
1

From Barriers to Learning in the Idea Garden:

An Empirical Study

Jill Cao
1
, Irwin Kwan

1
, Rachel White

1
, Scott D. Fleming

2
, Margaret Burnett

1
, Christopher Scaffidi

1

1
School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, U.S.A.

{caoch, kwan, white, burnett, cscaffid}@eecs.oregonstate.edu

2
Department of Computer Science

University of Memphis

Memphis, U.S.A.

Scott.Fleming@memphis.edu

Abstract—How can end-user programming environments better

help their users overcome programming barriers? We have been

investigating an approach called Idea Gardening, which address-

es this problem by helping end users to help themselves overcome

barriers in the context of “doing”. In this paper, we report on a

qualitative empirical study of how effectively an Idea Garden

prototype helped end users overcome programming barriers in

the CoScripter environment, and the extent to which participants

learned after interacting with our features. Our results showed

that 9 out of 10 participants who encountered barriers and then

used the Idea Garden, overcame their barriers. Further, all 9

went on to demonstrate evidence of having learned the pro-

gramming concepts, patterns, and strategies relevant to overcom-

ing these barriers.

Keywords - end-user programming; Idea Garden; learning

I. INTRODUCTION

For many end users, programming is a challenging task that
requires overcoming numerous barriers, such as decomposing
design problems [7], using primitives such as loops [9], and
selecting and combining modules [24]. Although recent work
has made advances toward alleviating such difficulties (e.g.,
[14][26]), empirical studies show that end-user programmers
continue to encounter barriers when creating or maintaining
programs in a wide range of programming environments, in-
cluding spreadsheets [12][23], animations [18][27], mashups
[7][8][9][33], and Visual Basic [24].

One reason barriers persist may be that there is little support
for helping end-user programmers gain the problem-solving
skills needed to overcome barriers they encounter. Tutorials
and training materials on programming (e.g., [19][21]) have
been proposed to address this problem. However, Minimalist
Learning Theory [10] suggests that task-oriented users will
resist investing time on such learning materials, preferring to
pick up the knowledge they require in the context of their tasks.

To fill this gap, we previously proposed the Idea Garden
approach [9]. Consistent with Minimalist Learning Theory, the
Idea Garden seeks to balance learning and task orientation by
integrating learning into the user’s own programming tasks.
Further, it aims to help end-user programmers learn to solve
problems for themselves (as opposed to aiming to automatically
solve users’ problems for them). Thus, the Idea Garden equips
a programming environment with features that facilitate
learning how to solve barriers in the user’s own tasks.

To investigate whether the Idea Garden can deliver these
benefits, we prototyped the Idea Garden within the CoScripter
end-user web-scripting environment. For this environment, the
Idea Gardening features target two barriers: (1) Composition,
the inability to compose existing functionality, and (2) More-
Than-Once, the inability to generalize calculations on a single
data item to multiple data [8][9]. Our features aim to help users
overcome these two barriers by conveying two programming
concepts (Iteration and Dataflow), two patterns (Webpage-as-
Component and Repeat-Copy-Paste) and two problem-solving
strategies (Analogy and Generalization).

Thus, two overall questions arise: whether the Idea Garden
helps end users to overcome barriers in their programming
tasks, and if so, whether any learning happens along the way.
In this paper, we investigate these questions through a qualita-
tive study in which end users interacted with the Idea Garden in
the context of a programming task. For our study, we refined
the above two overall questions into the following three specif-
ic research questions:

 RQ1: Does the Idea Garden help users complete program-
ming tasks?

 RQ2: Which barriers does the Idea Garden help users over-
come?

 RQ3: Do users who use the Idea Garden when they
encounter barriers then learn relevant programming
concepts, patterns, and/or problem-solving strategies?

II. BACKGROUND AND RELATED WORK

A. Helping Users with Programming Barriers

Empirical studies have shown that end-user programmers
face numerous barriers to succeed in programming tasks, such
as difficulties decomposing design problems, selecting APIs,
combining APIs, and problem-solving in their programming
environments. Studies report these difficulties when users cre-
ate or maintain programs such as spreadsheets [12][23], anima-
tions [18][27], and mashups [7][9][8][33].

One approach is for tools to try to automatically remove
these barriers. For example, programming-by-demonstration
tools allow the end-user programmer to avoid the need to think
about language constructs, variables, etc., and to instead show
concrete examples of the desired program behavior, from
which the tools automatically infer the program [14]. Other
tools aim to automatically correct errors, enabling the user to

sdf
Typewritten Text
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

enter a mostly correct program from which the tools automati-
cally infer the desired behavior [27]. Still other tools simplify
programming by providing templates that describe classes of
nearly finished programs that users complete by simply filling
in the blanks (e.g., [32]). A similar approach is for tools to pro-
vide examples from a set of recommendations that users can
copy, paste, and tweak (e.g., [20]). In fact, some tools offer a
menu of code snippets that can be automatically generated on
demand (e.g., [16]). User studies in the papers cited above
demonstrate that by simplifying the programming task, these
and similar tools help people to complete programming tasks
more quickly with fewer errors.

However, automatically removing barriers comes with a
cost: the users do not need to learn how to overcome barriers
by themselves because they can instead simply rely on the tool
to automatically provide a solution. In fact, some novice pro-
grammers consciously opt not to learn some skills, believing
that they can always crib from the web [4]. But since no tool
can automatically solve every programming difficulty, some
amount of learning about how to solve programming problems
seems important, even for end-user programmers.

