
Developing an Alloy Framework akin to OO Frameworks

L. K. Dillon, R. E. K. Stirewalt, B. Sarna-Starosta and S. D. Fleming
Department of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824, USA

E-mail: {ldillon,stire,bss,sdf}@msu.edu

Abstract

Object-oriented (OO) frameworks are known to provide tremen-
dous benefits with respect to software reuse. Developers construct
new applications through framework instantiation, which, in gen-
eral, does not require understanding the implementation of the
framework classes and methods. In prior work, we developed an
OO middleware framework, called SzumoFrame, which supports
the development and long-term maintenance of multi-threaded but
strictly exclusive systems. While using Alloy to analyze models
of programs that instantiate SzumoFrame, we discovered how to
construct a reusable Alloy specification of SzumoFrame that can
be customized with application-specific detail in a manner that is
akin to the instantiation of an OO framework. The strong symme-
try between this Alloy framework and SzumoFrame simplifies the
construction of specifications and allows application developers
to analyze candidate designs before committing to code.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques—
modules and interfaces, object-oriented design methods; D.2.4
[Software Engineering]: Software/Program Verification—model
checking, programming by contract; D.2.13 [Software Engineer-
ing]: Reusable Software—reuse models; D.3.3 [Programming
Languages]: Language Constructs and Features—Alloy

General Terms

Design, Languages, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Alloy Workshop ’06 Portland, OR USA
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Keywords

Alloy, deadlock detection, design by contract, object-oriented
frameworks, synchronization contracts

1. Introduction

Object-oriented (OO) frameworks provide tremendous bene-
fits to software developers with respect to reuse. Algorithms and
protocols that are reusable over many different applications can
be abstracted and isolated into framework classes and framework
methods. Doing so eases the construction of new applications,
which only need to instantiate the framework. Instantiation in-
volves filling in application-specific details, but generally does not
require deep knowledge of how the reusable algorithm or protocol
is implemented. This paper describes recent work on trying to ap-
ply ideas from OO frameworks to Alloy to simplify the generation
and analysis of Alloy specifications of programs that are instances
of an OO framework.

The work was performed in the context of a project to support
component-based development of a class of multi-threaded OO
applications. Termed strictly exclusive systems, this class com-
prises applications in which threads compete for exclusive access
to dynamically changing sets of shared resources. Examples in-
clude extensible web servers and interactive applications with graph-
ical user interfaces. This narrowing of focus was motivated by the
observation that many applications fit well in this category and
that, in such cases, we can exploit a clean, compositional model
of synchronization. Called Szumo1, this model supports develop-
ment and long-term maintenance of strictly exclusive systems that
are robust under change [2, 3].

Szumo embodies the principles of design-by-contract, as artic-
ulated by Meyer [16]. It associates each thread with a synchroniza-
tion contract that governs how the thread must synchronize with
other threads. At run time, schedules for threads are derived by ne-
gotiating contracts on behalf of the threads. A thread is scheduled
only once the thread’s contract has been successfully negotiated.
The contracts themselves are formed by conjoining module-level
synchronization constraints, which a programmer declares in the
modules’ interfaces.
1for the SynchroniZation Units Model; an early version of this
model was called the “universe model” [2]

Generative

Tool
Programming

Szumo design

C++ Class

(functional concern)

Synchronization
Specification

(sync. concern)

Executable Image
(instantiates Szumo-

Frame)

Unit-Instance

Alloy

Analyzer

Confirmation /

SzumoFrame Design-specific
Unit-Class
Diagram

Synchronization-
State Diagram Diagram

Deadlock Trace

 Alloy Specification Alloy Specification

Figure 1. Overview of development approach

We recently implemented Szumo as an OO middleware frame-
work, called SzumoFrame, and we are currently investigating the
use of SzumoFrame for developing strictly exclusive systems. Fig-
ure 1 provides an overview of the approach, which affords a high
degree of reuse through separation of functional and synchroniza-
tion concerns, and provides strong correctness guarantees. The
development starts with a Szumo design, which is used as a refer-
ence both prior to the implementation, to check for potential con-
currency errors (e.g., race conditions or deadlock), and also during
the implementation.

Our implementation strategy (Fig. 1, right side) exploits design
transparency to support a clean separation of functional and syn-
chronization concerns. An application developer first programs
and debugs the functional logic (C++ classes), writing code that
optimistically2 assumes an executing thread has acquired exclu-
sive access to any shared resources. She then separately programs
the synchronization logic by writing declarative synchronization
specifications and weaves the logic generated from these specifi-
cations with the functional logic using a generative-programming
tool. The executable image generated by this tool instantiates Szu-
moFrame. In the figure, programming tasks are depicted using
dashed arrows; whereas data flows into and out of automated tools
are depicted using solid arrows. A declarative aspect-like notation
is used for programming synchronization specifications. This no-
tation provides high-level primitives that enable transparent speci-
fications of Szumo designs. By virtue of this transparency, which
must be discharged by checking that the C++ classes and synchro-
nization specifications conform to the Szumo design, the appli-
cation developer may focus her verification efforts on the Szumo
design rather than the implementation.

When verifying Szumo designs, one important property to check
is freedom from deadlock. The Szumo negotiation algorithm pro-
vides strong exclusion guarantees, while avoiding a large class
of deadlocks. However, not all deadlocks can be avoided. We
wanted to use the Alloy analyzer to check for potential deadlocks
in Szumo designs; however, for an Alloy specification to accu-
rately model the behavior of a Szumo design, it must include lots
of detail regarding the semantics of negotiation. This is in sharp

2i.e., without worrying about synchronization,

contrast with the implementation, which encapsulates the details
of negotiation within the framework classes of SzumoFrame, thus
simplifying the programming task.

