
SUCCESSFUL STRATEGIES FOR DEBUGGING CONCURRENT
SOFTWARE: AN EMPIRICAL INVESTIGATION

By

Scott Douglas Fleming

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Computer Science

2009

ABSTRACT

SUCCESSFUL STRATEGIES FOR DEBUGGING CONCURRENT
SOFTWARE: AN EMPIRICAL INVESTIGATION

By

Scott Douglas Fleming

Concurrent software can provide substantial performance benefits; however, such software

is highly complex. This complexity makes debugging concurrent software especially diffi-

cult. Debugging techniques that are highly effective for debugging sequential software are

rendered ineffective by concurrency. Moreover, the literature provides little advice for pro-

grammers on what techniques are effective. To address this problem, we conducted in an

empirical investigation to understand the strategies and practices that successful program-

mers use during debugging. Specifically, we carried out an exploratory study in which we

observed fifteen programmers individually performing a debugging task on a multithreaded

server application, which we seeded with a defect. To better understand the programmers’

goals and intentions, we prompted them to “think aloud” as they worked. This study pro-

duced several promising theories. To test and refine one of these theories, we followed

up the exploratory study with a controlled experiment. Three main claims emerged from

our studies. First, programmers who are successful at debugging concurrent software use a

previously-undocumented failure-trace modeling strategy, which involves modeling inter-

actions among multiple threads to understand the potential behavior of a concurrent pro-

gram. Second, the use of external representations, such as UML sequence diagrams, during

failure-trace modeling enhances success with the strategy. Third, concurrency thwarts ef-

forts to systematically manage hypotheses regarding the cause of the defect during debug-

ging. In this dissertation, we also report ancillary findings regarding other behaviors that

programmers exhibited and share important lessons learned in the conduct of think-aloud

studies.

To Grandpa Fleming, who waited a long time for this.

iii

ACKNOWLEDGMENTS

It is my great pleasure to thank the colleagues, collaborators, friends, and family who sup-

ported me throughout my doctoral studies and who helped make this dissertation possible.

I would like to give special thanks to my PhD guidance committee members for provid-

ing me with expert counsel and thoughtful feedback. Words cannot express how grateful I

am to my PhD advisor, R. E. Kurt Stirewalt, for his patience, superlative advice, and un-

wavering belief in me throughout this process. I give heartfelt thanks to Laura Dillon and

Eileen Kraemer for going far above and beyond the call of duty as mentors and research

collaborators. Many thanks to D. Zachary Hambrick and John Hale for their exemplary

service as committee members and for the unique perspectives they brought to the group.

I would like to thank the individuals who assisted me in carrying out my studies. Thanks

to Shaohua Xie for his hard work analyzing data for my exploratory study. Thanks to the

undergraduate volunteers who served as prompters and transcribers during my exploratory

study. Thanks to Alex Liu and Yi Huang for their assistance in conducting my controlled

experiment. I would be remiss if I did not thank the individuals who, in good faith, partic-

ipated in my studies and provided me with a window into the inner workings of program-

mers.

Thank you to the students, faculty, and staff of the Computer Science and Engineer-

ing Department who have been wonderful companions and contributed tremendously to

my personal and professional growth. I give special thanks to my friends from the Soft-

ware Engineering and Network Systems Laboratory: Ben Beckmann, Brian Connelly, Matt

McGill, Chad Meiners, Andres Ramirez, Jesse Sowell, and everyone else!

Finally, I most want to thank my smart, dynamic, patient, thoughtful, and beautiful

wife, Denise Fleming. Her constant support has kept me going through the ups and downs

of this long, arduous journey. My dear, I cannot wait to begin the next phase of our lives

together!

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . xi

1 INTRODUCTION . 1

2 BACKGROUND . 7
2.1 Debugging Concurrent Software . 8

2.1.1 Debugging Sequential Software . 8
2.1.2 Challenges of Concurrency . 13
2.1.3 Attempts to Address the Challenges. 19

2.2 Empirical Methods . 31
2.2.1 Qualitative Methods . 32
2.2.2 Quantitative Methods . 33

2.3 Related Empirical Studies. 34
2.4 Notations and Visualizations for Thread Interactions . 39

2.4.1 UML Sequence Diagrams . 39
2.4.2 Multithreaded Extension to UML Sequence Diagrams 41
2.4.3 Other Visualizations . 42

2.5 Thread-Interaction Complexity Metrics . 44
2.5.1 Modeling Multithreaded Programs as LTSs. 45
2.5.2 Formal Definitions . 47