Some approaches do emphasize helping users to learn. For
example, tutorials and training materials explicitly aim to help
people who want to develop their programming skills. Such
approaches have shown promise in helping novice program-
mers to learn skills in classes or in online communities (e.g.,
[19][21]). However, some users are so focused on a task at
hand that they are unwilling to invest time in taking tutorials,
reading documentation, or using other training materials—even
if such an investment might be rational in the long term. This
phenomenon is known as the paradox of the active user [11].

Our work seeks to strike a balance between these two ex-
tremes by integrating learning into the context of users’ pro-
gramming tasks in a manner consistent with Minimalist Learn-
ing Theory [10]. A few other approaches also seek to integrate
learning into programming. One approach, explored in the con-
text of animation, had novice programmers create basic pro-
grams, such as 2D animations, and then provided features ena-
bling the users to convert their animations to 3D [22]. The ap-
proach included a curriculum for teachers to help users choose
features for overcoming barriers. Studies showed that this edu-
cational scaffolding helped programmers learn these features
and improve their 3D programming. Another approach, ex-
plored in the context of animations and mashups, sought to
help programmers learn by downloading and extending other
users’ programs [25][29]. These tools have been shown to in-
crease programmers’ ability to learn from existing pro-
grams [25].

The main differences of our Idea Garden approach from
these prior works are that the Idea Garden integrates scaffold-
ing for learning directly into the programming tool itself. Thus,
the approach aims to support integrated learning when no
teacher or relevant programs are available. In this approach, the
chief design challenges are (1) how to avoid automatically
solving the problem for the user, (2) how to contextualize
learning within the programming task, and (3) how to avoid the
requirements of human teachers or respositories of suitable
example programs.

B. The Idea Garden’s Host: CoScripter

To facilitate investigation into whether the Idea Garden ap-
proach can help end-user programmers overcome barriers and
acquire programming knowledge, we implemented the Idea
Garden within CoScripter/Vegemite [26], an end-user
programming-by-demonstration environment for web
automation in Firefox. A formative study of CoScripter [9]
showed that end users programming in CoScripter encountered
many of the barriers reported in other end-user programming
environments (e.g., [24])—barriers such as how to coordinate
and compose modules and how to iterate over data.

Using CoScripter, a user can demonstrate how to carry out
a task in Firefox. CoScripter translates the user’s actions into a
“web macro” script that the user can edit and execute
(Figure 1a). CoScripter provides a scratch table (Figure 1b) that
makes it possible to create mashups that combine data from
multiple web pages. For example, a user can create a script to
mash restaurant location with public transit by loading a web
page of restaurants (Figure 1c), copying its addresses to the
table (Figure 1b), then iterating to send each address to another
web page to compute travel time via transit. Thus, CoScripter
has programming concepts such as control flow and dataflow.

III. THE STUDY

To investigate how well the Idea Garden helps end users
overcome programming barriers and learn, we conducted a
qualitative think-aloud study. Qualitative empirical studies
involve the collection and analysis of qualitative data, such as
verbal protocols, as opposed to quantitative data, such as
numeric measurements [31]. Qualitative studies are particularly
appropriate for studying complex human behaviors, such as our
interest in problem solving by end-user programmers [31].

Figure 1. CoScripter’s (a) script area, (b) table area, and (c) browsing area.

3

A. Participants

We used emails and flyers to recruit 15 university students
and recent graduates with majors other than electrical
engineering or computer science. None had ever programmed
before. Of the 15, 10 used the Idea Garden’s features (6
females, 4 males; gender is indicated as F or M in IDs below).

B. Study Environment: The Idea Garden Prototype

Our study focused on two barriers identified in earlier work
[8][9]: the Composition barrier and the More-Than-Once barri-
er. The Composition barrier occurs when a user cannot identify
how to combine functionality of existing modules. For exam-
ple, users may struggle to combine data from multiple webpag-
es. The More-Than-Once barrier occurs when a user cannot
generalize calculations on one data item to many data items.
An example of this barrier in CoScripter is a user not knowing
how to repeat actions on cells in a column. Three features of
the Idea Garden target these barriers (Figure 2).

For example, the Second Webpage feature (Figure 3) aims
to help users apply the Webpage-as-Component pattern and the
Dataflow concept to overcome the Composition barrier. The
Webpage-as-Component pattern uses certain webpages, such as
Google Maps, to calculate values from a given input. The
Dataflow concept refers to moving data from one webpage to
another. The Second Webpage feature draws from this pattern
and concept: it explains that the user can use a second webpage
to calculate new data, gives an example, and describes how a
user can pass data from one webpage to another. Users can
access this feature through a “Help” button.

The Table Tooltip feature (Figure 4) also seeks to address
the Composition barrier. It appears when the user hovers the
mouse over the head of a column that has been labeled or
populated with data. The feature contextualizes suggestions
based on the column’s content type (e.g., names, addresses,

currency). This feature introduces the Webpage-as-Component
pattern by suggesting appropriate pages that the user can visit
based on the current data type in the table, and it reinforces the
Dataflow concept by suggesting that the user send the data
currently in the table to the recommended webpage.