This paper describes how we built an Alloy specification of
SzumoFrame that can be customized with Szumo-design specific
details to produce an Alloy specification of that design in a man-
ner similar to how one would customize SzumoFrame (Fig. 1,
left side). We refer to the Alloy specification of SzumoFrame as
an Alloy framework. Our Alloy framework reifies the framework
classes and methods of SzumoFrame as Alloy entities (atoms, re-
lations, signatures, etc.). Just as SzumoFrame classes implement
the details of dynamic contract negotiation, the analogous Alloy
entities specify an abstract model of this negotiation. This strong
symmetry simplifies the construction of models of Szumo designs
and allows application developers to analyze various candidate de-
signs before committing to code.

In the remainder of the paper, we provide necessary background
on Szumo and SzumoFrame (Sec. 2). We then describe the Alloy
entities that the application developer needs to know about in order
to instantiate our Alloy specification of SzumoFrame (Sec. 3) and
the process by which a developer instantiates it (Sec. 4). Finally,
we provide some discussion (Sec. 5) and outline some related work
(Sec. 6).

2. Background

We formulated Szumo to support development of strictly ex-
clusive systems, for which a key problem is to synchronize threads
that operate over shared data [2, 19]. Without proper synchroniza-
tion, concurrent access to shared objects can lead to race condi-
tions, and incorrect synchronization logic can lead to starvation
or deadlock. Szumo is a language-independent model of synchro-
nization contracts, which we integrated into an extension of the
Eiffel language [1, 19] and, more recently, implemented in C++
as a framework, called SzumoFrame. This section supplies back-
ground on Szumo and SzumoFrame.

2.1 Szumo design concepts

Philosopher Fork

void think()

void eat()

left

right

sync_constr =

syncState:
{ thinking, eating }

 "syncState = eating ==> left /\ right"

<<rootUnit>> <<unit>>

<<unit>>

(a)

Philosopher

thinking eating

before eat()

after eat()

(b)

thinking
syncState =

thinking
syncState =

thinking
syncState =

rightleft

left

right

p1:Philosopher

p2:Philosopher

f2:Forkf0:Fork

f1:Fork

left

right

p0:Philosopher

(c)

Figure 2. Unit-class diagram (a),
synchronization-state diagram (b), and
unit-instance diagram (c)

A fundamental design decision involves the granularity of shar-
ing among threads. In Szumo, designers choose the granularity of
sharing by deploying program objects into synchronization units,
which are “object-like” containers of one or more program ob-
jects. When a program object is created, it is deployed to exactly
one synchronization unit, where it remains throughout its lifetime.
Threads are permitted exclusive access to objects at the level of
synchronization units—that is, a thread that holds exclusive access
to a synchronization unit holds exclusive access to all program ob-
jects contained within this unit. Because sharing occurs only at the
level of units, concurrency analyses need not consider how units
are composed of program objects.

Synchronization units are identified with instances of types,
called unit classes. In addition to standard operations, a unit class
may declare

• Unit variables

• A finite type together with a special attribute of this type,
named syncState

• Synchronization constraints

A unit variable is a reference to another unit. As such, it indicates
a direct client-supplier collaboration—the unit containing the vari-
able acts as the client and the unit referenced by the variable acts
as a direct supplier. The values that may be assigned to a unit’s
syncState attribute represent abstract synchronization states.
We refer to a “unit’s synchronization state” or to a unit as be-
ing “in a synchronization state” to indicate the value of the unit’s
syncState attribute. A synchronization constraint stipulates the
synchronization states in which a client requires exclusive access
to one or more direct suppliers. The synchronization constraint
is said to be triggered when the client is in these states and to be
cancelled when it is not. When a constraint is triggered the client
is said to entail the stipulated direct suppliers.

To illustrate these ideas, Figure 2 shows a Szumo design for a
solution to the classic dining philosophers problem. A unit-class

diagram (Fig. 2 (a)) documents unit classes and relationships be-
tween them. We extend the UML class-diagram notation for this
purpose using UML’s built-in extension mechanisms. Stereotypes
〈〈unit〉〉 and 〈〈rootUnit〉〉 designate unit classes; the former
indicates a unit class whose instances can be shared among mul-
tiple threads, and the latter a unit class whose instances serve as
non-shared process “roots”. In traditional design terms, sharable
units correspond to passive objects, and root units correspond to
active objects. We show the types of syncState attributes as
sets and unit variables as directed associations. The synchroniza-
tion constraints for a client class are given by the values for the
“sync constr” tags associated with that class. A synchronization
constraint is formed using the entailment operator,“==>”; the first
argument specifies the synchronization states that trigger the con-
straint and the second specifies a set of unit variables; the suppli-
ers referenced by the unit variables in this set are entailed when the
constraint is triggered. Thus, philosopher units execute in different
threads and may perform operations on shared fork units which are
bound to their left and right unit variables. The synchroniza-
tion state of a philosopher is either thinking or eating. The
synchronization constraint stipulates that, when in the eating
state, the philosopher entails the fork units referenced by its left
and right variables. This constraint is triggered when the philoso-
pher’s synchronization state is eating and cancelled when it is
thinking; thus, a philosopher entails its left and right forks
when it is eating. As no constraint is triggered in synchro-
nization state thinking, a philosopher does not entail any forks
when it is thinking. In contrast, fork units do not have synchro-
nization states or synchronization constraints.