3 EXPLORATORY STUDY: PLANNING AND EXECUTION . 51
3.1 Study Planning . 52

3.1.1 Participants . 52
3.1.2 Study Materials . 52

3.2 Execution . 57
3.2.1 Preparation . 57
3.2.2 Execution of Study Procedure . 58

4 EXPLORATORY STUDY: STRATEGIES AND CODING SCHEMES 59
4.1 Failure-Trace Modeling . 59

4.1.1 Example. 60
4.1.2 Feasibility Analysis . 62
4.1.3 Strength of Articulation . 63
4.1.4 Coding Scheme . 64

4.2 Breadth-First Approach to Diagnosis . 64
4.2.1 Modeling Hypothesis Elaboration and Refinement 65
4.2.2 Coding Scheme . 72

4.3 Systematic Comprehension . 72
4.3.1 Coding Scheme . 74

v

4.4 Cyclic Debugging . 74
4.4.1 Coding Scheme . 75

4.5 Pattern Matching . 76
4.5.1 Coding Scheme . 76

4.6 Tweaking the Code . 76
4.6.1 Coding Scheme . 77

5 EXPLORATORY STUDY: ANALYSIS AND DISCUSSION . 78
5.1 Analysis . 78

5.1.1 Levels of Success . 82
5.1.2 Failure-Trace Modeling . 82
5.1.3 Breadth-First Approach to Diagnosis. 87
5.1.4 Systematic Comprehension . 91
5.1.5 Cyclic Debugging . 99
5.1.6 Pattern Matching . 99
5.1.7 Tweaking the Code . 101

5.2 Discussion . 101
5.2.1 Limitations . 104

6 CONTROLLED EXPERIMENT: PLANNING AND EXECUTION 106
6.1 Experiment Planning . 106

6.1.1 Participants . 107
6.1.2 Experimental Materials . 107
6.1.3 Hypotheses, Parameters, and Variables . 110
6.1.4 Experiment Design . 112

6.2 Execution . 113
6.2.1 Preparation . 113
6.2.2 Execution of Experiment Procedure . 113
6.2.3 Data Validation . 115

7 CONTROLLED EXPERIMENT: ANALYSIS AND DISCUSSION 116
7.1 Analysis . 116

7.1.1 Descriptive Statistics . 116
7.1.2 Hypothesis Testing . 118
7.1.3 Supplementary Analyses . 119

7.2 Discussion . 121
7.2.1 Evaluation of Results and Implications . 121
7.2.2 Threats to Validity . 122

8 DISCUSSION . 125
8.1 Research Findings . 125
8.2 Lessons Learned . 130

8.2.1 Sharing Think-Aloud Data . 130
8.2.2 Transcribing Think-Aloud Sessions . 132

8.3 Future Work . 135

vi

9 CONCLUSIONS . 137

A EXPLORATORY STUDY MATERIALS . 140
A.1 eBizSim Source Code . 140
A.2 Prestudy Questionnaire . 150
A.3 Poststudy Questionnaire . 161
A.4 Solutions to the Questionnaires. 166

A.4.1 Prestudy Questionnaire . 166
A.4.2 Poststudy Questionnaire . 167

B CONTROLLED EXPERIMENT MATERIALS . 170
B.1 Preexperiment Questionnaire . 171
B.2 Experiment Questionnaire: External-Group Version . 179
B.3 Experiment Questionnaire: Internal-Group Version . 188
B.4 Solutions to the Questionnaires. 189

B.4.1 Preexperiment Questionnaire Solutions . 189
B.4.2 Experiment Questionnaire Solutions . 189

B.5 Diagram-Evaluation Rubric . 194

C FAULT TREE FOR THE EBIZSIM FAILURE . 197

D INTERACTION COMPLEXITY ANALYSIS . 201
D.1 LTS Model of Questionnaire Program . 201
D.2 Scenario Traces . 205

