

End-User Programmers in Trouble:

Can the Idea Garden help them to help themselves?
Jill Cao1, Irwin Kwan1, Faezeh Bahmani1, Margaret Burnett1,

Scott D. Fleming2, Josh Jordahl1, Amber Horvath1, Sherry Yang1,3

1Electrical Engineering & Computer Science

Oregon State University

Corvallis, OR, USA

2Computer Science

University of Memphis

Memphis, TN, USA

3Computer Systems Engineering Technology

Oregon Institute of Technology

Klamath Falls, OR, USA

{caoch, kwan, bahmani, burnett}@eecs.oregonstate.edu; scott.fleming@memphis.edu; sherry.yang@oit.edu

Abstract—End-user programmers often get stuck because

they do not know how to overcome their barriers. We have

previously presented an approach called the Idea Garden, which

makes minimalist, on-demand problem-solving support available

to end-user programmers in trouble. Its goal is to encourage end

users to help themselves learn how to overcome programming

difficulties as they encounter them. In this paper, we investigate

whether the Idea Garden approach helps end-user programmers

problem-solve their programs on their own. We ran a statistical

experiment with 123 end-user programmers. The experiment’s

results showed that, even when the Idea Garden was no longer

available, participants with little knowledge of programming who

previously used the Idea Garden were able to produce higher-

quality programs than those who had not used the Idea Garden.

Keywords—Idea Garden; end-user programming; problem

solving; barriers; mashups; quantitative empirical evaluation

I. INTRODUCTION

When doing a programming task, end users face many
barriers such as decomposing design problems [4], using loops
[5], and choosing and coordinating multiple modules [16]. To
help users overcome such barriers on their own without the
need for guided instruction, we have previously presented the
Idea Garden approach [5], an add-on for end-user
programming environments to help end-user programmers in
trouble solve their own problems. The Idea Garden draws from
Simon’s problem-solving theory [21] and Minimalist Learning
Theory [7], and delivers its help in the form of information
snippets that, on demand, deliver problem-solving strategies
and programming domain knowledge in the context of a user’s
own programming tasks. The core philosophy of the Idea
Garden is not to automatically remove barriers for the user, but
to rather enable the user to solve problems on their own with
only minimal, self-guided assistance.

We previously performed an empirical study on Idea
Garden’ ability to help end-user programmers learn problem-
solving strategies and programming knowledge during a
programming task in which learning was not the primary goal
[6]. This previous study revealed that after actively using the
Idea Garden, users were able to demonstrate having learned the
relevant problem-solving strategies and programming
knowledge, as evidenced by their ability to explain the relevant
problem-solving strategies and programming knowledge.

In this paper, we move beyond learning to doing. We
investigate whether end-user programmers who have used the
Idea Garden can put their learning into practice in future
programming tasks even when Idea Garden support is no
longer available, via the following research questions:

RQ 1: Does the Idea Garden help end-user programmers
learn enough to do a programming task on their own without
support?

RQ 2: Are there particular factors that help to determine
end-user programmers’ future success after using the Idea
Garden?

II. BACKGROUND

A. The Idea Garden’s Host: CoScripter

We implemented the Idea Garden prototype within
CoScripter/Vegemite [18], an end-user programming-by-
demonstration environment for web automation in Firefox.
Using CoScripter, a user can demonstrate how to carry out a
task by navigating to web pages, entering data in forms, and
interacting with page elements. CoScripter translates the user’s
actions into a “web macro” script that the user can edit and
execute (Fig. 1a). CoScripter also provides a table (Fig. 1b)
that makes it possible to create mashups that combine data
from multiple web pages. For example, a user can create a
script to mash restaurant location with public transit by loading
a web page of restaurants (Fig. 1c), copying its addresses to the
table (Fig. 1b), then iterating to send each address to another
web page (e.g., Google Maps) to compute travel time via
transit. Thus, CoScripter requires understanding of
programming concepts such as control flow and dataflow.

B. Helping Users Learn to Do with the Idea Garden

The goal of the Idea Garden is to help users form ideas to
overcome programming barriers on their own. As we have
described in previous work ([5, 6]), we leveraged Simon’s
problem-solving theory [21] to guide the design of the Idea
Garden features. According to Simon’s theory, two types of
skills are necessary for solving problems in a specific domain:
domain-specific knowledge and general problem-solving
strategies [21]. The Idea Garden features encourage both of
these skills: they aim to encourage users to adopt new
strategies and pick up new programming knowledge that is
relevant to the problems they are currently trying to solve.

sdf
Typewritten Text
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The Idea Garden features are designed to help users
overcome barriers, such as those identified by Ko et al. [16]
and in our prior work ([3, 4, 5]), by providing programming
knowledge as well as strategies (Table I). The Idea Garden
prototype’s features target three programming barriers: “How-
to-start”, where users had problems figuring out how to start
their scripts; “Composition”, where users had problems
combining multiple web page functions to come up with a
result; and “More-than-once”, where users were unable to use
iteration to repeat actions. The features that we developed were
the Getting started feature, which addresses the “How-to-start”
barrier by providing suggestions on what initial actions to take;
the Second web page feature, which addresses the
“Composition” barrier by suggesting that users can use the
output from one page as input to a second page; and the
Generalize-with-repeat feature, which addresses the “More-
than-once” barrier by suggesting a process and commands that
the user can use to repeat actions. Table I summarizes the
relationships among the features, barriers, strategies, and
programming knowledge. The associated strategies are
described in Table II and the associated programming
knowledge is described in Table III.