The synchronization-state diagram (Fig. 2 (b)) documents how
operations that a unit may perform during execution affect its syn-
chronization state. Synchronization states, shown as labeled roun-
tangles in a unit’s synchronization-state diagram, correspond to
the synchronization states declared in its unit-class diagram. An
arrow with no source state marks a unit’s initial synchronization
state, i.e., the synchronization state of a unit when the unit is first
created. A unit changes its synchronization state as a result of
events that occur during execution. Transitions, shown in the unit’s
synchronization-state diagram as arrows from a source state to a
target state, specify the events, shown as labels on transitions, that
cause a unit to change its synchronization state. A unit takes a tran-
sition when it is in the transition’s source state and the event spec-
ified by the transition’s label occurs; taking the transition leaves
the unit in the transition’s target state. Events are either internal
to the unit or joint with one of the unit’s direct suppliers. A label
starting with either before or after and containing a method
call is a joint event; before specifies that the event occurs im-
mediately before a call on the method and after that the event
occurs immediately after. All other events are internal to a unit. In
our running example, a philosopher supplies its own eat() op-
eration; the transitions are therefore joint between a philosopher
and itself. When a philosopher is in state thinking, it takes the
transition from thinking to eating immediately before a call
to eat(); it then takes the transition back to thinking imme-
diately after returning from the call. Together, the class diagram
and the state diagram document that a philosopher entails its forks
while executing an eat operation. As forks in this example have
no synchronization states, the Fork class has no synchronization-
state diagram. These intuitive definitions of events suffice for un-
derstanding the intent of a Szumo design. The true “meanings”
of events actually depends on the synchronization specifications

(Fig. 1) that the developer creates to use in implementing the de-
sign.

Unit-class and synchronization-state diagrams are reusable over
many different designs; whereas a unit-instance diagram (Fig. 2
(c)) depicts a particular configuration of synchronization units rep-
resenting an initial state of a design. Although a design needs
a minimum of five philosophers and five forks to exhibit behav-
iors in which multiple philosophers may be eating concurrently,
for simplicity, we show a design with only three philosophers and
three forks. A useful analysis strategy is to start with a simple unit-
instance diagram, such as shown here, and analyze it first, before
worrying about checking designs with more complex unit-instance
diagrams.

2.2 Overview of the negotiation semantics

In a Szumo design, the set of units that a thread needs to ac-
cess can be inferred at run time. For instance, from the design
artifacts in Figure 2, we infer that a thread needs only its root
unit, except when executing the root’s eat() operation, in which
case it needs the Fork units referenced by the root’s left and
right unit variables. More generally, a thread needs all units
in the smallest set of units that contains the units with activations
on the thread’s run-time stack and that is closed under the entails
relation. The conjunction of the synchronization constraints as-
sociated with the units that a thread needs defines the thread’s
synchronization contract. When a thread executes an operation
that changes the synchronization state of a needed unit or modi-
fies the value of a unit variable in a needed unit, the units that the
thread needs may change. A change in the needed units, in turn,
may cause the thread’s synchronization contract to change. Szu-
moFrame automates the negotiation of a thread’s synchronization
contract so as to satisfy the semantics below.

The semantics of negotiation are defined using a concept, called
a realm. At run-time, each thread is associated with a realm, which
is a set of synchronization units. A thread is allowed to access all
and only units in its realm. Mutual exclusion is then guaranteed by
requiring the realms of different threads to be disjoint. We say a
thread holds a unit when the unit is in the thread’s realm. Changes
in a thread’s contract may result in it holding units that it no longer
needs or needing units that it does not hold. When a thread’s realm
contains exactly the set of needed units, we say that the realm is
complete; otherwise it is damaged. The semantics of Szumo dic-
tate that a thread with a damaged realm must block until the realm
is repaired (i.e., made complete). It may not be possible to imme-
diately repair a damaged realm because some needed units may be
held in the realms of other threads. A unit may be migrated into a
realm only when it is not held by another realm or it is no longer
needed by the thread that holds it. Finally, the migration of units
into a damaged realm is atomic—all needed units not already held
by the thread are migrated into the realm simultaneously.

From a user’s perspective, a thread executes within a unit in
its (complete) realm until it performs an operation that changes its
contract, and thereby damages the realm. Consider, for instance,
the dining philosophers configuration depicted in Figure 3 (a). The
initial realm of each thread contains only the thread’s root unit, a
philosopher unit, each in its thinking state. The entailment of
p0, p1 and p2 is the empty set and so these initial realms are com-
plete. We depict complete realms as shaded rectangles surround-
ing the contained units. Before invoking the eat() operation,
p0’s state changes to eating, thereby damaging the realm. Thus,

left

leftright

left right

p0:Philosopher p1:Philosopher

p2:Philosopher

f2:Fork

right
f1:Fork

syncState =
 thinking

syncState =
 thinking

syncState =
 thinking

f0:Fork

left

leftright

left right

p0:Philosopher p1:Philosopher

p2:Philosopher

f2:Fork

right
f1:Fork

syncState =

syncState =

 thinking

 thinking

syncState =
 eating

f0:Fork

(a) (b)

left

leftright

left right

p0:Philosopher p1:Philosopher

p2:Philosopher

f2:Fork

right
f1:Fork

syncState =
 eating

syncState =
 eating

syncState =
 thinking

f0:Fork

left

leftright

left right

p0:Philosopher p1:Philosopher

p2:Philosopher

f2:Fork

right
f1:Fork

syncState =

syncState =

 thinking

 thinking

syncState =
 eating

f0:Fork

(c) (d)

Figure 3. Snapshots of concurrency-relevant
abstraction of a system execution

before the thread rooted in p0 invokes eat(), its realm must ex-
pand to include the newly entailed forks f0 and f1. As neither
fork is held by other threads, they are atomically migrated into the
realm, repairing the realm and producing the snapshot depicted in
Figure 3(b). If at this point the thread executing in p1 also changes
its state to eating, the fork units f1 and f2 are added to p1’s
entailment. Because f1 is held by the thread rooted in p0, the
realm containing p1 cannot be repaired, and so the thread blocks.
Although f2 is not held by any thread, it is not migrated into the
realm executing p1 at this point, because the semantics dictate
that the units needed to repair the realm must be migrated into the
realm atomically. The thread blocks, therefore, while holding just
the root unit p1. In Figure 3(c), the damaged realm is denoted by
the dashed line. After the thread in p0 returns from eat(), p0’s
synchronization state changes to thinking in which the unit no
longer entails f0 and f1. This change affects the realms of both
threads: the two fork units are released from the realm containing
p0, and the realm of thread in p1 expands to include f1 and f2
(Fig. 3 (d)).