BIBLIOGRAPHY . 208

vii

LIST OF TABLES

2.1 Data dependences for each thread schedule of the program in Figure 2.2. . . . 19

5.1 Attributes of success and participant behavior. 80

5.2 Assignment of attributes to participants. 81

5.3 Statistical results of cross-case analyses (p-values). 81

5.4 Fault tree coverage by participants. 88

5.5 Poststudy questionnaire results. 92

5.6 Relationship between systematic strategy and program knowledge. 93

5.7 Relationship between knowledge and success. 94

5.8 Performance on the poststudy questionnaire. 95

6.1 Hypotheses tested by our experiment. 111

7.1 Results of the experiment questionnaire. 117

7.2 Complexity measurements over the thread interactions from the question-
naire. 120

D.1 Scenario #1 trace. 206

D.2 Scenario #2 trace. 206

D.3 Scenario #3 trace. 207

D.4 Scenario #4 trace. 207

viii

LIST OF FIGURES

2.1 Defective program for computing mean and standard deviation. 10

2.2 Simple multithreaded program (a) and potential thread schedules and re-
sults (b). 14

2.3 Producer-consumer example with race conditions. 15

2.4 Producer-consumer buffer implemented as a monitor. 17

2.5 Deadlocking variant of the producer-consumer program with an array of
buffers. 18

2.6 Control-flow graph (CFG) for the program in Figure 2.1. 25

2.7 Program-dependence graph (PDG) for the program in Figure 2.1. 26

2.8 Slice on line 37 of the program in Figure 2.7. 27

2.9 Example of a UML sequence diagram. 40

2.10 Multithreaded extentions to UML sequence diagram notation. 41

2.11 LTS model Example of a multithreaded program that comprises two
threads t1 and t2 that each infinitely acquires and releases a shared lock. . . . 46

2.12 One possible trace ExampleTrace of the LTS Example from Figure 2.11. . . 46

2.13 Example defined as a Multithreaded LTS. 48

2.14 Definition of ExampleTrace based on a multithreaded LTS. 48

3.1 Key synchronization methods in the eBizSim server. 55

3.2 Bug report provided to participants. 57

4.1 Strongly-articulated, yet infeasible model of an error trace. 61

4.2 Part of the fault tree for the eBizSim failure. 67

5.1 Frequencies of various measures of success. 83

5.2 Relationships between failure-trace modeling and success attributes. 84

ix

5.3 Relationships between use of the breadth-first approach and success at-
tributes. 89

5.4 Relationships between use of the systematic comprehension strategy and
success attributes. 92

5.5 Relationships between recognition of the wait-in-while idiom and success
attributes. 100

5.6 Relationships between code tweaking and success attributes. 102

6.1 Sample preexperiment-questionnaire scenario and question. 109

6.2 Sample experiment-questionnaire scenario and question. 111

6.3 Part of a sequence-diagram template. 112

6.4 The frequency distributions of the scores of the external and internal groups
on the preexperiment questionnaire. 114

6.5 The scores of the external and internal groups on the preexperiment ques-
tionnaire. 115

7.1 Frequency distribution for the experiment questionnaire scores. 117

7.2 Box plot of the experiment questionnaire scores. 118

7.3 Plot of the relationship between diagram quality and questionnaire score. . . . 120

8.1 Jubler subtitle editor. 134

A.1 Example C++ code for questions 1 to 2. 151

A.2 Definition of class Database. 154

A.3 Implementation of the Database member functions. 155

A.4 Implemenation of the reader and writer actors, and the main function. 156

A.5 Activities for Question 9. 163

A.6 Activities pertaining to Question 10. 163

B.1 Class definition for a database that allows concurrent readers. The database
is implemented using the ACE library. For the sake of simplicity, we elided
the “business logic” (e.g., functions for reading and writing database en-
tries). 176

x

B.2 Member-function definitions for class Database. 177

B.3 Primary control loops for the reader and writer threads. For the sake of sim-
plicity, we elided the invocations of operations that read/write the database. . 178

B.4 The definition of the main function, which spawns two writer threads and
two reader threads. 178

B.5 The request-queue interface and implementation. For the sake of simplicity,
we elide the definition of the class, Request. 186

B.6 The listener and handler implementations, and the definition of the func-
tion, main. For the sake of simplicity, we elide the definition the
class, Request, and the definitions of the functions, accept request and
process request. 187

B.7 Sequence diagram for Scenario 1. 190

B.8 Sequence diagram for Scenario 2. 191

B.9 Sequence diagram for Scenario 3. 192

B.10 Sequence diagram for Scenario 4. 193

C.1 L subtree of the fault tree for the eBizSim failure. 198

C.2 M subtree of the fault tree for the eBizSim failure. 199

C.3 R subtree of the fault tree for the eBizSim failure. 200

xi

CHAPTER 1

INTRODUCTION

Concurrency can provide important performance benefits to software systems; however, it

also substantially increases the complexity of software. This complexity makes debugging

particularly difficult. Programmers have well-understood, highly-effective techniques to

debug sequential (i.e., non-concurrent) software. Unfortunately, concurrency renders these

techniques ineffective. Moreover, the literature is largely silent on what techniques are

effective for debugging concurrent software. Therefore, we seek to understand the strate-

gies that successful programmers use during the debugging of concurrent software and to

develop tools and techniques that support and improve those strategies.