Each feature has two versions, a context-sensitive version
and a context-free version. The context-sensitive versions are
available when the Idea Garden detects specific user action
sequences suggesting barriers that the Idea Garden targets. The
context-free versions are always accessible from a “Help”
button at the top of the screen.

III. EXPERIMENT

A. Experiment Design

To answer our research questions, we conducted a
between-subjects experiment with four treatments: one Control
condition and three Idea Garden conditions: Strategy,
Programming, and Combined. We asked non-Control

participants to first work on the learning task, in which
participants completed a programming task in CoScripter with
the Idea Garden present. Then, we asked them to perform a
learning transfer task [2] in which participants completed a
programming task in CoScripter with the Idea Garden not
present. Control participants did not have access to the Idea
Garden during either of their tasks.

Each Idea Garden treatment contains features that address
the same barriers (Table I), but each treatment’s features
address the barriers differently. The Strategy treatment
provides suggestions to apply a problem-solving strategy; the
Programming treatment provides programming knowledge and

Fig. 1. CoScripter’s (a) script area, (b) table area, and (c) browsing area.

TABLE I. EACH FEATURE ADDRESSES A BARRIER WITH STRATEGIES AND

PROGRAMMING KNOWLEDGE.

Feature Barrier

addressed

Strategy Programming

knowledge

Getting

Started

How-to-start Working backwards Data extraction

concept, Finder

design pattern

Second web

page

Composition Divide-and-conquer

(context-sensitive),
Working backward

(context-free)

Dataflow

concept,
Webpage-as-

component

design pattern

Generalize-

with-repeat

More-than-

once

Generalization Iteration concept,

Repeat-copy-

paste design
pattern

TABLE II. PROBLEM-SOLVING STRATEGIES IN IDEA GARDEN FEATURES.

Strategies: information that helps users problem-solve

Working backward Identify the end goal, then figure out the last step

to the goal, second to the last step, and so on until

the givens are reached.

Divide-and-conquer Break a problem into individual pieces, solve

each piece, and join the individual solutions

together.

Generalization Solve one instance of a problem and generalize

the solution to all instances in the problem.

TABLE III. PROGRAMMING KNOWLEDGE INCLUDES PROGRAMMING CONCEPTS

AND MINI DESIGN PATTERNS.

Programming concepts: information that helps users build scripts

Data extraction The concept of selecting a slice of structured data from

a web page and putting it into the table.

Dataflow The concept of flowing data between web page and

table, or between web pages.

Iteration The concept of looping through rows of table to operate

on each row.

Mini Design patterns: common ways that users structure their scripts

Finder Use a web page to find information (as opposed to

computing information)

Webpage-as-

component
Use a web page to compute information (as opposed to

finding information).

Repeat-copy-

paste
For each row in the scratchtable, copy-paste value from

table to web page and submit.

the Combined treatment contains both strategy and
programming knowledge. For example, to address the
Composition barrier, the context-sensitive Second Webpage
feature from the Strategy treatment contained the divide-and-
conquer strategy (Fig. 2) whereas the Programming treatment
contained the webpage-as-component design pattern and the
dataflow concept (Fig. 3). The Second Webpage feature for the
Combined treatment included both strategy information and
programming knowledge (Fig. 4).

Although Simon emphasized the importance of both
domain knowledge—programming knowledge in our
context—and problem-solving strategies, including both parts
as in our Combined treatment has trade-offs. One trade-off is
length versus effectiveness. As suggested by the Attention
Investment model [1], the probability that a user would invest
attention in a feature depends on the perceived cost of the

investment. If a feature is too long, the user may perceive the
cost of processing it as being too high and ignore it. In
addition, too much information might lead to cognitive
overload [22] which reduces the quality of information a user
is able to get out of a feature. Thus, including both strategy and
programming information as in the Combined treatment may
potentially be less effective than just including one piece as in
the Strategy and the Programming treatments.

For our study, we hypothesize that, even when the Idea
Garden is no longer available, participants who previously had
access to the Idea Garden, regardless of treatment, will be able
to write a higher-quality program for a programming task
compared to Control participants who had no previous access
to the Idea Garden.