In this simple example, it is easy to see that the design does
not countenance deadlock. A philosopher can block when it takes
the transition into its eating state, but not when it takes the re-
verse transition. Because a philosopher acquires the forks that it
needs atomically, it either acquires both forks or neither fork. If
it acquires both forks it does not block. Therefore, a philosopher
blocks only if it is in its eating state and it does not hold any
forks. But if none of the philosophers holds any forks, one of
them can complete its realm. Hence, all philosophers cannot pos-
sibly be blocked. Moreover, the Szumo negotiation algorithm is
also fair, guaranteeing that no philosopher that takes a transition
into its eating state blocks permanently. In general, however, a
Szumo design can countenance deadlock. Suppose, for example,
that we designed the philosopher units using the unit-class and

synchronization-state diagrams shown in Figure 4 instead of those
in Figure 2. A philosopher in this design executes internal events,
which cause it to incrementally acquire and hold first its left and
then its right forks, and then to release the forks in the reverse
order. Clearly, this design is susceptible to the classic deadlock
illustrated by the snapshot (Fig. 4 (c)).

Fork

left

right

 "syncState = eating ==> left /\ right"

 "syncState = hasLeft \/ relRight ==> left"

sync_constr =

syncState: {thinking,

Philosopher

void eat()

void think()

hasLeft, eating, relRight }

<<rootUnit>> <<unit>>

<<unit>>

(a)

eating

relRight

thinking

hasLeft

Philosopher

before upLeft
before upRight

before downLeft before downRight

(b)

rightleft

right

left right

p0:Philosopher p1:Philosopher

p2:Philosopher

left

f0:Fork

f1:Fork

syncState =
 thinking

syncState =
 thinking

syncState =
 thinking

f2:Fork

(c)

Figure 4. A Szumo design may countenance
deadlock

2.3 SzumoFrame

An OO framework is an application skeleton that is fleshed
into a concrete application by a process of instantiation, which
involves two tasks—specialization and configuration. Specializa-
tion involves designing classes that extend one or more framework
classes and adding new data or behavior at “hot spots”; whereas
configuration involves writing code that allocates and configures
instances of these new classes and/or instances of unextended frame-
work classes, and typically a main program that cedes control to
drivers provided by the framework. The framework classes, frame-
work methods and drivers used in these steps constitute the frame-
work’s instantiation interface. To properly instantiate a frame-
work, an application programmer needs to understand how the in-
stantiation interface is meant to be used. However, the instantia-
tion interface should be comparatively small and implement clean,
easy to use abstractions. We designed SzumoFrame according to
these principles.

SzumoFrame provides a framework class called Unit with
which to define the unit classes of a given application. For ex-
ample, the dining philosophers program contains two unit classes,
Philosopher and Fork, both of which specialize the frame-
work class Unit. Specialization involves three sub-tasks. First,
the designer must declare an instance variable called syncState
of a type that is appropriate for representing the various synchro-
nization states of unit class instances. Second, she must supply a
method called entails, which consults the syncState vari-
able and returns a set of Units that represent the target unit’s
direct entailment. This method is invoked at run-time by the Szu-

SyncState

Tick

SchedulerThread

ErrorIndicator ErrorType
error.<Tick> ?

Unit

entails.<Tick>

syncState.<Tick> !

UnitEvent

? current.<Tick> !

blockedThreads.<Tick>

active !

? before !

? after !

Figure 5. Domain model of the instantiation
interface of our Alloy framework

moFrame code that is responsible for dynamic contract negotia-
tion. Third, she must identify operations that could affect the syn-
chronization relevant state of the unit. All such operations must
be followed immediately by a call to the SzumoFrame method
damage realm, which initiates renegotiation of the calling thread’s
contract.

The tasks performed to specialize class Unit derive from the
unit-class diagrams depicted in Figure 2. Likewise, the configu-
ration of instances of these specialized classes owes to the unit-
instance diagram depicted in Figure 2. Because these design arti-
facts are the key to instantiating SzumoFrame, we also want to use
them to instantiate our Alloy framework.

3. The Alloy framework’s instantiation inter-
face

The instantiation interface of our Alloy framework comprises
a set of signatures and relations, which will be extended and con-
figured; a set of functions and predicates, which will be invoked
or defined; and a set of assertions, which will play the role of
“drivers” during framework instantiation. Figure 5 depicts the cen-
tral signatures and relations in the instantiation interface as a model
diagram [12]. Briefly, a rectangle represents an arbitrary signa-
ture, an oval represents a signature containing just one atom, and
an arrow represents a relation. To signify an abstract signature, the
label on a rectangle is italicized. The direction of an arrow reflects
the ordering of a relation’s tuples; in the case of a binary relation,
the relation’s domain is contained in the signature at the source end
and its range is contained in the signature at the target end. The
label on an arrow is either a relation name or archetypal expression
and, in either case, it may include multiplicity symbols on either
or both ends—a multiplicity symbol preceding a relation name or
archetypal expression signifies the multiplicity at the source end
and one following a relation name or archetypal expression sig-
nifies the multiplicity at the target end. The multiplicity symbols
are:

* any (the default) ! exactly one
? zero or one + one or more

In the absence of a multiplicity, the most general (any) is assumed.
In this paper, all archetypal expressions are of the form

rname.<SigName>

where rname and SigName denote, respectively, the names of a
ternary relation and of a signature whose atoms are totally ordered.
An arrow labeled with such an expression represents a sequence of
relations indexed by SigName—more precisely, for every atom s

in SigName, the expression rname .s relates the source and tar-
get signatures and has the indicated multiplicities. In Figure 5,
for example, syncState.s relates each unit to exactly one syn-
chronization state, for s:Tick.

Our framework encapsulates a variation of an Alloy idiom that
uses a totally ordered set of atoms to represent the points in time
at which events occur in a (finite) execution of a state machine.
Our instantiation interface therefore provides a signature,Tick,3

to represent points in time and a signature, UnitEvent, to represent
events. The latter signature is abstract. Henceforth, we refer to
atoms belonging to these signatures more informally as just ticks
and events, and to atoms belonging to other signatures in a simi-
larly informal fashion.