By design, the Second Webpage and the Table Tooltip fea-
tures suggest solutions that are not necessarily correct. For ex-
ample, the Second Webpage feature presents a static example
of how to calculate calories for a recipe, which is unlikely to be
what the user wants. By giving incorrect suggestions, the fea-
tures aim to entice the user to adopt the Analogy strategy—that
is, to relate an understood problem (the example in each
suggestion) to the problem at hand (the task) [28].

To address the More-Than-Once barrier, the Idea Garden
provides the Generalize-with-Repeat feature, available via an
icon inserted beneath scripts that operate on tables (Figure 5).
This feature describes the Iteration concept and provides an
example snippet of script that uses the repeat command. The
feature’s suggestion also encourages the user to apply the Gen-
eralization strategy, where a person extends his or her consid-
eration of one object (e.g., a table cell) to the consideration of a
set of objects (e.g., a column of cells) [28]. The feature thus
demonstrates the Repeat-Copy-Paste pattern, which solves the
problem of passing multiple entries from the table to a webpage
for further processing. It loads the calculation/lookup webpage
in the browser, copies/pastes data from the table to the
webpage, and then does a calculation or lookup. We envision
this pattern and the Webpage-as-Component pattern belonging
to a pattern catalog for web users, such as in [15].

C. Study Design

We gave each participant a background questionnaire that
included a standard computer self-efficacy test [13]. Although
one of our research questions focuses on learning, we chose not
to use a pre-test of programming knowledge because doing so
could have biased behavior—for example, causing users to
focus on features that seemed related to the pre-test. Instead,
we used temporal evidence (described later) to detect learning.

Because the Idea Garden is intended for users who have
used an environment before (but then get stuck), we gave a 25-
minute hands-on tutorial then walked participants through how
to create three scripts: one to look up information from a
webpage, one to pull data from a webpage into a table, and one
to push data from the table to a webpage. We taught some
concepts and patterns, but no strategies. Specifically, we taught
the Dataflow and Iteration concepts, and had participants do all
of the Repeat-Copy-Paste pattern and part of the Webpage-as-

Figure 3: The Second Webpage feature targets the Composition barrier using

the Webpage-as-Component pattern, Dataflow concept, and Analogy strategy.

Figure 2. Relationships between barriers, Idea Garden features, and learning

objectives.

Figure 4: The Table Tooltip feature offers a suggestion (“Sometimes...”) and

gives example websites the user can explore.

4

Component pattern. We did
not teach strategies per se,
although it may have been
possible for some participants
to infer strategies from their
tutorial work. The tutorial's
goal was to give participants a
basic level of CoScripter abil-
ity and practice, but we did
not include the Idea Garden in
the tutorial. Our intent was
that participants should al-
ready know enough about
CoScripter to start a task, but
to use the Idea Garden (if they
so chose) without having used
it before.

Next, participants began
their main task: to create a
script for finding 2-bedroom
apartments under $1300
within a 10-minute drive of
the Ohio State University
campus. The task had three
implicit subtasks: (1) import a
list of apartments and their
addresses from a webpage

into the table, (2) iterate over the addresses to compute driving
time to Ohio State University, and (3) copy each driving time
back to the table. Participants were vulnerable to the Composi-
tion barrier during subtasks 1 and 2 and to the More-Than-
Once barrier during subtasks 2 and 3. The Idea Garden was
active during the task, and users could refer back to the tutorial.

If a participant became so stuck on a barrier that no further
progress seemed possible, the researcher pointed out Idea
Garden features or, if that did not help, eventually suggested an
action to overcome the barrier. These hints enabled the
participant to make progress, so that we could gather data on
later subtasks. To support analysis, participants were instructed
to talk aloud as they worked. We recorded audio, screen
captures, and video of participants.

Once participants finished the task or exceeded 55 minutes,
we used a structured interview to assess knowledge of each
programming concept, pattern, and problem-solving strategy in
the Idea Garden’s learning objectives (Figure 2). Bloom’s
taxonomy identifies six levels of knowledge: remembering,
understanding, applying, analyzing, evaluating, and creating
knowledge [1]. Because the task was short, our interview
targeted the three lowest levels of this taxonomy. When struc-
turing questions, we focused on learning transferability to an-
other task or context [5]; specifically, we presented participants
with the hypothetical task of creating a script to look up the
best price for a novel sold online, then asked how to perform
subtasks in that context. To further evaluate understanding, we
used multiple choice and fill-in-the-blank questions, with fol-
low-up questions asking participants to interpret various
portions of scripts and to predict script behaviors.

IV. ANALYSIS METHOD

Two researchers independently used qualitative thematic
coding to analyze the videos. They coded (1) barriers encoun-
tered based on whether participants struggled in specified ways
and (2) progress made including barriers overcome (Table I).
They also graded interviews’ multiple choice and fill-in-the-
blank answers using an answer key. Finally, participant inter-
views’ task answers were categorized using the concept, pat-
tern, and strategy names in Figure 2. To ensure reliability, we
used a standard inter-rater agreement exercise [31] in which,
first, the independent analyses of the two coders achieved 80%
agreement (Jaccard similarity) on 30% of the data, and then
one of the coders alone completed the analysis.