B. Participants

We recruited undergraduate and graduate students at

Oregon State University from 53 majors (e.g., English,

biology, chemical engineering, human development and

family studies), but excluding computer science and electrical

engineering. We also disqualified any participants who had

taken programming courses beyond an introductory level

required for many majors’ computer literacy requirements as

well as anyone who had used two or more mainstream general

programming languages (such as C/C++, Python, or PHP). We

recruited 127 participants who met these criteria but due to

data collection issues involving four participants, we were left

with usable data for 123 participants.

C. Procedure

We assigned two tasks to each participant. Idea Garden
participants (those in Strategy, Programming, and Combined)
had access to the Idea Garden during the first task whereas
Control participants did not have access to the Idea Garden
during the first task. In the second task, no participants had
access to the Idea Garden. Thus, the first task was a learning
task and the second task was a learning transfer task. Idea
Garden participants were not informed that the Idea Garden
would be unavailable during the second task.

Participants filled out a background questionnaire and then
took a 25-minute, hands-on tutorial about CoScripter
functionality. The tutorial walked participants through how to
create three scripts: one to look up information from a
webpage, one to pull data from a webpage into the table, and
one to push data from the table to a webpage. Following the
tutorial, participants had 6 minutes to practice. We encouraged
the participants to ask questions during this practice period.
Participants then filled out a standard computer self-efficacy
questionnaire [8] regarding CoScripter-related tasks.

Participants then had 25 minutes to work on the first task.
Participants in the Idea Garden treatment had the Idea Garden
enabled. To ensure that every Idea Garden participant was
aware of the Idea Garden features, we interrupted the
participants twelve minutes into the task to draw their attention
to the context-free features. Scripts and tables were
automatically saved every 15 seconds or whenever the user
pressed the “save” button.

Fig. 2. The Strategy treatment’s Second web page feature (context-sensitive).

This feature describes the “divide and conquer” strategy.

Fig. 3. The Programming treatment’s Second web page feature (context-
sensitive). This feature presents the “dataflow” concept and the “webpage-as-

component” pattern.

Fig. 4. The Combined treatment’s Second web page feature (context-

sensitive). This feature describes both the “divide and conquer” strategy as
well as the “dataflow” concept and the “webpage-as-component” pattern.

After the first task, Idea Garden participants filled out an
opinion questionnaire regarding the context-sensitive and
context-free versions of the three features. The questions
displayed a picture of the feature and asked, “This feature
helped me accomplish my task”. A participant could respond
using a five-point Likert scale or could indicate “Never saw”.
Participants could also leave comments about the features. To
be consistent across all conditions, Control participants were
asked to fill out a questionnaire containing questions that did
not relate to our study.

Participants were given 30 minutes to work on the second
task, during which the Idea Garden was not available. After the
second task, participants filled out a post-task self-efficacy
questionnaire. Every participant was provided the opportunity
to leave feedback about each task directly on the task sheet.

D. Tasks

Each participant worked on two tasks assigned in random
order. The apartment task (Apt) asked a participant to create a
script that searched for two bedroom apartments within ten
minutes’ driving time of the Ohio State University campus and
were under $1,300. The Pet task asked a participant to create a
script that searched for cats to adopt in the Corvallis area that
were shorthair breed and from a reputable shelter. In the task
descriptions, we listed the expected outputs of the scripts: a
record of time from each apartment to campus in the table (for
Apartment) or a record of the number of reviews for each
shelter (for Pet) in the table.

The two tasks were intended to be equally difficult
(although as we shall see, they were not). Each task consisted
of three subtasks that required the same knowledge to
accomplish: (1) using a second webpage to compute the
missing information (e.g., using Yelp.com to find the number
of reviews for a pet shelter listed on PetFinder.com), (2) using
the repeat command to iterate over data (e.g., pet shelter
names from PetFinder.com) in the table rows to compute the
missing information, and (3) using the copy and the paste
commands to pull the result of each computation (e.g., number
of reviews for each shelter from Yelp.com) into the table. Both
tasks had three implicit subtasks: (1) import a list of apartment
addresses or shelter names from a webpage into the table; (2)
iterate over the addresses and compute driving time, or iterate
over the shelter names and look up shelter ratings; and (3) copy
each driving time or shelter rating back to the table.

IV. ANALYSIS METHODOLOGY

A. Task Performance

Because we were interested in learning-to-doing, we
evaluated the transfer task’s performance only. Thus, whenever
we mention “task performance”, we mean the second (transfer)
task, in which the Idea Garden was not available.

To evaluate the quality of each participant’s performance in
the second task, we graded the scripts and tables generated
during the task. We graded three scripts: the largest auto-saved
script, the most recent auto-saved script, and latest user-saved
script, along with the accompanying tables. We graded all three
because many users kept starting additional scripts, making it

difficult for us to know which one had finally won out as the
user’s “intended” solution. This resulted in three scores per
participant, from which we used the participant’s highest score.