In keeping with the Alloy idiom, before relates an event to
the tick at which the event occurs, while after relates the event
to the next tick, which will be either the tick at which the next event
occurs or, if there are no further events, the last tick. Both relations
are partial functions, reflecting our decision to model events as
instantaneous and to simulate concurrency by interleaving.

When modeling Szumo designs, an event represents a tran-
sition taken by a thread while executing a unit. This thread is
said to be active at the tick when the event occurs. The relation
active represents the association between events and their ac-
tive threads—more precisely, for e:UnitEvent, the expression
e.active denotes the thread that is active at tick e.before.

The unit defining the transition that a thread executes is the unit
at the top of the thread’s stack. We refer to this unit as the thread’s
current unit. To model the mapping of threads to current units over
time, we define the ternary relation current. In essence, this
relation represents a sequence of assignments, ordered by ticks.
For t:Thread and s:Tick, the expression current.s[t]
denotes the unit that thread t will execute at tick s, assuming that
thread t is active at tick s.

The abstract signatures Unit and SyncState represent synchro-
nization units and synchronization states, respectively. The ex-
pression entails.s, relates units to the units that they entail at
tick s; similarly, syncState.s relates units to their synchro-
nization states at tick s, for s:Tick.

To facilitate detection and visualization of executions that end
in deadlock, our Alloy framework makes blocking visible. We
model blocking using a singleton Scheduler and the block-
edThreads relation. For s:Tick,

blockedThreads.s[Scheduler]

denotes the set of threads that are blocked at tick s. We also intro-
duce a sole ErrorIndicator, an ErrorType signature, and
the error relation. The error relation is empty until an error
occurs, after which point it relates the ErrorIndicator to an

3called Time in [12, Section 6.2.4]

atom indicating the type of error that occurred. While not strictly
a part of the instantiation interface, these signatures and relations
are useful for defining new analyses.

In addition to the signatures and relations in Figure 5, the in-
stantiation interface of our Alloy framework includes predicates
needed to express design-specific details of an initial design con-
figuration and of events, as well as assertions and error signatures
to use in defining commands to perform analyses. We summarize
these remaining entities in Table 1.

To instantiate the Alloy framework, the developer will extend
the abstract signatures in Figure 5; introduce invariants to repre-
sent design-specific details of units, synchronization states, threads,
events, and the entails relation; and define the first two initial-
ization predicates in Table 1. Thus, the abstract signatures, the
entails relation, and the two initialization predicates are es-
sentially hot spots, where design-specific details must be supplied
during instantiation. The framework defines the other entities in
Figure 5 and Table 1 to be used in specifying the design-specific
details.

Hidden underneath this small instantiation interface are Alloy
definitions that encode the semantics of negotiation in Szumo at
the level of detail needed to detect deadlocks. The next section ex-
plains how the Alloy framework is instantiated to produce an Alloy
specification from a Szumo design, together with Alloy commands
to carry out an analysis.

4. Instantiating the Alloy framework

Similarly to instantiation of SzumoFrame, instantiation of our
Alloy framework involves both specialization and configuration.
Table 2 describes the steps for specializing a unit class C in a
Szumo design. Figure 6 illustrates these steps, showing how we
specialize the design in Figure 2.

Referring to the unit-class model in Figure 2, we first introduce
signatures to represent the synchronization states of philosophers
[Fig. 6, lines 4 and 6]. Second, we introduce philosopher and fork
units as extensions of Unit and supply invariants to define their
entails relations [lines 1–2 and 8–15]. In this step, we also
introduced relations left and right for the unit variables de-
clared in a philosopher class. Because the unit variables in this
design are immutable, we represent them as binary relations; if
they had been mutable, we would have instead used ternary rela-
tions. The invariant for a fork [line 2] asserts that the fork never
entails any units, reflecting the fact that the design does not asso-
ciate synchronization states with forks. The invariant for a philoso-
pher [lines 13–15] asserts that, at every tick, either the philoso-
pher’s synchronization state is eating and it entails the units
bound to its left and right variables, or its synchronization state
is thinking and it does not entail any units. Thus, this invariant
reflects the semantics of the synchronization-state diagram and the
synchronization constraint for philosophers (Fig. 2). In the third
specialization step, we produce signatures and invariants for events
that represent transitions in a philosopher unit. The first of these
is an abstract signature, which all events representing transitions
in a philosopher will extend [line 17–18]. Its invariant requires
that the unit at the top of the active thread’s stack is a philoso-
pher unit. We define two types of events, corresponding to the
two transitions in a philosopher’s synchronization-state model—
BeforeEat-events [lines 20–27] and AfterEat-events [lines
29–36]. In both invariants, cu denotes the philosopher unit at the

Initialization predicates:

• initializedUnits(s:Tick)
Must be defined during instantiation; asserts that all
units are in their initial synchronization states at tick s

• initializedThreads(s:Tick)
Must be defined during instantiation; asserts that all
threads are initialized with the appropriate root units at
tick s

• initThread(t:Thread,r:Unit,s:Tick)
Defined in the framework; asserts that thread t is initial-
ized with root unit r at tick s

Predicates to use in defining events

• isInvokeEvent(t:Thread,u:Unit,
s,s’:Tick)

Defined in the framework; asserts that the event repre-
sents an invocation of a method in unit u, that t is the
active thread, and that the event’s before and after ticks
are s and s’, respectively.

• isReturnEvent(t:Thread,s,s’:Tick)
Defined in the framework; asserts that the event repre-
sents the return from a method invocation, that t is the
active thread, and that the event’s before and after ticks
are s and s’, respectively.

• isInternalEvent(t:Thread,s,s’:Tick)
Defined in the framework; asserts that the event involves
just the current unit, that t is the active thread, and that
the event’s before and after ticks are s and s’, respec-
tively.

Error signatures (defined in the framework)

• DeadlockError: Indicates all threads are blocked.