Programmers depend on two core techniques for debugging sequential software: cyclic

debugging and dependence analysis. In cyclic debugging, the programmer replays a failing

run of the program repeatedly while observing different aspects of the program’s internal

state [66]. Understanding the internal behavior of the program facilitates diagnosis of the

defect. Unfortunately, failures of concurrent software may be difficult to reproduce, ren-

dering cyclic debugging ineffective. In dependence analysis, the programmer traces data

and control dependences backward through the code to find the source of an error [130].

Unfortunately, concurrent software exhibits a combinatorial explosion of data and control

flows. This complexity makes data and control dependences difficult to identify and un-

derstand, rendering dependence analysis ineffective. Others (e.g., [62, 66, 86]) have tried

1

to address these problems with tools; however, no specialized debugging tools have seen

widespread use in practice [74].1

Our work aims to understand the strategies and practices that successful programmers

use in debugging concurrent software. The literature contains numerous studies of the be-

haviors programmers exhibit during debugging (e.g., [46, 58, 123, 127]) and program com-

prehension (e.g., [65, 73, 100]), an activity closely related to debugging. This work has

uncovered several strategies that predict success on such tasks. For instance, one seminal

study [73] found that a systematic comprehension strategy, which involves tracing through

the flow of control of the entire program prior to making modifications, leads to success

on tasks involving unfamiliar code. Another seminal study [123] found that a breadth-first

approach, which involves pursuing multiple lines of reasoning and deliberately investing

intellectual resources into competing hypotheses regarding the cause of an error, leads to

success on debugging tasks. However, none of this prior work specifically addresses con-

current software; therefore, it is an open question whether the prior findings will hold up in

this context.2 The research methods employed most commonly by this prior work empha-

size observing programmers as they perform tasks, and collecting and analyzing predomi-

nantly qualitative data. To reveal the goals and intentions of participants, studies frequently

ask them “think aloud” [39] as they work. We adopt methods that are consistent with these

prior studies to address our research questions.

We began our investigation with an exploratory study in which we observed program-

mers debugging a multithreaded server application [42, 43]. This exploratory research

emphasizes the generation of tentative hypotheses. We collected extensive observational

data about their performances, which includes over 28 hours of video. This type of rich

qualitative data is well-suited for exploratory research [37]. Like previous studies, we

asked participants to think aloud as they work. Our analysis produced several promising

1 Traditional parallel debuggers [77] are somewhat common, but these rudimentary tools fail to address
the essential problems of concurrency.

2 Others (e.g., [9, 52]) have empirically studied developers of concurrent software; however, their studies
did not look at the detailed behaviors of programmers as they perform tasks.

2

hypotheses. Next, we conducted a follow-up experiment to test one of our hypotheses.

Such experiments serve to increase confidence in the validity of hypotheses produced by

exploratory research [8].

Based on the results of these studies, we make three central claims. Our first claim is

that programmers who are successful at debugging concurrent software use a failure-trace

modeling strategy. We were the first to document this strategy. Given a hypothetical error

state of the program, the strategy aims to produce a failure trace—that is, a demonstration

of how the system may transit among various internal states to arrive at the error state.

It involves modeling scenarios of interactions among various threads in the system. Our

exploratory study found that successful programmers were significantly more likely to use

the strategy than unsuccessful. However, we also observed some limitations of the strategy.

Specifically, a small number of participants were completely unsuccessful with the strategy,

and a larger number, although successful on task, were unable to produce an actual failure

trace.

Our second claim is that the use of external representations during failure-trace mod-

eling enhances the success of the strategy. Such representations may take the form of

diagrams, such as UML sequence diagrams. We believe that their use during failure-

trace modeling reduces cognitive strain, making programmers less prone to mental er-

rors. External representations in general have been shown to provide such benefits during

cognitively-intensive tasks [139]. This claim emerged from the findings of our controlled

experiment. We found that participants who externalized were significantly more able to

reason correctly about scenarios of thread interaction than those who reasoned exclusively

internally—that is, “in their heads.” Such reasoning is key to success with failure-trace

modeling. Participants in the exploratory study predominantly did their modeling inter-

nally. Therefore, we believe that cognitive strain was an important factor in the cases that

were unsuccessful with failure-trace modeling.