We graded the scripts and tables against a rubric based on
the three subtasks listed in Section III.D. Each correct answer
was defined precisely, so subjective interpretation was not
needed to grade them. Specifically, each task’s three subtasks
were worth 5 points, for a total of 15 points possible. Within a
subtask, each correct command or table column entry was
worth 1 point. For example, the Apartment task’s subtask 1
needed four commands (extract addresses, go to maps page,
copy address from table, paste into maps page) and one table
column (addresses), each worth 1 point. A participant with two
correct commands and the correct table column would score 3
of 5 for this subtask.

Two researchers split up the scripts and the tables and
graded them independently. Then, one researcher double-
checked the grading. Since the rubrics did not involve
subjective judgment, we did not measure inter-rater agreement.

To compare Idea Garden participants’ performance to that
of Control participants, we used Fisher’s exact test. We
calculated a grand median score for all participants in the
experiment and then assigned participants into the group of
“equal to or above the grand median” or “below the grand
median” and ran Fisher’s exact test on the counts in these
groups. We did not use ANOVA because the scores did not fit
a normal distribution (Kolomgorov-Smirnov D=0.7361,
p<2.2e-16) nor did we use Kruskal-Wallis because of a large
number of ties.

B. Ratings of Idea Garden’s Helpfulness

To assess participant’s overall opinions of the features’
helpfulness, we calculated each participant’s average rating of
the Idea Garden features the participant saw. Using a one-
sample t-test, we compared the resulting average rating of the
Idea Garden’s helpfulness against the expected mean of 3.0,
which was a neutral rating. Two researchers coded whether
participants reported difficulties about each task.

V. RESULTS

A. RQ1: Does the Idea Garden help end users do

programming tasks on their own?

Evidence that the Idea Garden helped participants’ task
performance in the transfer task was not strong. Idea Garden
participants averaged higher scores than Control participants
(Table IV), but the difference was not significant at p < .05.
Also, no one treatment had significantly higher scores than the
others.

However, Idea Garden participants’ reports of the Idea
Garden’s helpfulness from the post-session questionnaire were

TABLE IV. SUMMARY OF PARTICIPANTS’ PERFORMANCE SCORES

Treatment N Mean Median StdDev

Control 28 5.3 3 5.1

Idea Garden (3 treatments) 95 5.9 4 4.8

significantly higher than neutral (one-sample t=3.22,
p=.00176). (Neutral or below is what we might expect if the
approach were not helpful. The one-sample t-test compares a
sample value against an expected population mean). Table V
summarizes.

Given that so many Idea Garden participants found the Idea
Garden features helpful, what might this suggest? One possible
explanation of our results might be that, as in our previous
study [6], some participants who learned something from the
Idea Garden were simply not able to transfer their learning to
overcoming barriers on their own. However, another
possibility, posed by RQ2, is that the Idea Garden may have
been helpful to only particular participants for only particular
situations. We investigate this possibility next by considering
the possible factors of who the Idea Garden may have helped
and when it may have helped them.

B. RQ2: Factors affecting success with the Idea Garden: Who

and When?

Regarding who, it is common for empirical studies of end-
user programmers to include people with “little or no
knowledge” of programming (e.g., [10, 13, 17, 23]), but was
there an important difference between the “little” vs. the “no”
subpopulations?

To investigate, we separated these two subpopulations as
follows. We counted anyone who said they had ever done any
form of “programming” (even a course in high school, or
having worked with HTML) as having little knowledge: 56
participants fell into this category. Otherwise we classified
them as having no knowledge: 67 participants were in this
category. We emphasize that “little” here indeed means very
little: recall from Section III.B, that nobody beyond a bare
minimum of programming background was allowed to
participate in the study.

Although we believed that users in the “no knowledge”
category would do equally well as the “little knowledge”
category because of our experiment’s tutorial, those with little
programming knowledge scored significantly higher than those
with none at all (Fisher’s test on task performance (Little
knowledge: 35 participants scored at or above the grand
median and 21 did not; No knowledge: 28 participants scored
at or above the grand median and 39 did not) p=.0297).

This factor seems particularly important to Idea Garden
evaluation because the Idea Garden targets users most like the
“little” subpopulation—i.e., users who can already do enough
in the programming environment to actually encounter a
barrier and get stuck. To illustrate, the recorded log for one
“little knowledge” participant, P11544 shows that she did not
know to try to incorporate a second webpage—but when the
Idea Garden suggested it, she followed the suggestion and
succeeded. In contrast, a “no knowledge” participant, P22066,
also saw the suggestion—but instead of trying to use two pages
together, he switched to a different webpage altogether, which
was not useful to his problem.