• DeadCycleError: Indicates the existence of a set of
two or more threads all of which are blocked and each
of which holds a unit needed by another

• StackError: Indicates a stack overflow or underflow.

Table 1. Additional functions, error signa-
tures and assertions in the instantiation in-
terface

1. If there is a synchronization-state diagram for C,

(a) extend SyncState with an abstract signature repre-
senting the synchronization states of C, and

(b) for each synchronization state, extend this latter
signature with a singleton signature representing
the state.

2. Extend Unit with a signature representing units of type
C and containing:

(a) for each unit variable in C, a relation representing
the binding of the variable to a unit, and

(b) an invariant defining C’s entailment

3. If there is a synchronization-state diagram for C,

(a) extend UnitEvent with an abstract signature repre-
senting events executed by units of type C and

(b) for each transition in the synchronization-state di-
agram, extend this latter signature with a signature
representing events in which a unit of type C takes
the transition.

Table 2. Specialization of a unit-class C

1 abstract sig Fork extends Unit {}
2 { no entails }
3

4 abstract sig PhilSyncState extends SyncState { }
5

6 one sig eating, thinking extends PhilSyncState{ }
7

8 abstract sig Philosopher extends Unit {
9 left, right: Fork

10 }
11 {
12 all s: Tick {
13 (eating=syncState.s && entails.s=left+right)
14 ||
15 (thinking = syncState.s && no entails.s) } }
16

17 abstract sig PhilEvent extends UnitEvent { }
18 {current(active, before) in Philosopher}
19

20 sig BeforeEat extends PhilEvent { }
21 {
22 let cu=current(active, before) {
23 cu.syncState.before = thinking
24 cu.syncState.after = eating
25 isInvokeEvent (active, cu, before, after)
26 }
27 }
28

29 sig AfterEat extends PhilEvent{ }
30 {
31 let cu=current(active, before) {
32 cu.syncState.before = eating
33 cu.syncState.after = thinking
34 }
35 isReturnEvent(active, before, after)
36 }

Figure 6. Example of specialization

top of the active thread’s stack—in other words, the philosopher
unit taking the transition represented by the event. The invariant
associated with an event supplies the following details: the syn-
chronization state of cu before the transition, the synchronization
state of cu after the transition, and whether the transition corre-
sponds to the invocation of a method, the return from a method
invocation, or an event that is internal to cu. The definition of an
event is the analog of invoking the damage realm method when
instantiating SzumoFrame. It makes the effects of a transition vis-
ible, thus triggering the negotiation machinery, which is hidden
under the instantiation interface.

1. Extend Thread and the unit signatures defined during
specialization with singleton signatures representing the
threads and units in the initial unit-instance model

2. Introduce an invariant expressing the assignment of
units to unit variables in the initial unit-instance model

3. Define the initialization predicates for units and threads

4. Express the analyses to be performed as Alloy com-
mands

Table 3. Configuration

1 one sig T0, T1, T2 extends Thread { }
2 one sig F0, F1, F2 extends Fork { }
3 one sig P0, P1, P2 extends Philosopher { }
4

5 fact UnitConfiguration {
6 P0.left = F0 && P0.right = F1 && P1.left = F1
7 P1.right = F2 && P2.left = F2 && P2.right = F0
8 }
9

10 // initialization predicates
11 pred initializedUnits (s: Tick) {
12 Philosopher.syncState.s = thinking
13 }
14

15 pred initializedThreads(s: Tick) {
16 initThread(T0, P0, s) && initThread(T1, P1, s) && ...
17 }
18

19 check noDeadlock for 6 Tick, 3 Sindex, 5 Event
20 check noError for 10 Tick, 3 Sindex, 9 Event
21 check noError for 10 Tick, 1 Sindex, 9 Event

Figure 7. Example configuration

Table 3 lists the steps involved in configuring a Szumo design.
Figure 7 illustrates the application of these steps. Referring to the
unit-instance model in Figure 2, in the first configuration step, we
produce signatures for three threads, three forks, and three philoso-
phers [Fig. 7, lines 1–3] and, in the second, we introduce a fact
defining the bindings of unit variables to forks [lines 5–8]. Simi-
larly, referring to the synchronization-states model in Figure 2, we
introduce initialization predicates for units [Fig. 7, lines 11–13]
and threads [lines 15–17], in the third configuration step. In defin-
ing the latter initialization predicate, we use predicates defined in
the framework to associate a root unit with a thread. Finally, in the

last step, we define the analyses to be performed. Each command
must specify a maximum number of ticks and events in the execu-
tion traces that are to be checked, as well as a maximum stack size.
The number of events should always be one less than the number
of ticks. The first command checks whether any traces of length
five or less4 and with a maximum stack size of three can result
in deadlock [line 19]. The second and third commands [lines 20–
21] check for errors corresponding to any of the error types de-
fined in the framework. They check traces of length nine or less,
but with different maximum stack sizes. These commands are the
analogs of different “main programs” that might be used with an
OO framework. The commands essentially cede control to asser-
tions defined in the Alloy framework. Thus, these assertions are
analogs of drivers in an OO framework.

5. Discussion

This paper introduces the notion of an Alloy framework, i.e.,
a collection of entities and relations that model a reusable infras-
tructure, which must be customized to yield an application. We
developed the idea while constructing Alloy models of Szumo
programs, which are constructed by instantiating an OO frame-
work called SzumoFrame. OO frameworks allow programmers to
quickly develop programs that reuse complex infrastructures by
extending framework classes at hot spots, configuring instances of
the extended classes, and ceding program control to drivers. Our
results suggest that Alloy specifications can be organized to afford
a similar style of reuse at the level of models of programs that
reuse complex infrastructures.