V. RESULTS

A. RQ1: Idea Garden’s Help with the Task

Almost all participants who turned to the Idea Garden for
help with a barrier were able to complete at least part of the
task. For the 10 participants who turned to the Idea Garden
when they encountered a barrier, four went on to complete all
three subtasks, and four more completed at least one subtask.
Table II shows the details.

B. RQ2: Idea Garden’s Help with the Barriers

As explained in Section III.B, the Table Tooltip and the Se-
cond Webpage features target the Composition barrier, whereas
the Generalize-with-Repeat feature targets the More-Than-
Once barrier. We will consider these features in the context of
the barriers they target.

1) Overcoming the Composition Barrier

Table III summarizes, for the six participants who encoun-
tered the Composition barrier and then interacted with the Idea
Garden, their feature usage and how successful they were in
overcoming the barrier. As the table shows, half the partici-
pants who encountered the barrier were able to overcome it.

With the split in participants’ success in overcoming the
Composition barrier, we analyzed whether these participants
exhibited behavior consistent with an understanding of the

TABLE I. CODING SCHEME FOR WHETHER (1) A PARTICIPANT ENCOUNTERED A

BARRIER AND (2) PARTICIPANT MADE PROGRESS.

1. Barrier Action/Vocalization

Composition
Barrier

Not knowing to combine multiple web pages

Not knowing that a page can calculate driving time

Not knowing how to use a page to calculate

Not using the table as intermediate storage for webpage data
that must be sent to a second webpage

More-Than-
Once Barrier

Not realizing operations on table rows could be generalized
using the repeat command

Uncertainty about how to use or the misuse of the repeat
command, e.g. wrong placement or syntax

Misunderstanding of the scope of the repeat command,
e.g., thinking it could work on elements of a webpage

Revisiting tutorial script for help with the repeat command

2. Progress Observed Behavior

No movement Behavior remained unchanged

Movement Behavior changed but did not move closer to
completing task

Positive Movement Behavior changed and moved closer to completing task

Barrier Overcame Behavior changed to overcame the barrier

Figure 5: The Generalize-with-Repeat

feature suggests the use of the
repeat construct in CoScripter.

5

Webpage-as-Component pattern, Analogy strategy, and
Dataflow concept that the Table Tooltip and Second Webpage
aimed to convey. Below, we present episodes that shed light on
whether participants picked up this knowledge or not, and why.

Applying the Analogy strategy. F4’s interactions with the
Table Tooltip feature show how she successfully used the
Analogy strategy to figure out how to compute driving time.
Figure 6 illustrates her interactions with CoScripter and the
Idea Garden. The Analogy strategy rests on the ability to effec-
tively map concrete examples to the task at hand. At first F4
tried to find a web page that showed the needed data (driving
times), rather than computing the values with a calculator web
page (Google Maps). She could not find a suitable site, but
added a “distance” column header to her table anyway. This
new column head included an indicator for the Table Tooltip
feature. The tooltip suggested websites that accepted the data in
her column (distance) as input to calculate new information.
These websites included a gas calculator and a running time
calculator, neither of which was what F4 needed. After inspect-
ing each site, she searched for an analogous website that was
appropriate for her task, a “driving distance calculator.” Her
search led her to a page that she used to finish Subtask 1.

In contrast to F4, neither F3 nor M2 sought websites analo-
gous to the ones provided by the Table Tooltip feature. Both F3
and M2 dismissed the Table Tooltip and went back to their
prior approach of looking for driving time from an apartment-
listing page. Similarly, M1 interacted with the Second
Webpage feature, which showed an example of using a calcula-
tor webpage to compute calories of a recipe; however, he ap-
peared not to even read the example, and thus, he lost the op-
portunity to apply an analogy.

Applying the Webpage-as-Component pattern and the Da-
taflow concept. Three participants used the Idea Garden’s sug-
gestion directly to apply the Webpage-as-Component pattern
and the Dataflow concept. In F4’s episode (above), she applied
the Webpage-as-Component pattern, using a travel calculator
page as a component. In leveraging the page, she also applied
the Dataflow concept, pushing addresses into the component

and pulling driving times out. Similarly, F1 used Bing Maps,
which was suggested by the Table Tooltip, to compute driving
times, thus applying the Webpage-as-Component pattern and
Dataflow concept. For M3, the Second Webpage feature
brought to his attention that he could send existing data to a
calculator page to get driving time, thus he too applied the
Webpage-as-Component pattern and Dataflow concept.

In contrast, F3, M1, and M2 exhibited no evidence of un-
derstanding or applying the Webpage-as-Component Pattern
and the Dataflow concept. Even after the researcher directed
these participants to an appropriate component page, Google
Maps, they continued to struggle. For example, M2 used
Google Maps to find apartments rather than to compute driving
times. The researcher provided each participant with one more
hint: use “Get Directions”. But the hint led to more confusion.
For example, M1 said: “I'm just looking for the location of one
place, not directions from me to it”.

These participants’ difficulties may be understood in terms
of reframing, or more specifically, a lack of it. According to
Schön [30], a frame is a boundary within which people work to
solve a messy problem. The participants seemed to frame the
task as one of using a web page as a static source of
information rather than a component in a computation. These
web pages do not present themselves as components in
computations since it is not their primary function, so, it is
perhaps not surprising that these participants did not break out
of their unworkable frame. F3 attempted unsuccessfully to re-
frame after seeing the Second Webpage feature. She reacted to
the feature’s suggestion by opening Google Maps; however,
she did not see how to leverage the site as a component. Thus,
even though the Idea Garden feature did not help F3 overcome
the Composition barrier, it did bring her to reflect on and at-
tempt to adjust her frame.