Regarding when (i.e., situation), a possibility that arose was
a difference in difficulty between the Pet and the Apartment
tasks. Participants seemed to have more trouble with the Pet
task than with the Apartment task. For example, participants
across all treatments scored an average of 2.1 points lower on
Pet than on Apartment, and a significantly higher portion of
participants commented on difficulties with the Pet task than
did with the Apartment task (Fisher's test on comments
regarding task difficulties (Pet: 25 participants described
difficulties and 98 did not; Apartment: 7 described difficulties
and 116 did not), p=.001). Task difficulty is a relevant issue
here, because the Idea Garden is called upon only when a task
is hard enough that a user runs into difficulties. One example
of such difficulties with Pet came from Participant P12344:

P12344: “Couldn't find ‘# of reviews’ for the shelter, then
realized too late that I could find the info. on another web
page.”

Thus, taking the “who” and “when” factors into account,
we used Fisher’s exact test to compare the number of
participants who scored above the grand median to those who
scored below, separating by “little” vs. “no” subpopulation and
separating the difficult (Pet) task from the easier (Apartment)
task. For the targeted situation as per the discussion above—
those with little knowledge of programming working in the
fairly difficult Pet task—significantly more Idea Garden
participants than Control participants scored above the grand
median (Fisher’s (1, 5; 15, 6), p=.0265), as illustrated by Table
VI. Participant means in this category echo this summary, with

TABLE V. AVERAGE PARTICIPANT RATINGS OF THE HELPFULNESS OF THE 6

IDEA GARDEN FEATURES. (ON 94 INSTEAD OF 95 PARTICIPANTS BECAUSE ONE

IDEA GARDEN PARTICIPANT DID NOT RATE ANY FEATURES.) IN THIS PAPER,
SIGNIFICANT VALUES ARE HIGHLIGHTED. ***: P<.001, **: P<.01, *: P<.05.

Average response to “This

feature helped me

accomplish my task”

(5-point Likert)

Number of Participants

>3.0
57 (60.6%)
ratings averaged agreement

=3.0
13 (13.8%)

ratings averaged neutral

<3.0
24 (22.5%)
ratings averaged disagreement

Sample mean = 3.22

One-sample t-statistic = 3.22, DF = 93, p-value =.00176***

TABLE VI. SCORES AT OR ABOVE (COLORED SLICES) OR BELOW (WHITE

SLICES) THE GRAND MEDIAN FOR IDEA GARDEN VS. CONTROL, SHOWN FOR ALL

WHO/WHEN COMBINATIONS. (IDEA GARDEN HAS MORE PARTICIPANTS

BECAUSE IT HAD THREE TREATMENTS.) IDEA GARDEN PARTICIPANTS SCORED

SIGNIFICANTLY BETTER THAN CONTROL PARTICIPANTS IN THE IDEA GARDEN

TARGET SITUATION (THICK BORDER).

 Task Little knowledge No knowledge

Control Idea Garden Control Idea Garden

 Pet

A1 A2 B1 B2

Fisher’s exact test p = .0265* not significant

 Apt

C1 C2 D1 D2

not significant not significant

Idea Garden participants averaging a score of 6.08 vs. the
Control participants’ mean of 3.51. Participants’ ratings
confirmed this result: as Table VII shows, participants in the
target situation rated the helpfulness of the Idea Garden
features significantly higher than the expected population mean
of 3.0 (one-sample t=2.46, df=20, p=.0231). In essence, these
results say that the Idea Garden helped participants with little
knowledge learn enough to do a programming task on their
own, without support, provided that the task was sufficiently
difficult.

C. RQ2: Who alone? When alone?

Finally, we consider whether combining “who” and “when”
as above obscures one of the “who” or “when” factors alone
being responsible for the significant difference in performance
in Idea Garden Participants versus Control Participants.

The result was that neither factor alone explained the
results. Table VIII shows suggestive differences based on
subpopulation alone, and Table IX shows suggestive
differences based on task difficulty alone, but these differences

did not rise to significance.

The lack of significance for either factor alone could be due
to the combination of the ceiling and floor effects in our data.
Specifically, the Apartment task showed a “ceiling effect” in
which everyone did pretty well, which diluted differences in
the more difficult Pet task when the task data were combined.
Likewise, no-knowledge participants’ floor effects (i.e., most
gained little from the Idea Garden) diluted the differences the
other participants showed. Investigating this possibility by
isolating the factors for separate analysis did not resolve the
question, because it left sample sizes so small that statistical
differences would be unlikely. Thus, answering the impact of
each factor alone will require follow-up empirical
investigation.

VI. OUR RESULTS IN CONTEXT

 Most empirical studies of systems supporting end-user
programmers have not considered the difference between “little
knowledge” and “no knowledge”. In fact, when Dorn’s study
of a case-based informal learning system for learning Adobe
Photoshop scripting did not significantly increase participants’
performance, Dorn hypothesized that a reason may have been
the variety of his participants’ prior programming experience
[10]. Our results provide evidence to support Dorn’s
hypothesis.