It is difficult to quantify the “complexity” of the reusable Alloy
specification in order to compare it with non-reusable specifica-
tion, which the developer writes. Our Alloy framework contains
10 non-trivial signatures and 8 relations. We introduce 9 func-
tions and 17 predicates to simplify specification of a fairly com-
plex invariant. Our final specification of SzumoFrame comprises
174 non-comment, non-blank lines of Alloy code. These measures
are admittedly arbitrary (e.g., the number of lines of code depends
on formatting style, use of functions and predicates, etc.). How-
ever, these measures indicate that the framework specification is
significantly more complex than the specification that the devel-
oper writes. Moreover, as demonstrated in Section 4, this latter
specification is routine to write.

We ran Alloy commands like those in Figure 7 (but with larger
scopes) on Alloy specifications produced from both versions of the
dining philosophers designs in Section 2 (and with different num-
bers of philosophers and forks). As expected, no deadlocks were
found in the first design and the classic deadlock was found in the
second one when checking sufficiently long traces. For the first de-
sign, the command to check for errors produced a stack error when
the stack size was set to a maximum of one. The second design
does not exhibit this error because all events modeled by the de-
sign are internal events. We now briefly discuss some of the open
questions raised by this work as well as some of the larger issues in
the design and verification of high-assurance systems whose im-
plementations leverage an OO framework.

To date, we have investigated analysis for only deadlock, dead
cycles, and stack errors (Table 1). We have to check for the lat-
ter in order that deadlocks and dead cycles are not quietly masked
4The framework encapsulates a special “no-op” pseudo-event,
which it uses to fill out execution traces that end prematurely.

by too small of a stack size. There are many other interesting
properties that a developer might like to check for a given Szumo
design. Many will be design-specific. An interesting challenge
for this work, therefore, will be to extend the Alloy framework to
simplify checking of other propertis and, in particular, of design-
specific properties. For instance, it might be useful to extend our
Alloy framework with support for creating Alloy encodings of
common temporal specification patterns [7]. Pure liveness can-
not be checked on finite traces, but many of these patterns express
safety and bounded liveness, which could be checked using the
Alloy analyzer.

An important open question is whether models constructed by
instantiating an Alloy framework suffer a performance penalty as
compared to hand-built models. The need to combat state explo-
sion imposes hard limits on the extent to which a designer may
trade additional state to simplify extension and reuse. A devel-
oper extends our Alloy framework by imposing invariants and by
specifying configurations. We expect that invariants would tend
to limit, rather than contribute, to state explosion and that con-
figurations would need to be specified even in hand-built models.
The structures in our Alloy framework are introduced because they
represent important aspects of the phenomena to be analyzed, not
merely because they simplify the construction of models. That the
structures do simplify the construction of models derives from a
clean separation of concerns in the design of SzumoFrame. We be-
lieve that other uses of OO frameworks may lend to similarly com-
petitive Alloy frameworks provided the OO framework affords a
clean separation of concerns.

Another issue concerns the types of analysis obligations that
we may reasonably discharge using Alloy in the environment de-
picted in Figure 1. If the tool reports a deadlock, then there is a
flaw in the design. Because the Alloy model is transparent with
respect to the design, the counter-example should prove useful for
tracing the flaw. However, we cannot interpret a “no deadlock” re-
sult to mean that a design does not countenance deadlock. An open
question is what to do if Alloy reports no deadlock. We are also
considering other analysis tools. For example, in [18], we show
how to use constraint logic programming (CLP) to analyze Szumo
design artifacts. Analysis of the CLP model is performed on-the-
fly, without imposing a maximum analysis depth; it can therefore
uncover deadlocks that the Alloy analysis cannot find within the
specified scopes. We are still assessing the relative merits of us-
ing Alloy or CLP. Our current encoding of designs using CLP is
less transparent than the encoding in Alloy, which is described in
this paper. While much of the CLP encoding is reusable, we have
yet to explore whether we can separate the reusable portions into
a “framework” as cleanly as we were able to do with Alloy. Pre-
liminary experiments indicate that analysis of CLP design models
may scale better than analysis of Alloy design models.

An extended Alloy system, called DynAlloy [10], might pro-
vide a performance advantage and also simplify the specification
of SzumoFrame. DynAlloy extends Alloy with actions and Hoare-
style partial correctness assertions, without requiring explicit spec-
ification of traces. It uses a modified version of the Alloy analyzer.
Empirical results indicate that the modified analyzer permits more
efficient checking of partial correctness.

In Figure 1, the developer analyzes a Szumo design and re-
fines it into an executable system in two separate processes. How-
ever, for the results of analysis to be useful in reasoning about the
correctness of the refined system, the implementation must con-
form to the design in some verifiable way. We believe it should

often be possible to check whether the implementation of a unit
class conforms to the Szumo design models by a data-flow anal-
ysis that propagates the synchronization states of units. Future
work will look at using interprocedural data flow analysis [11]
and recent work on statically checking conformance of code with
typestates [8] to automate the verification of conformance between
Szumo design models and code.

Finally, we continue to extend and explore the engineering ben-
efits of Szumo. Szumo, itself, is fairly mature. We have integrated
support for it into programming environments for Eiffel and for
C++. We used Szumo Eiffel in a substantial case study to corrobo-
rate the benefits of synchronization contracts during maintenance
of a realistic multi-threaded system [3]. Our newest integration,
called SzumoC++, incorporates ideas from aspect-oriented pro-
gramming [14] to further separate functional and synchronization
concerns. The environment depicted in Figure 1 reflects the archi-
tecture of SzumoC++.

6. Related work

Numerous groups have investigated techniques for modeling
and formalizing OO frameworks. One area of work focuses on
informal modeling for the purpose of design specification. Ko-
bryn [15] and Zhu and Tsai [21] focus on methods for producing
quality designs for systems that incorporate OO frameworks. Fon-
toura et al. [9] present a method for producing framework-based
designs, which they further support with a modeling language,
UML-F, which extends UML to enable the explicit representation
of framework variation points. Nakajima and Tamai [17] devel-
oped a method by which they were able to perform automated
behavioral analysis of the Enterprise JavaBeans component archi-
tecture using the SPIN model checker. The work most closely
related to ours is that of Chen [5], which proposes to construct a
formal model of an OO framework. Here, the idea is to use Java
Path Finder (JPF) to analyze code that instantiates the framework.
Their work appears to be motivated by the need to apply abstrac-
tions and heuristics when searching the state space of a program
that would otherwise be too large to analyze were JPF to explore
the code for the framework classes.

