Solving Strategies
According to the literature on problem solving (e.g., [15]),

the adoption of problem-solving strategies are affected by
metacognitive skills, beliefs, and expertise. (A strategy,
according to Webster Dictionary, is a careful plan or method
for achieving a specific goal.) We discuss the first two of these
here, and since expertise maps to Simon’s concept of domain-
specific knowledge, we discuss it in the next subsection (IV.B).

Metacognition is described by Flavell as the awareness of
how one learns, the monitoring of understanding, the use of
information to achieve a goal, and the assessment of learning
progress [10]. Wickelgren proposes that when stuck on a
problem, it is important for a problem solver to step back and
analyze what he/she has been doing (a reflection on one’s
approach and a metacognition skill), rather than to keep
thinking about the problem itself [34].

Some participants exhibited very little metacognition about
solving the problems they ran into. For example, CoScripter-F2
did not show signs of metacognition about her problem-solving
strategies. In the example below, she failed to step back to
reflect on her strategy when unable to make progress. As a
result, the researcher had to prompt her with hints to help her
make progress.

CoScripter-F2: [Renames her script] “I don’t know how to do it.

Once I’ve done that [renaming script], I don’t know what else to

do.”

Participant Popfly-M3 likewise exhibited little use of
metacognition. His main strategy of overcoming problems he
ran into was to ―try a different block‖ whenever the mashup
stopped working, never reflecting on whether this strategy was
a wise way of going about his problem solving.

Popfly-M3: [Mashup shows nothing] “So I try a different one

maybe.” … “Try a different one that I know how to use 'cause

none of them worked yet or I can get to work.”[Tries the Image

Scraper block. Still does not work]

On the contrary, when participants did reflect on their
problem-solving approaches, doing so often helped. For
example, Popfly-M5 made a breakthrough in his problem
solving after changing his strategy to the use of incremental
changes and testing:

Popfly-M5: “Simplicity” [Runs. Theater and movie info show]

“Oh, ok. There we go. I was getting way too complicated.”
“It works well to run the program at each step.”

Figure 1. The CoScripter environment with three main parts, i.e., the Script

Area, the Table Area and the Web Browsing Area.

As to beliefs and attitudes, one kind of belief that can affect
the adoption of problem-solving strategies is self-efficacy, a
person’s confidence in their ability to succeed at a specific kind
of task. According to self-efficacy theory [1], people with low
self-efficacy tend to be less flexible in their problem-solving
strategies than those with high self-efficacy; for example, a low
self-efficacy person may stay with a known approach even if
when it is not paying off.

In both studies, low self-efficacy participants indeed
demonstrated inflexibility. For example, CoScripter-F3 had the
lowest self-efficacy in the CoScripter study (3.4 vs. an average
of 3.77 for all participants), and she did not consider switching
from a straight Google search to using the table to help with her
task until the researcher prompted her.

CoScripter-F3: [after several trials with Google searches] “... I don’t

know how to say how far from OSU.” [continues to ponder the

search screen]

Researcher prompts with a question:“If you were to find out how far

an apartment is from OSU, what would you do normally?”

CoScritper-F3:“I’d go to Google Map or something, if I had an

address and I wanted to know how far it was… Oh [in the tutorial]

you showed me how to do that using the table!”

2) Design Opportunities for Supporting Problem-Solving

Strategies
Bloom and Broder asserted that the ―habits of problem

solving, like other habits, could be altered by appropriate
training and practice‖ [3]. This leads to the possibility that
suggesting an appropriate problem-solving strategy at moments
of difficulty could nudge end-user programmers’ program
problem-solving skills up enough to enable them to form new
ideas themselves.

For designers of programming environments to act upon
such a possibility, a list of well-studied problem-solving
strategies is needed. Therefore, we compiled a list of strategies
from the literature on problem-solving [19, 26, 34] and
creativity [24]. In particular, we focused on the most
commonly discussed strategies from the literature (i.e., the
strategies cited in multiple sources). We selected a spectrum of
these strategies for breadth of situation coverage, leading to the
following list of five strategies.

Working Backward is a strategy in which the problem
solver starts with the goals of the problem in an attempt to
work his/her way back to the givens of the problem as opposed
to starting with the givens [34]. Polya argues that Working
Backward is a common-sense procedure within the reach of
everybody [26]. One way to bring this strategy to end-user
programmers might be to allow them to start by envisioning the
output of their program so that they can work backward from
there to arrive at what might lead to the output.