Another approach with some similarities to the Idea Garden
is Wrangler’s proactive suggestions that recommend actions
for users to take [14]. Guo et al. investigated Wrangler’s
suggestions in the context of a data-transformation tool but
found that these suggestions did not improve task performance
[14]. The Wrangler participants, unlike ours, were computer
science students, and they generally ignored the suggestions.
This result seems consistent with our result about the difficulty
of the task: suggestions seem unlikely to make much difference
when the participant does not need them.

Like the Idea Garden, the stencils-based tutorials
investigated by Harms et al. aimed to facilitate learning of a UI
in order to transfer the skills to a new context [15], but unlike
the Idea Garden, that approach used scripted tutorials. With
this approach, children were able to ask for step-by-step
guidance when using a visual progamming system. Results
showed that children using stencils completed more transfer
tasks. This result is consistent with our transfer task results.

In the context of these other studies, our statistical results
are among the strongest that we have seen on learning-to-doing
by end-user programmers. Learning-to-doing takes time, and
producing significant effects after only a 25-minute learning
task demands a very effective approach. For example, Dorn’s
results were able to support only learning, not learning-to-
doing [10]. Harms et al. [15] succeeded at showing learning-to-
doing, but in that study the learning support tools were still
available during the transfer task, so additional learning was
allowed to take place. The learning support tools were also
present in the case of Dorn’s study. In contrast, in our study,
we isolated learning transfer from learning, by requiring Idea
Garden participants to demonstrate learning transfer after the
Idea Garden was no longer available to them.

TABLE VII. PARTICIPANT RATINGS OF IDEA GARDEN FEATURE

HELPFULNESS FOR PARTICIPANTS WITH LITTLE KNOWLEDGE, IN THE PET

TASK.

Response to “This feature

 helped me accomplish my task”

Number of Participants

>3.0 16

= 3.0 0

<3.0 5

Sample mean = 3.29
One-sample t-statistic = 2.46, DF = 20, p =.0231*

TABLE VIII. PARTICIPANTS WHO SCORED AT OR ABOVE (COLORED SLICES)

THE GRAND MEDIAN SEPARATED BY LITTLE OR NO KNOWLEDGE. IN BOTH

SUBPOPULATIONS, IDEA GARDEN PARTICIPANTS SCORED SOMEWHAT

HIGHER THAN CONTROL PARTICIPANTS, BUT WHEN TASK WAS NOT TAKEN

INTO ACCOUNT, THE DIFFERENCES DID NOT RISE TO SIGNIFICANCE.

Little Knowledge No Knowledge

Control Idea Garden Control Idea Garden

Not significant Not significant

TABLE IX. PARTICIPANTS WHO SCORED AT OR ABOVE (COLORED SLICES)

THE GRAND MEDIAN SEPARATED BY TASK. IN THE MORE DIFFICULT PET

TASK, IDEA GARDEN PARTICIPANTS SCORED SOMEWHAT HIGHER THAN

CONTROL PARTICIPANTS, AND IN THE EASIER APARTMENT TASK, THEY

SCORED ALMOST IDENTICALLY. WHEN SUBPOPULATION WAS NOT TAKEN

INTO ACCOUNT, THE DIFFERENCES DID NOT RISE TO SIGNIFICANCE.

Pet Apartment

Control Idea Garden Control Idea Garden

Not significant Not significant

VII. OPEN QUESTIONS FOR THE IDEA GARDEN APPROACH

Our results raise a number of open questions regarding the
Idea Garden approach.

One question that arises is whether there is a “best” Idea
Garden variant. Although no treatment was significantly better
than any other, the Programming treatment trended better for
the little-knowledge participants doing the difficult task. These
participants scored on average 4.56 points higher than Control
participants (Table X), and had the largest percentage of
participants who scored at or above the median (83.3%) (Table
XI). Also, all of these Programming participants rated the Idea
Garden as helpful (Table XII). These trends lead to this open
question:

Open Question 1: Is the Programming variant of the Idea
Garden more effective than the others? If so, why?

If Programming is the best variant, one attribute that may
account for it may be that it was concrete enough for
participants to act upon. The Programming content focused on
programming concepts and mini design patterns in particularly
concrete and actionable ways. For example, Programming’s
Generalize-with-repeat feature, triggered by the participant’s
own code, explained iteration in the context of that code.
Participants’ favorable comments afterward suggest that they
knew how this content applied to their current barrier:

P13411: “It was nice that [the Idea Garden] recognized
when I would want to use the repeat command”.

P23344: “This was helpful because getting the script to
work for all rows and columns was tricky for me at first”.