2) Overcoming the More-Than-Once Barrier

The More-Than-Once barrier is the target of the
Generalize-with-Repeat feature—and 7 of the 9 participants
who turned to this feature overcame the barrier and completed
the second subtask (Table IV). Because of this success, we
consider how the feature might have influenced different
participants’ behaviors.

Explanation content: Recall from Figure 5 that the explana-
tion briefly gave a general idea and then presented an incom-
plete script snippet that participants could include in their
scripts and then modify. Our intent was that users would in-
clude it, notice the missing piece, i.e., the code to pull drive
times to the table, then fill it in. And for F5, M4, F6, the expla-
nation led them to do exactly that. (F2 also noticed the missing
piece but ran out of time to act upon it.) Figure 7 illustrates the
way this played out for M4. The explanation helped F1 in an-

TABLE II. PARTICIPANT'S PROGRESS IN THE TASK USING IDEA GARDEN.
● BARRIER, THEN PARTICIPANT USED IDEA GARDEN TO OVERCOME BARRIER.

 BARRIER, THEN PARTICIPANT USED IDEA GARDEN TO CHANGE APPROACH

(BUT DID NOT OVERCOME BARRIER).
○ BARRIER, THEN PARTICIPANT USED IDEA GARDEN, BUT DID NOT ACT ON IT.
✔ PARTICIPANT COMPLETED SUBTASK.

✘: PARTICIPANT STARTED BUT DID NOT FINISH THE SUBTASK.

R : RESEARCHER SOLVED THE SUBTASK.

✔R: RESEARCHER COMPLETED PART, PARTICIPANT COMPLETED THE REST.

✘R: PARTICIPANT STARTED BUT DID NOT FINISH THE SUBTASK AND RELIED

ON RESEARCHER TO SOLVE THE PART OF THE SUBTASK HE STARTED.

 F1 F2 F3 M1 M2 F4 M3 F5 M4 F6

Sub-
task 1

Used
Idea Garden

●

○ ○ ● ●

Task
Success

✔ ✔ R R R ✔ ✔ ✔ ✔ ✔

Sub-
task 2

Used
Idea Garden

● ● ● ○ ● ○ ● ● ●

Task
Success

✔ ✔ ✔R ✘R ✔ ✔ ✔ ✔ ✔ ✔

Sub-
task 3

Used
Idea Garden

 ● ● ●

Task
Success

 ✘ ✘ ✔ ✘ ✔ ✔ ✔

Task Success Total 2/2 2/3 0.5/3 0/2 1/2 3/3 2/3 3/3 3/3 3/3

TABLE III. THE SIX PARTICIPANTS WHO ENCOUNTERED THE COMPOSTION

BARRIER AND THEIR FEATURE USAGE.
● PARTICIPANT USED THE FEATURE AND OVERCAME A BARRIER.

 PARTICIPANT OBSERVED THE FEATURE, MADE MOVEMENT.
○ PARTICIPANT OBSERVED THE FEATURE, BUT MADE NO MOVEMENT.

Feature
Participants who encountered Composition barrier

F1 F3 M1 M2 F4 M3

Table Tooltip ● ○○ ○ ●

Second Webpage ○ ○ ○○ ●

6

other way: she remembered the repeat command but had
forgotten how to do it. She then used the explanation to re-
member: “I forgot how to repeat ... [Opens the suggestion] Ah,
repeat... [Reads suggestion line by line and begins to edit a
Repeat loop into her script].”

Two other cases of content were different, in that they were
related to recognizing the relevance of repetition rather than
how to implement repetition. In M2’s case, he had not realized
that his actions were generalizable at all. Instead, he processed
the first three rows of his table one at a time. When he noticed
the explanation, he used the script snippet it suggested, and
changed to a loop rather than his previous one-at-a-time ap-
proach: “[reads: Would you like to do the same thing to the
rest of the cells?] Oh okay [reads the suggestion’s script, then
clicks “Include” to insert it into his script.]” Finally, M1’s
case showed a need for explanation content that was not pre-
sent. There is a “role expressiveness” issue [17] in the way a
single entry of the repeat body appears in CoScripter scripts:
the notation refers to the first row only of the table (see the

script in Figure 5). This notation convinced M1 that repeat
was not relevant, so he did not follow the suggestion. If the
explanation content had clarified this issue, perhaps he would
have.

Timing and context: A strength of the Generalize-with-
Repeat feature seems to be that it appears in the right context:
when the user is actively working on a portion of the script that
involves a row of the table, but is not using a repeat in that
portion of the script. Further, the “Include” button automatical-
ly places the snippet into the user’s script, reducing the cost of
integrating the snippet, and encouraging users to start experi-
menting with it. This contrasts with a tutorial, which appears in
a separate context and provides no direct encouragement or
explicit support for integration with the task at hand. In fact, all
seven participants who encountered the More-Than-Once bar-
rier and managed to accomplish the second subtask, did so by
using the feature as a reference to implement their own re-
peat loop or by including the script snippet it provided.