With Divide and Conquer, the problem solver breaks the
original problem into subparts, and works out each part
individually to arrive at the solution of the original problem
[33, 34]. In end-user programming environments, encouraging
an end-user programmer to tackle some small part of the
problem may not only provide momentum and insights on a
potential overall solution, but also may increase less confident
users’ self-efficacy levels, with the follow-on potential of

positive effects on their problem-solving skills as explained
above.

Analogy encourages users to relate the problem at hand to
problems they have seen or solved in the past [24, 26]. Polya
mentions two ways a problem solver may leverage a solved
problem in solving an unsolved problem: (1) use the solved
problem’s results, and (2) use the method for solving the solved
problem in solving the unsolved problem [26]. One reasonably
straightforward method for encouraging this strategy in end-
user programming environments might be to store a history of
a user’s previously solved problems, and (more interestingly)
to recognize similarities of an emerging solution with previous
solutions in the history. Another more challenging possibility
might be to log and catalog the user’s previous methods to
successfully solve a previous problem, making those methods
available to the user at opportune moments.

Generalization is defined by Polya as passing from the
consideration of one object to the consideration of a set
containing that object. (Trained computer scientists will
recognize induction/recursion as useful examples of
Generalization.) Generalization can be helpful to end users in
that it allows the user to start with a single, concrete case,
which may be more tractable than considering the general case
all at once. Leading an end-user programmer in this direction
may lead to the same kinds of benefits as Divide and Conquer.
For instance, programming by demonstration capitalizes on end
users’ familiarity with the concrete instance of an activity to
help them produce an abstraction of that instance in their
program.

Finally, with Sleep on It, a problem solver sets aside a
difficult problem and comes back to it later, possibly with a
fresh perspective [19, 24, 26]. Bringing this strategy to end-
user programmers may be as straightforward as encouraging a
stymied user to simply set aside the difficult subproblem, and
instead attend to parts of the problem that are more
approachable.

Note that all of the above strategy opportunities are about
what a designer of an end-user programming environment
might encourage an end-user programmer to do, but do not
specify how the designer should go about offering the
encouragement. Clippy-style pop-up interruptions have not
been seen to be suitable for the kind of problem solving we are
considering here, and a more subtle form of encouragement
such as Surprise-Explain-Reward [35] with negotiated style
interruptions is likely to be more suitable [28].

B. Programming Domain Knowledge

1) Results
In one way, end users are by definition domain experts.

The advantage of end-user programming is, in fact, to bring
their expertise of the problem domain directly to the program,
without the need for intermediary professional programmers.

However, the other relevant domain here is programming
itself, and it has been reported that many end-user programmers
lack expertise in the programming domain (e.g., how to go
about debugging), or in the language the user is trying to use
[18].

Because the languages we studied, CoScripter and Popfly,
were created especially for end users, one might not expect
issues of programming expertise to arise. Interestingly,
however, the expertise factor arose many times and at multiple
levels. At the language construct level, CoScripter-M1 had
trouble figuring out where the ―repeat‖ command should go
when he wanted his script to loop through the rows in his table,
a skill learned early by successful students of computer science.

CoScripter-M1: “So I got my results [in the table]. I guess you

can repeat it then.”

[Adds “repeat” to the beginning of his script, which tells the

script to repeat every line instead of just table computations]

At a more ―design pattern‖ level, Popfly-F3 did not see a
connection between the overall task she was trying to
accomplish and the availability of a ―library‖ of
components/blocks that had been demonstrated to perform
portions of the task, whereas computer science students learn
early to use libraries/APIs to accomplish parts of a problem.
Without recognizing the availability of component parts for her
solution, she did not see how to even get started:

Popfly-F3: Oh, my gosh! This is very hard! Can you give me some

reminders [hints]?

Difficulties like these and others—such as a poor mental
model of the programming-by-demonstration concept and lack
of understanding of the concept of inputs and outputs—played
out in three ways: lack of a sense for how to get started
(CoScripter-F2 below), running out of ideas to try very early
(CoScripter-M2 below), or stubbornly staying with the same
idea for a long time without considering other possibilities
(Popfly-F4 below).

CoScripter-F2: “I don’t know what to do…”

Researcher asks her to “show” the computer what she wants the

script to do.