The Strategy features, on the other hand, were a little less
situated, providing more general problem-solving guidance.
Strategy content helped a number of participants (Table XII),
but others could not figure out how to apply the strategy
guidance:

P21055: “[It was] not clear enough on how to work
backwards.”

P23255: “It[’]s an Ok suggestion, but it doesn't say how to
‘join the solutions together’ .”

Idea Garden content length may also be implicated. The
Programming and Strategy contents were shorter than the
Combined variant’s content, and the Attention Investment
model [1] predicts that users may therefore find the Combined
variant less cost-effective. This prediction is consistent with the
Combined variant’s lower ratings than the other two variants in
Table XII.

 However, at odds with shorter length is the notion of
comprehensiveness. This trait was one of the goals of the
Combined variant—to provide both relevant problem-solving
guidance and relevant programming knowledge all in one
place. Because comprehensiveness of information has been
positively associated with users’ trust in a system [9], a
decision to reduce comprehensiveness in favor of brevity
should not be made lightly.

Further, the issue of trust is not a matter of
comprehensiveness alone [9]. People form impressions of trust
quickly, and there are many factors involved. Further, a lack
of trust in a system has been linked to disuse of the system.
Thus, the issue of end users’ trust in a system’s advice seems
important:

Open Question 2: What factors influence an end user’s
trust in advice offered by systems like the Idea Garden, and
how do these factors influence ways users process and act
upon the offered advice?

Comprehensiveness raises another issue as well. Research
has shown that, in the aggregate, males and females process
information differently, with males preferring to selectively
follow and act upon salient cues and females preferring to
process information comprehensively before acting upon it
[19]. This phenomenon may in part explain why male and
female end-user programmers make use of different features
when programming and debugging [3, 11]. Our data are
consistent with these results, with females trending better with
the Combined treatment than with other treatments, but males
trending better with the Programming treatment (Table XIII).
This leads to our third open question:

Open Question 3: How can we design Idea Garden features
to support both the comprehensive information processing style
that is statistically associated with females and the selective

TABLE X. SUMMARY STATISTIC FOR IDEA GARDEN PARTICIPANTS WITH

LITTLE KNOWLEDGE WHO DID THE PET TASK.

Treatment N Mean Median StdDev

Control 6 3.51 2.25 4.74

Strategy 8 5.23 5.13 4.58

Programming 6 8.06 7.9 4.17

Combined 7 5.34 4 4.04

TABLE XI. TASK PERFORMANCE OF PARTICIPANTS WITH LITTLE KNOWLEDGE

WHO DID THE PET TASK. PROGRAMMING TREATMENT HAD THE HIGHEST

PERCENTAGE OF PARTICIPANTS SCORING AT OR ABOVE THE MEDIAN.

Treatment < grand median >= grand median

Control 5 1 (16.7%)

Strategy 3 5 (62.5%)

Programming 1 5 (83.3%)

Combined 2 5 (71.4%)

TABLE XII. SUBJECTIVE RATINGS OF PARTICIPANTS WITH LITTLE KNOWLEDGE

WHO DID THE PET TASK. THE PROGRAMMING TREATMENT HAD 100% OF ITS

PARTICIPANTS FINDING THE IDEA GARDEN HELPFUL.

Treatment Not Helpful Neutral Helpful

Strategy 2 0 6 (75%)

Programming 0 0 6 (100%)

Combined 3 0 4 (57%)

TABLE XIII. TASK PERFORMANCE OF ALL MALES AND FEMALES BROKEN

DOWN BY TREATMENT. FEMALES PERFORMED BEST WITH COMBINED

WHEREAS MALES PERFORMED BEST WITH PROGRAMMING.

Treatment Females Males

 < grand
median

>= grand
median

< grand
median

>= grand
median

Strategy 13 8 (38%) 3 5 (63%)

Programming 9 8 (47%) 6 11 (65%)

Combined 8 13 (62%) 5 6 (55%)

information processing statistically associated with males
[20]?

We plan to investigate these and similar questions to better
determine how to improve the effectiveness of Idea Gardens on
busy end users when they encounter barriers to getting their
tasks done.

VIII. CONCLUSION

In this paper, we have presented a learning-to-doing
(learning transfer) study of the Idea Garden’s ability to help
end-user programmers help themselves.

The results were that the Idea Garden helped end users with
little knowledge of programming write significantly higher-
quality programs in the difficult programming task, as
compared to participants who had not previously used the Idea
Garden.

This finding is somewhat remarkable in that learning
transfer occurred after only 25 minutes exposure to Idea
Garden support. In addition, this result is the first learning
transfer investigation of end-user programming that we have
been able to locate in which participants did not have access to
the learning supports during the transfer task itself. Thus, it
showed both that participants retained the learned information
and that they were able to apply it to new contexts later without
help.