Others have also found that Alloy provides a useful basis for
analyzing properties of program designs. For example, in [6], Al-
loy is used to perform commutativity analysis at the level of de-
signs. In a multi-user system, non-commuting operations that are
issued simultaneously by different users can produce unexpected
outcomes. The paper shows how to translate OCL specifications
of operations into Alloy predicates and then, from the predicates
for a pair of operations, how to build an Alloy assertion requiring
that the operations commute. The Alloy analyzer is used to check
for counterexamples, which represent scenarios for which the op-
erations do not commute. In [13], Alloy is used to model a design
of a new scheme for resource discovery in a dynamically evolv-
ing network. Analysis of the model reveals several flaws in the
design. In [4], Chang and Jackson build models of OO programs
in a notation that mixes relational operators, primitive data types
and standard imperative features. They implemented a BDD-based
model checker for this notation, which they use in verifying prop-
erties expressed in CTL. In one example, they analyze a mutual
exclusion algorithm, showing that mutual exclusion is always sat-
isfied and that the algorithm does not countenance deadlock. They
express dependencies among processes and resources in terms of

has and wait relations. We use similar relations in encoding the
semantics of Szumo negotiation. Finally, a type of Alloy frame-
work is used in [20] to model and verify correctness of multicast
key management schemes. This Alloy framework is reusable, but
over a much narrower range of applications than ours. To the best
of our knowledge, no other work facilitates design transparency
and reuse of an extensible Alloy model to the extent achieved us-
ing our Alloy framework.

7. Acknowledgments

Partial support for this research was provided by the Office of
Naval Research grant N00014-01-1-0744 and by NSF grants EIA-
0000433 and CCR-9984726.

8. References

[1] R. Behrends. Designing and Implementing a Model of
Synchronization Contracts in Object-Oriented Languages.
PhD thesis, Michigan State University, East Lansing,
Michigan USA, Dec. 2003.

[2] R. Behrends and R. E. K. Stirewalt. The Universe Model:
An approach for improving the modularity and reliability of
concurrent programs. In Proc. of FSE’2000, 2000.

[3] R. Behrends, R. E. K. Stirewalt, and L. K. Dillon. A
self-organizing component model for the design of safe
multi-threaded applications. In Proc. of the ACM SIGSOFT
International Symposium on Component-Based Software
Engineering (CBSE’05), 2005.

[4] F. S.-H. Chang and D. Jackson. Symbolic model checking
of declarative relational models. In ICSE’06: Proc. of the
28th International Conference on Software Engineering,
pages 312–320, 2006.

[5] Z. Chen. Formal modeling: A framework-based approach.
to be presented at the FSE’06 Doctoral Symposium.

[6] G. Dennis, R. Seater, D. Rayside, and D. Jackson.
Automating commutativity analysis at the design level. In
ISSTA’04: Proc. of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages
165–174, 2004.

[7] M. Dwyer, G. Avrunin, and J. C. Corbett. Patterns in
property specifications for finite-state verification. In Proc.
of the 21st Int’l Conf. on Software Engineering, 1999.

[8] S. Fink et al. Effective typestate verification in the presence
of aliasing. In Proc. of the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA’06),
2006.

[9] M. Fontoura, W. Pree, and B. Rumpe. UML-F: A modeling
language for object-oriented frameworks. In ECOOP ’00:
Proceedings of the 14th European Conference on
Object-Oriented Programming, 2000.

[10] M. Frias, J. P. Galeotti, C. Lopez Pombo, and N. Aguirre.
DynAlloy: upgrading Alloy with actions. In G.-C. Roman,
editor, ICSE 2005: 27th International Conference on
Software Engineering, pages 442–450, New York, NY,
USA, 2005. ACM Press.

[11] M. J. Harrold and M. L. Soffa. Interprocedural data flow
testing. In Proc. 3rd ACM SIGSOFT Symp. on Softw.

Testing, Analysis, and Verification, pages 158–167, Dec.
1989.

[12] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, 2006.

[13] S. Khurshid and D. Jackson. Exploring the design of an
intentional naming scheme with an automatic constraint
analyzer. In ASE’00: Proc. of the 15th IEEE International
Conference on Automated Software Engineering, pages
13–22, 2000.

[14] G. Kiczales et al. Aspect oriented programming. In
European Conference on Object-Oriented Programming
(ECOOP’97), 1997.

[15] C. Kobryn. Modeling components and frameworks with
UML. Commun. ACM, 43(10), 2000.

[16] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 1997.

[17] S. Nakajima and T. Tamai. Behavioural analysis of the
enterprise JavaBeans component architecture. In SPIN ’01:
Proceedings of the 8th international SPIN workshop on
Model checking of software, 2001.

[18] B. Sarna-Starosta, R. E. K. Stirewalt, and L. K. Dillon. A
model-based design-for-verification approach to checking
for deadlock in multi-threaded applications. In Proc. of 18th

Intl. Conf. on Softw. Eng. and Knowledge Eng., 2006.
[19] R. E. K. Stirewalt, R. Behrends, and L. K. Dillon. Safe and

reliable use of concurrency in multi-threaded shared
memory sytems. In Proc. of the 29th Annual IEEE/NASA
Software Engineering Workshop, 2005.

[20] M. Taghdiri and D. Jackson. Lightweight modelling and
automatic analysis of multicast key management schemes.
In FORTE’03: Proc. of the 23rd IFIP International
Conference on Formal Techniques for Networked and
Distributed Systems, pages 240–256, October 2003.

[21] F. Zhu and W.-T. Tsai. Framework-oriented analysis. In
COMPSAC ’98: Proceedings of the 22nd International
Computer Software and Applications Conference, 1998.