The experience of M4 illustrates the value of integrating
suggestions into the context of the task at hand. When he en-
countered the More-Than-Once barrier, M4 referred to a tutori-
al example that illustrated the use of the repeat command. In
response, however, he made no changes to his script. Instead,
he subsequently tried copying an address from the table into
Google Maps. This triggered the Generalize-with-Repeat fea-
ture. In contrast to his non-use of the tutorial, he incorporated
the suggested snippet, then stepped through it in the context of
his own program. After finding where further work was need-
ed, he was able to create a new repeat block that effectively
completed the second subtask without any further assistance.
This timing and context seemed very effective, and may be the
primary reason so many of the participants acted upon the sug-
gestion in a way that turned out well for their scripts.

Self-efficacy: Self-efficacy is a specific form of self-
confidence: a person’s prediction of how well he or she can
perform a specific task [2]. Results from empirical studies
across numerous populations (e.g., [6]) have shown that users
with low self-efficacy tend to shy away from unfamiliar
features designed to help them. Table IV identifies the two
males and two females whose self-efficacy scores from the
background questionnaire were below the medians for their
gender (marked as “Self-Eff”). The Idea Garden’s suggestion
appeared to interact with these low self-efficacy participants in
both negative and positive ways. For example, M3, whose self-
efficacy score was among the lowest in the male participants,
when the feature came up, acknowledged the suggestion as “a
direction to repeat” but did not follow through with it, perhaps
due to his low self-efficacy: “This is hard. I don't know what
I'm doing”. On the other hand, the participant with the lowest
self-efficacy score, F5, was able to make use of the sugges-
tion’s script snippet and eventually edit the snippet to succeed
beyond the second subtask accomplishing the third subtask as

Figure 6. An episode from F4’s sequence of interactions with CoScripter and

the Idea Garden. (Curved arrows indicate transition to the next line).

Figure 7. An episode from M4’s session (Legend in Figure 6).

TABLE IV. THE NINE PARTICIPANTS WHO ENCOUNTERED THE MORE-THAN-
ONCE BARRIER. DOT NOTATION IS AS IN TABLE III.

Participants who used the Generalize-with-Repeat feature

F1 F2 F3 M1 M2 M3 F5 M4 F6

● ● ● ○ ● ○ ● ● ●
Content
Timing

Content
Timing
Self-Eff

Timing

Content

Content
Timing
Self-Eff

Self-Eff Content
Timing
Self-Eff

Content
Timing

Content
Timing

7

well. Thus, in M3’s case, the suggestion did not allay his
concerns about his abilities, and may even have exacerbated
them, whereas in F5’s case, the suggestions may have
reassured her that she was moving in the right direction.

C. RQ3: From Barriers To Learning

To assess possible learning, we considered evidence of
learning to be the temporal sequence <barrier, Idea Garden use,
correct answer>. That is, a participant first had to show a lack
of knowledge by running up against a barrier, then had to turn
to the Idea Garden for help, and finally had to answer post-test
questions correctly. Our rationale was that those who ran into
barriers were, by definition, demonstrating a knowledge gap in
at least one of the concepts, patterns, and/or strategies.

Table V and Table VI summarize the results for the
knowledge items relevant to the Composition barrier and the
More-Than-Once barrier, respectively. The strategy questions
included both broad, open-ended questions that tested whether
the participant would think to apply the strategy in planning
how to proceed with a new task, and more specific questions
that tested whether the participant could apply the strategy ei-
ther in the use of specific Idea Garden features or when facing
a specific situation within the new task. The feature-specific
questions for analogy were presented to only the participants
who saw the corresponding feature during the task, and thus,
those questions are treated separately in the tables.

Overall, every participant who encountered a barrier and
then used the Idea Garden demonstrated understanding of all
the relevant programming concepts (Dataflow and Iteration)
and one of the patterns (Webpage-as-Component) during the
interview; however, only those who subsequently overcame
barriers on their own (i.e., without hints from the researcher)
demonstrated understanding of the Repeat-Copy-Paste pattern,
the ability to solve the more open-ended Analogy and General-
ization problems, and the ability to apply the Generalization
strategy in a specific situation within a task.

VI. DISCUSSION AND CONCLUSION

Our results showed that 9 of the 10 participants who
encountered barriers and used the Idea Garden, subsequently
overcome at least one of their barriers on their own. Moreover,
in the post-test, those 9 demonstrated understanding of all the
programming concepts, patterns, and strategies relevant to the
barriers they overcame on their own. Their difficulties with the
barriers prior to using the Idea Garden, combined with their
subsequent success after using the Idea Garden, and their
demonstrated understanding during the post-test, triangulate to
suggest they indeed learned from their experience.

Minimalist Learning Theory [10], which inspired our
design of the Idea Garden (Section III.B), provides a basis for
understanding its features’ effectiveness. This theory argues
that active users will be more likely to use and profit from
learning-related resources that are situated within their task,
rather than in some other program or resource, such as a tool or
tutorial. Recall that few participants referred back to the tutorial
examples; we hypothesize that this is because the examples
were external to the task at hand.