CoScripter-F2: “Umm?…” [Still does not know what to do.]

CoScripter-M2: [Enters search term: “2 bedroom apartment

Corvallis OR”. Clicks the “Search” button.]

[Tries a few search results, e.g., www.mynewplace.com]

“Those don’t seem to work. I’m stuck.”

Popfly-F4: “Oh there's no push pins [on the map]! These push

pins are gonna haunt my nightmares…Why does that not work?

Seems like it'd work but it doesn't work.”

[Continues to try to get her idea to work without progress]

The above three examples have in common a scarcity of

ideas that would be available to those with more expertise in
the domain of programming. The notion of ideational fluency
from the creativity literature suggests that scarcity of ideas is a
problem-solving disadvantage, and that the more ideas one has,
the greater chances of him/her arriving at useful and creative
solutions to a given problem [24].

2) Design Opportunities for Supporting Programming

Domain Knowledge
The scarcity of ideas that seems to be at the heart of many

of the programming domain problems suggests specific design
opportunities.

Relating to the first example (CoScripter-F2 above), when a
user has no idea to start with, there is a clear opportunity to
help them gain momentum with Starter Ideas. (This is a
concept similar to Fischer’s ―seeding‖ [9].) The possibilities
for such ideas could include strategy ideas (e.g., ―try starting
with a sketch of the output‖ or ―look at all the blocks that
produce maps‖) or very specific ideas (e.g., ―a lot of people use
the Google map page in problems involving addresses‖).

Now consider CoScripter-M2 and Popfly-F4, who had
ideas, but ran into trouble and did not know how to move on.
Creativity literature suggests that producing new ideas depends
upon ―mixing‖ ideas, often catalyzed by associations [24].
Osborn pointed to three ―laws of association‖: contiguity,
similarity, and contrast [24].

Osborn’s points suggest two more design possibilities for
nurturing end-user programmers’ ideas: connecting users to
ideas similar or in contrast to those being tried. For example, a
similar idea to using a PhotoFlip block for pictures in Popfly is
to use the PhotoCarousel block. Offering similar ideas may
encourage the user to take into account options other than the
ones they already have.

An example of contrasting ideas that a support system
could suggest would be using a table block instead of using a
photo block to display pictures, the results of which would be
quite different. A drastically different idea would be to leave
out the display block entirely to see what happens.

Contrasting ideas may encourage users to think outside the
box. In creative design literature, ―design fixation‖ [14] refers
to the undesirable situation where the designer becomes overly
focused on one idea, missing out on other opportunities.
Indeed, in [6], we found some users reluctant to relinquish
ideas that were not working for them. Design fixation hindered
users’ ability to redefine the design problem, termed
―reframing‖ in design literature, a critical step in design
problem solving [31]. This fixation also resulted in ―over-
elaboration‖ [6], i.e., continually elaborating on an idea that
cannot ever work. Contrasting ideas may help to avert some of
these problems.

V. EXAMPLE: A SLICE OF THE SOLUTION DESIGN

SPACE

To consider how these design opportunities might be acted
upon, we drew on a problem experienced by five of our
participants (over both studies). Using this problem, we present
one possible solution based upon the previous section’s design
opportunities, first in abstract form, and then show how it
might be concretely instantiated in CoScripter.

A. An Observed Problem

The following issue from our formative study combines
two of the CoScripter participants’ experiences. (Composite)
participant ―Grace‖ was looking for 2-bedroom apartments
near the OSU campus that were under $800/month. As
instructed, she was trying to make a CoScripter script to
automate the searching process so that she could run the script
periodically to monitor price and to watch for new listings. She
had difficulty even getting started, as already illustrated for
CoScripter-F2 in the previous section, perhaps because she had

http://www.mynewplace.com/

never before created a script for looking up apartments. Three
participants from the Popfly study also experienced this
problem in the context of their tasks.

B. An Abstract Solution

One design solution to Grace’s problem is to bring to bear
the Working Backward and the Analogy strategies, with a
Starter Idea to seed her efforts. We first consider this solution
abstractly, and then ―concretize‖ it for the CoScripter
environment. This design solution allows us to explore one
slice of the design space.

As Fig. 3 illustrates, the solution begins with the Working
Backward strategy. The system provides a user having trouble
getting started (like Grace) with the suggestion that she give an
example of the desired output. The system uses this example to
infer a program that could lead to this output, and presents it to
the user as a Starter Idea.