Finally, this study is also the first we have seen in end-user
programming that investigates the difference between end
users with little knowledge of programming (e.g., prior
experience with html or with statistical scripts) and those with
none at all. Prior studies have combined these two
subpopulations, and our results suggest that, at least in some
situations, the distinction is important.

In summary, the Idea Garden helped make a little
programming knowledge go a long way in helping these end-
user programmers in trouble to help themselves. As “active
users” with no particular motivation to learn programming,
these end users were able to synthesize the knowledge
presented by Idea Garden and apply that knowledge without
guidance or assistance. Thus, with the Idea Garden’s help, they
not only learned—they learned to do.

ACKNOWLEDGMENTS

We thank our study participants and Romina Rodriguez for
her assistance with the study. This work was supported in part
by NSF grants 0917366 and 1240786.

REFERENCES

[1] A. Blackwell, First steps in programming: A rationale for attention
investment models, IEEE HCC, pp. 2–10, 2002.

[2] J. Bransford, A. Brown, and R. Cocking, How People Learn: Brain,
Mind, Experience, and School, Expanded ed., National Academy Press,
2000.

[3] J. Cao, K. Rector, T. Park, S. D, Fleming, M. Burnett, and S.
Wiedenbeck, A debugging perspective on end-user mashup
programming, IEEE VL/HCC, pp. 149–156, 2010.

[4] J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, and V. Grigoreanu, End-
user mashup programming: Through the design lens, ACM CHI, pp.
1009-1018, 2010.

[5] J. Cao, S. D, Fleming, and M. Burnett, An exploration of design
opportunities for ‘gardening’ end-user programmers’ ideas, IEEE
VL/HCC, pp. 35-42, 2011.

[6] J. Cao, I. Kwan, R. White, S. D. Fleming, M. Burnett, and C. Scaffidi,
From barriers to learning in the Idea Garden: An empirical study, IEEE
VL/HCC, pp. 59-66, 2012.

[7] J. Carroll. Minimalism Beyond the Nurnberg Funnel. MIT Press, 1998.

[8] D. Compeau and C. Higgins, Computer self-efficacy: Development of a
measure and initial test, MIS Quarterly 19(2), pp. 189–211, May 1995.

[9] C. L. Corritore, B., Kracher, B., and S. Wiedenbeck, On-line trust:
Concepts, evolving themes, a model. International Journal of Human-
Computer Studies, 58(6), pp. 737 – 758, 2003.

[10] B. Dorn, ScriptABLE: Supporting informal learning with cases, ICER,
pp. 69-76, 2011.

[11] V. Grigoreanu, J. Brundage, E. Bahna, M. Burnett, P. ElRif, and J.
Snover. Males’ and females’ script debugging strategies. Second
International Symposium on End-User Development, Siegen, Germany,
March 2-4, 2009.

[12] V. Grigoreanu, M. Burnett, and G. Robertson. A strategy-centric
approach to the design of end-user debugging tools, ACM CHI, pp. 713-
722, 2010.

[13] P. Gross, J. Yang, and C. Kelleher, Dinah: An interface to assist non-
programmers with selecting program code causing graphical output,
ACM CHI, pp. 3397-3400, 2011.

[14] P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer. Proactive wrangling:
Mixed-initiative end-user programming of data transformation scripts.
ACM UIST, pp. 65-74, 2011.

[15] K. J. Harms, C. H. Kerr, and C. L. Kelleher, Improving learning transfer
from stencils-based tutorials, ACM IDC, pp. 157-160, 2011.

[16] A. Ko, B. Myers, and H. Aung, Six learning barriers in end-user
programming systems, IEEE VL/HCC, pp. 199–206, 2004.

[17] S. Kuttal, A. Sarma, and G. Rothermel, History repeats itself more easily
when you log it: Versioning for mashups, IEEE VL/HCC, pp. 69–72,
2011.

[18] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. Lau, End-user
programming of mashups with Vegemite, ACM IUI, pp. 97–106, 2009.

[19] J. Myers-Levy, Gender differences in information processing: A
selectivity interpretation, in Cognitive and Affective Responses to
Advertising, P. Cafferata and A. Tybout (eds.) Lexington Books, 1989.

[20] O’Donnell, E. and Johnson, E. N. Gender effects on processing effort
during analytical procedures. International Journal of Auditing 5, pp.91-
105, 2001.

[21] H. Simon, Problem solving and education, in Problem Solving and
Education: Issues in Teaching and Research, D. Tuma and F. Reif
(eds.) Lawrence Erlbaum, 1980.

[22] J. Sweller, Cognitive load during problem solving: Effects on learning, in
Cognitive Science 12, pp. 257-285, 1988.

[23] N. Zang and M. B. Rosson, What’s in a mashup? And why? Studying the
perceptions of web-active end users, IEEE VL/HCC, pp. 31-38, 2009.