Another way to understand these results is in terms of
Attention Investment (a model of cost, benefit, and risk), which
posits that users will be more inclined to learn new abstractions
if they perceive that doing so requires low up-front costs and
provides substantial benefits [3]. CoScripter has numerous such
abstractions, including tables and repetition, that are needed for
mashup tasks. In the case of the Idea Garden, the cost to
venture forward starts with reading a tool tip—a cost that most
users perceive to be low. The Idea Garden’s suggestions are
concrete enough to keep users’ further estimates of cost aligned
with actual costs. The potential benefit is that overcoming the
barrier will allow the user to move ahead with their task. In
contrast, external tutorials or examples require switching to
other documents and sifting through material to find the
relevant parts, with a potential risk that relevance to the task at
hand will still not be clear.

TABLE V. INTERVIEW RESULTS FOR QUESTIONS RELATED TO THE COMPOSITION BARRIER. ✔: ANSWERED A QUESTION CORRECTLY. -: SHOWED NO EVIDENCE OF

THE KNOWLEDGE ITEM. ✘: INCORRECT USE OF THE KNOWLEDGE ITEM. ?: DID NOT ANSWER. NA: PARTICIPANT WAS NOT ASKED THAT QUESTION. SHADED:
RECEIVED HELP FROM RESEARCHER RELATING TO THE KNOWLEDGE ITEM.

Knowledge Item
Overcame barrier on their own Did not overcome barrier on their own Demonstrated

Knowledge F1 F4 M3 F3 M1 M2

Dataflow Concept (problem required it) ✔✔✔✔✔ ✔✔✔✔✔ ✔✔✔✔✔ ✔✔✔✔✔ ✔✔✔✔? ✔✔✔✔✔ 6/6

Webpage-as-Component Pattern (problem required it) ✔ ✔ ✔ ✔ ✔ ✔ 6/6

Analogy
Strategy

(context: broad, open-ended task planning) - ✔ ✔ - - - 2/6

(context: using Table Tooltip) ✔✔ -✘ NA ✔✘ NA -✘ 2/4

(context: using Second Webpage) NA NA ✔✔✘ ✔✔? ✔✔✘ ✔✔✔ 4/4

TABLE VI. INTERVIEW RESULTS FOR QUESTIONS RELATED TO THE MORE-THAN-ONCE BARRIER (SYMBOLS FROM TABLE V).

Knowledge Item
Overcame barrier on their own Did not overcome barrier on

their own
Demonstrated
Knowledge

F1 F2 F3 M2 F5 M4 F6 M1 M3

Iteration Concept (predic-
tion/comprehension questions)

✔✔✔✔ ✔✔✔✔ ✘?✔✔ ✔✔✔✔ ✔✔✔✔ ✔✔✘✔ ✔✔✘✔ ✔✔✔✔ ✔✘✔✔ 9/9

Repeat-Copy-Paste Pattern (problem
required it)

✔ ✔ ✔1 ✔ ✔ ✔ ✔ ✘ ✘ 7/9

Generalization
Strategy

(context: broad, open-
ended task planning)

✔- - - - ✔ - - - - - - - - - - - - 2/9

(context: specific situa-
tion within a task)

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ 7/9

1 Researcher helped with first copy/paste, then participant invoked Idea Garden to overcome the rest.

8

Recall also that, by design, the Idea Garden provides
relevant but incomplete suggestions. Our hope was that this
incompleteness would engage users intellectually and
encourage them to apply strategies such as Analogy that would
stay with them. Their success with overcoming barriers,
combined with their correct answers to the analogy questions in
our post-test, suggest that this approach showed merit.

Nonetheless, a few participants struggled with Analogy,
which prevented them from overcoming some barriers. This
limitation suggests that analogies need to be more easily recog-
nizable and applicable to the task at hand. One approach might
be to present users unable to overcome a barrier with more
analogies. For example, the Idea Garden might focus a user
who struggles with a barrier on analogous web pages (as in the
Table Tooltip feature) or analogous relationships (such as in-
put-output relationships) to help the user reframe their concept
of a webpage’s capabilities.

Although the Idea Garden’s context-sensitive tooltips were
designed to make suggestions more helpful to users, over-
contextualizing assistance to the task at hand runs the risk of
limiting transferability of learning to other situations. For many
participants, it appears that this generally was not a problem
with the Idea Garden, as these participants were able to
successfully answer post-test questions that asked them to
describe how they would perform another programming task. It
is an open question regarding the extent to which this apparent
learning will lead to quantitative improvements in users’ ability
to correctly complete other programming tasks.

Overall, our results suggest that, by being available to
support learning, the Idea Garden encouraged users actively
trying to accomplish a programming task to learn along the
way. While tools that automate away some barriers may help in
the short term, this help may come at the expense of skills users
will need to handle similar difficulties that may arise later. Our
study’s results suggest that the Idea Garden approach may help
users to overcome their barriers now and in their future.

ACKNOWLEDGEMENT

We thank Forrest Bice and Hannah Adams for their
assistance with implementing the Idea Garden prototype. This
work was supported in part by NSF grant 0917366.

REFERENCES

[1] L. Anderson, D. Krathwohl, P. Airasian, K. Cruikshank, R. Mayer, P.

Pintrich, J. Raths, and M. Wittrock, A Taxonomy for Learning, Teach-

ing, and Assessing: A Revision of Bloom’s Taxonomy of Educational
Objectives, Abridged Edition, 2nd ed. Allyn & Bacon, 2000.

[2] A. Bandura, Self-efficacy: Toward a unifying theory of behavioral

change, Psychological Review 8(2), 191–215, 1977.