Figure 3. A design solution to Grace’s ―getting started‖ problem.

The inferred program need not be good—in fact, presenting
a bad program that does not produce what the user wants may
increase the user’s engagement in the problem-solving process.
Surprised at the undesirable output, the user may seek an
explanation, which the system provides. Following the
guidance in the explanation, the user can change the bad
program to achieve a better version. This is an example of the
Analogy strategy: the user changes elements of the bad
program to elements better suited to the task.

Embedded in this solution is Surprise-Explain-Reward, a
method for enticing a user into useful actions [35]. The essence
of the method is to first arouse users’ curiosity through the
element of surprise (e.g., faulty output), and to then encourage
them, through explanations they take the initiative to seek out,
to make changes that can lead to a working program (the
reward). One reason we embed this method as the interaction
paradigm is that it does not interrupt users’ attention when they
are in the midst of problem solving [35].

C. “Concretizing” the Design Solution in CoScripter

Taking this solution to the CoScripter environment begins
with attempting to interest Grace in the Working Backward
strategy. Since Grace feels ―stuck‖ and therefore is not engaged
in tinkering or exploring solution ideas, we will assume that
she is scanning the environment, seeking some clue about what
to do. CoScripter notices a period of user inactivity and

displays hints about two ways to get started (Fig. 4), the second
of which can start Grace working backward. (An alternative
way to offer starter hints is to display them as soon as
CoScripter starts. This not only allows the interested users to
follow through but also frees the system from having to detect
when users are unable to start). Grace notices the hint, and
since she does not know what actions she would want to
record, she decides to try the table suggestion (Fig. 5).

Figure 4. Hint on how to get started

Figure 5. The table at the start

Grace fills in her apartment’s address as an example of the
desired output of the script (Fig. 6), i.e., an apartment address
in the first column. This is the first step of the Working
Backward strategy.

Figure 6. Table with an example entry

Grace’s example output allows the system to infer a script
that might work for Grace. The system recognizes the example
as an address (e.g., through the help of an auxiliary tool like
Topes [30] that can recognize common data types such as
addresses and telephone numbers). The system also has a small
database of a few specific websites containing common types
of data. For example, it knows that restaurants.com contains
addresses (of restaurants). Since Grace entered an address, the
system uses this information and produces the script in Fig. 7.
This script, which is an instantiated ―design pattern‖ in
template form, is a Starter Idea for Grace. But Grace’s eyes
glaze over at the sight of the script, so she just runs it instead,
and gets the output in Fig. 8.

Figure 7. The starter script

Figure 8. Output of the starter script

Grace is surprised that the script is showing restaurant
addresses instead of apartments, so she takes a closer look at
the script after all to seek an explanation. As she moves her
mouse pointer over the lightbulb next to the first line of the
script, a tooltip appears (Fig. 9). The explanation makes it clear
to Grace that she needs to change from restaurants.com to
something ―like‖ restaurants.com that is about apartments
instead of restaurants (Analogy strategy). She anticipates that
this course of action will reward her with a working script.

Figure 9. An explanation of the first line of the script

VI. A MULTIDIMENSIONAL DESIGN SPACE

The solution we have just presented is only a narrow slice
of the design space for helping to nurture end-user
programmers’ ideas. Fig. 10 suggests an array of research
opportunities in numerous dimensions.

One dimension (Fig. 10) is the intended audience.
Although we have expressed the notion of nurturing ideas from
an end-user programming perspective, there is also a dearth of
support for nurturing professional programmers’ ideas. A third
possibility is computer science novices. The choice of audience
would likely also impact the range of possibilities in other
dimensions, e.g., types of strategies.

In helping people with their program problem-solving
ideas, there are opportunities for supporting different stages of
idea development (as laid out by the Design Cycle Model, a
general model for creative design processes [13]): idea
generation, idea implementation, and idea evaluation. The
example solution in Section V does not address the entire
model; it assists users in only the idea generation stage.

Another interesting dimension is the sources of meta-ideas
(ideas about how to nurture ideas), i.e., who or what provides
the seeding at the root of the nurturing? In our example
solution, the system fulfilled this function, but other possible
solutions may move this task to the user, to other members of a
group of users, or even to a mixed-initiative approach.

The attributes of both the meta-ideas and the ideas being
nurtured span a wide range. For example, research on
supporting design activities often points to the importance of
supporting vague ideas as well as concrete ones. (Usually
programming environments support only concrete ones.)
Having only a vague idea is common at the onset of a task and,
as Polya pointed out, having a vague idea is better than having
no idea [26]. Another attribute of an idea is how good it is;

recall that our solution capitalized upon ―bad‖ ideas to bestow a
hint while at the same time cognitively engaging users by
requiring them to think of how to correct the bad idea. Still
another attribute is its type, ranging from an idea about a
strategy for solving the problem, to an idea about the solution
itself.

These dimensions, together with the remaining dimensions
of Fig. 10 discussed in the earlier sections, suggest a number of
interesting research questions, such as:

1. How might an idea gardening subsystem detect when a
user is experiencing a difficulty? Or should instead the users be
responsible for this, pressing a ―Help‖ button when needed?

2. What are reasonable approaches for an idea gardening
subsystem to decide which problem-solving strategies to
present to a user?

3. Is there a danger of ―trapping‖ users in a particular
strategy, making it difficult for users to flexibly solve problems
without the system constraining their way of working?

4. Will the presentation of numerous ideas overload users
with too much information, rather than helping them?

And, perhaps most critical of all:

5. Will users become too reliant on the idea gardening
subsystem, thereby becoming weaker problem solvers about
their programs rather than stronger problem solvers?

Figure 10. Design Space for gardening end-user programmers’ ideas. Shading

indicates parts of the space instantiated in this paper.

VII. CONCLUSION

In this paper, we have presented results of a theory-based
empirical exploration, using two end-user mashup
programming environments, into design opportunities to help
end-user programmers initiate and refine their own ideas. We
term the design implications of our results idea ―gardening‖
opportunities—they aim at nurturing ideas end-user
programmers devise. This notion is different from most tools

for end-user programmers, which aim to lower end-user
programmers’ cognitive burden in various ways, but do not
attempt to directly nurture the ideas they have themselves.

Among our results were:

 Difficulties our participants encountered included
metacognitive problems, low self-efficacy leading to
inflexibility, design pattern barriers, and a scarcity of ideas
that led to numerous issues. Interestingly, programming
knowledge, sometimes thought to be unnecessary in end-
user environments such as programming-by-demonstration,
was still a problem for participants in both environments
used in our empirical studies.

 Design solutions to these difficulties can be derived by
applying problem-solving and creativity theories, such as
enticing users toward particular problem-solving strategies
to solve some of the issues they encountered. One example
was to use the Working Backward strategy to overcome the
―how do I even start‖ barrier.

 Generalizing the example solution revealed a multi-
dimensional design space for ―idea gardening‖, with
interesting dimensions such as the stage of idea
development, source of meta-ideas, and the attributes of
ideas that might be supported.

These results are encouraging, suggesting opportunities for
end-user programming researchers to better help end-user
programmers to overcome problems and to potentially become
more confident along the way. As a result of this kind of
research, we hope that creators of future end-user programming
environments will be able to anticipate and avert solve-or-
abandon moments like this one:

CoScripter-M2:“Those don’t seem to work. I’m stuck.”

ACKNOWLEDGMENT

This work was supported in part by NSF grant 0917366.

REFERENCES

[1] Bandura, A. Self-efficacy: Toward a unifying theory behavioral change.
Psychological Review 8, 2, 1977, 191-215.

[2] Blackwell, A. and Hague, R. AutoHAN: An architecture for
programming the home, IEEE VLHCC, 2001, 150-157.

[3] Bloom, B. and Broder, L. Problem Solving Processes of College
Students: A Supplementary Educational Monograph. University of
Chicago Press. 1950.

[4] Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S. Example-centric
programming: Integrating web search into the programming
environment, ACM CHI, 2010, 513-522.

[5] Cao, J., Rector, K., Park, T., Fleming, S., Burnett, M., Wiedenbeck, S. A
debugging perspective on end-user mashup programming, IEEE
VL/HCC, 2010, 149-156.

[6] Cao, J., Riche, Y., Wiedenbeck, S., Burnett, M. and Grigoreanu, V. End-
user mashup programming: Through the design lens, ACM CHI, 2010,
1009-1018.

[7] Compeau, D. and Higgins, C. Computer self-efficacy: Development of a
measure and initial test. MIS Quarterly 19, 2, 1995, 189-211.