[3] A. Blackwell, First steps in programming: A rationale for attention in-
vestment models, IEEE HCC, 2– 10, 2002.

[4] J. Brandt, P. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,
Two studies of opportunistic programming: Interleaving web foraging,

learning, and writing code, ACM CHI, 1589–1598, 2009.

[5] J. Bransford, A. Brown, R. Cocking. How People Learn: Brain, Mind,

Experience, and School, Expanded ed., National Academy Press, 2000.

[6] M. Burnett, S. Fleming, S. Iqbal, G. Venolia, V. Rajaram, U. Farooq, V.

Grigoreanu, and M. Czerwinski, Gender differences and programming

environments: Across programming populations, ACM-IEEE ESEM,

2010.

[7] J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, and V. Grigoreanu, End-

user mashup programming: Through the design lens, ACM CHI, 1009-
1018, 2010.

[8] J. Cao, K. Rector, T. Park, S. Fleming, M. Burnett, and S. Wiedenbeck,
A debugging perspective on end-user mashup programming, IEEE

VL/HCC, 149–156, 2010.

[9] J. Cao, S. Fleming, and M. Burnett, An exploration of design opportuni-

ties for ‘gardening’ end-user programmers’ ideas, IEEE VL/HCC, 35-42,

2011.

[10] J. Carroll. Minimalism Beyond the Nurnberg Funnel. MIT Press, 1998.

[11] J. Carroll ,M. Rosson, Paradox of the active user, Interfacing Thought:

Cognitive Aspects of Human-Computer Interaction, MIT Press, 1987.

[12] C. Chambers and C. Scaffidi, Struggling to excel: A field study of chal-

lenges faced by spreadsheet users, IEEE VL/HCC, 187–194, 2010.

[13] D. Compeau and C. Higgins, Computer self-efficacy: Development of a

measure and initial test, MIS Quarterly 19(2), 189–211, May 1995.

[14] A. Cypher, M. Dontcheva, T. Lau, and J. Nichols. No Code Required:

Giving Users Tools to Transform the Web. Morgan Kaufmann, 2010.

[15] P. Diaz, M. Rosson, I. Aedo, and J. Carroll, Web design patterns: Inves-

tigating user goals and browsing strategies, IS EUD, 186–204, 2009.

[16] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and P. Gandhi, Intel

Mash Maker: Join the web, SIGMOD Rec. 36(4), 27–33, Dec. 2007.

[17] T. Green and M. Petre, Usability analysis of visual programming envi-

ronments: A ‘cognitive dimensions’ framework, J. Visual Langs. Com-
puting 7(2), Jun. 1996.

[18] P. Gross and C. Kelleher, Non-programmers identifying functionality in
unfamiliar code: strategies and barriers, J. Visual Langs. Computing

21(5), 263–276, Dec. 2010.

[19] M. Guzdial, Education: Paving the way for computational thinking,

Commun. ACM 51(8), 25–27, Aug. 2008.

[20] B. Hartmann, D. MacDougall, J. Brandt, and S. Klemmer, What would

other programmers do: Suggesting solutions to error messages, ACM

CHI, 1019–1028, 2010.

[21] C. Hundhausen and J. Brown, What you see is what you code: A ‘live’

algorithm development and visualization environment for novice learn-
ers, J. Visual Langs. Computing 18(1), 22–47, Feb. 2007.

[22] A. Ioannidou, A. Repenning, and D. Webb, Using scalable game design
to promote 3D fluency: Assessing the AgentCubes incremental 3D end-

user development framework, IEEE VL/HCC, 47–54, 2008.

[23] C. Kissinger, M. Burnett, S. Stumpf, N. Subrahmaniyan, L. Beckwith, S.

Yang, and M. B. Rosson, Supporting end-user debugging: What do users

want to know? AVI, ACM, 135–142, 2006.

[24] A. Ko, B. Myers, and H. Aung, Six learning barriers in end-user pro-

gramming systems, IEEE VL/HCC, 199–206, 2004.

[25] S. Kuttal, A. Sarma, G. Rothermel, History repeats itself more easily

when you log it: Versioning for mashups, IEEE VL/HCC, 69–72, 2011.

[26] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. Lau, End-user program-

ming of mashups with Vegemite, ACM IUI, 97–106, 2009.

[27] R. Miller, M. Bolin, L. Chilton, G. Little, M. Webber, C.-H. Yu, Rewrit-

ing the web with Chickenfoot, In No Code Required: Giving Users Tools
to Transform the Web, Morgan Kaufmann, 2010.

[28] G. Polya. How to Solve It: A New Aspect of Mathematical Method 2nd
ed., Princeton University Press, 1971.

[29] M. Resnick, Sowing the seeds for a more creative society, Learning and
Leading with Technology 35(4), 18–22, 2007.

[30] D. Schön. The Reflective Practitioner: How Professionals Think in
Action, Basic Books, 1983.

[31] C. Seaman. Qualitative Methods in Empirical Studies of Software Engi-
neering. IEEE Trans. Softw. Eng. 25(4), 557–572, 1999.

[32] J. Wong and J. Hong, Making mashups with Marmite: Towards end-
user programming for the web, ACM CHI, 1435–1444, 2007.

[33] N. Zang and M. Rosson, Playing with information: How end users think
about and integrate dynamic data, IEEE VL/HCC, 85–92, 2009.