[8] Díaz, P., Aedo, I., Rosson, M., Carroll, J. A visual tool for using design
patterns as pattern languages, AVI, 2010, 67-74.

[9] Fisher, G. End-user development and meta-design: foundations for
cultures of participation, EUD 2009 (LNCS 5435), Siegen, Germany,
Springer-Verlag, 2009, 3-14.

[10] Flavell, J. Metacognition and cognitive monitoring: A new area of
cognitive-developmental inquiry. American Psychologist 34, 1979.

[11] Gross, P., Herstand, M., Hodges, J., and Kelleher, C. A code reuse
interface for non-programmer middle school students, ACM UIST,
2010, 219–228.

[12] Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S., What Would
Other Programmers Do? Suggesting Solutions to Error Messages, ACM
CHI, 2010, 1019 -1028.

[13] Herring, S., Jones, B. and Bailey, B. Idea generation techniques among
creative professionals. Proc. HICSS, 2009.

[14] Jansson, D. and Smith, S. Design fixation. Design Studies 12, 1, 1991.

[15] Jonassen, D. Toward a design theory of problem solving, Educational
Technology Research and Development 48, 4, Springer, 2000, 63-85.

[16] Kelleher C. and Pausch, R. Lessons learned from designing a
programming system to support middle school girls creating animated
stories, IEEE VL/HCC, 2006, 165-172.

[17] Ko, A., Myers, B. and Aung, H. Six learning barriers in end-user
programming systems, IEEE VLHCC, 2004, 199-206.

[18] Ko, A., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig,
M., Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M. B.,
Rothermel, G., Shaw, M., Wiedenbeck, S., The State of the Art in End-
User Software Engineering, ACM Computing Surveys, 43(3), 2011,
21:1-21:44.

[19] Levine, M., Effective Problem Solving, Prentice Hall, 1994.

[20] Lieberman, H. Your Wish Is My Command: Programming By Example.
Morgan Kaufmann. 2001.

[21] Lin, J., Wong, J., Nichols, J., Cypher, A., and Lau, T. End-user
programming of mashups with Vegemite, ACM IUI, 2009, 97–106.

[22] Newman, M., Lin, J., Hong, J., Landay, J. DENIM: An informal web
site design tool inspired by observations of practice. Human-Computer
Interaction 18, 3, 2003, 259-324.

[23] Oney S. and Myers, B. FireCrystal: Understanding interactive behaviors
in dynamic web pages, IEEE VLHCC, 2009, 105-108.

[24] Osborn, A. Applied Imagination: Principles and Procedures of Creative
Problem Solving. Charles Scribner's Sons, 1953.

[25] Pane, J. and Myers, B. More natural programming languages and
environments, in End User Development (Henry Lieberman et al., eds.),
Springer, 2006, 31-50.

[26] Polya, G. How to Solve It: A New Aspect of Mathematical Method,
Princeton University Press, 1973.

[27] Repenning, A. and Ioannidou, A. Broadening participation through
scalable game design. ACM SIGCSE, 2008, 305–309.

[28] Robertson, T., Prabhakararao, S., Burnett, M., Cook, C., Ruthruff, J.,
Beckwith, L. and Phalgune, A. Impact of interruption style on end-user
debugging, ACM CHI, 2004, 287-294.

[29] Scaffidi, C., Shaw, M. and Myers, B. Estimating the numbers of end
users and end user programmers, IEEE VLHCC, 2005, 207-214.

[30] Scaffidi, C. Sharing, finding and reusing end-user code for reformatting
and validating data. J. Visual Languages and Computing 21, 4, 2010,
230-245.

[31] Schön, D. The Reflective Practitioner: How ProfessionalsThink in
Action. Basic Books, 1983.

[32] Simon, H. Problem solving and education, in Problem Solving and
Education: Issues in Teaching and Research, Tuma, D. and Reif, F.,
(eds.) Lawrence Erlbaum, 1980.

[33] Soloway, E., Learning to Program = Learning to Construct Mechanisms
and Explanations, CACM 29, 9, 1986, 850-858.

[34] Wickelgren, W. How to Solve Problems: Elements of a Theory of
Problems and Problem Solving, W. H. Freeman, 1974.

[35] Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook,
C., Durham, M. and Rothermel. G. Harnessing curiosity to increase
correctness in end-user programming. ACM CHI, 2003, 305–312.