Our third claim is that concurrency thwarts efforts to systematically manage hypothe-

3

ses. For programmers to debug successfully in practice, they must systematically manage

their hypotheses regarding the cause of the failure [123]. Systematic management involves

the consideration of competing hypotheses and the careful tracking of which hypotheses

have been investigated and which have not. The complexity of concurrent software typi-

cally leads to a large space of competing hypotheses. Forgetting to investigate hypotheses

or having to reinvestigate hypothesis because the outcome was forgotten can have a dra-

matically negative impact on debugging. Although the program in our exploratory study

was small, there were a fairly large number of plausible hypotheses as to the cause of its

failure (roughly twenty). We found that many participants appeared to systematically man-

age hypotheses initially. However, we consistently observed a breakdown in the approach,

and many plausible hypotheses failed to be investigated. Although the breakdown was

not fatal in many cases, there is little doubt that it would be problematic in the context

of large production systems with orders of magnitude more plausible hypotheses. It is an

open question as to what caused this breakdown. However, as with failure-trace modeling,

participants did little externalizing; therefore, cognitive strain is a promising suspect.

Our studies also produced several ancillary findings. For example, we found that partic-

ipants universally engaged in cyclic debugging despite the well-known weaknesses of the

technique. Not surprisingly, we found no relationship between the use of the technique and

success. However, we did find that participants who used the technique without also engag-

ing in failure-trace modeling were all unsuccessful. As another example, we found that the

use of the systematic comprehension strategy did not lead to success. We believe that the

strategy relies heavily on an implicit dependence analysis, which is known to be difficult

with concurrent software. As a final example, we found that tweaking the code in the hopes

of lucking into a fix is highly ineffective. Unsuccessful participants were significantly more

likely to exhibit this behavior than successful.

In addition to research contributions of our work, we contribute lessons learned in the

conduct of this type of research. For instance, the sharing of think-aloud data is problem-

4

atic when studying programmers. In reporting on a think-aloud study, sufficient think-aloud

data must be provided so that other researchers can replicate your analysis or run their own

analyses [89]. Traditionally, textual listing of the participant utterances were sufficient be-

cause participants were working largely internally. However, programmers work with a

rich set of external tools and documents. Utterances alone do not provide enough informa-

tion to understand what they are doing. To make matters worse, attempting to document

their actions is problematic because such documentation is highly subjective and may omit

actions that are important to other researchers. A naive solution this problem is to share

video data of participants. However, protecting the identities of participants is a foremost

ethical concern [3]; photos of participants or audio of their voices should not be shared

under any circumstances. To address these problems, we developed a method for sharing

think-aloud data of programmers based on capturing computer-screen video and subtitling

the video with participant utterances.

In addition to the above claims, our studies also generated new research questions to

pursue. One question arises because most participants in our exploratory study were able

to localize the failure to a particular segment of code. Two features of the study probably

made this possible. First, participants were given enough information to locate a particular

line of code that exhibited the failure. Although this line was far away from the defective

line of code, it gave participants a clear starting point for their search. Second, they were

able to reproduce the failure, although it tended to be difficult and time consuming. This

feature enabled the limited use of cyclic debugging. However, not all failures in practice

have such features. It is an open question whether failure-trace modeling would be as

effective if localizing the failure was more difficult. Another open question is to what

extent programmers have difficulty formulating hypotheses regarding the cause of a defect.

We found that participants were less likely to analyze hypotheses that involve reasoning

about multiple interacting threads than hypotheses that only involve a single thread. This

suggests that programmers may have difficulty identifying certain types of hypotheses.

5

Future work should investigate the extent of this problem.

The remainder of this dissertation is organized as follows. Chapter 2 provides back-

ground on several relevant topics, including the related work on debugging concurrent

software (Section 2.1), the empirical methods we use for our investigation (Section 2.2),

the related empirical studies from the literature (Section 2.3), notations for externalizing

models of thread interactions (Section 2.4), and the analysis of interaction complexity

(Section 2.5). Chapters 3 and 5 describe the planning and analysis of our exploratory

study, respectively. Chapters 6 and 7 describe the planning and analysis of our controlled

experiment, respectively. Chapter 8 provides a discussion of our results, including their

limitations and applications to the practice of software engineering. Finally, Chapter 9

summarizes our conclusions.

6

CHAPTER 2

BACKGROUND

Our work seeks to ameliorate the difficulty of debugging concurrent software by under-

standing the strategies and practices that successful programmers use to accomplish such

tasks. The problem of debugging concurrent software is well-established and has consis-

tently resisted attempts to solve it. Section 2.1 provides background on the nature of the

problem and surveys the prior work on it. In particular, this prior work emphasizes the

development of tools; however, we take a different approach, seeking to pursue solutions

based on an empirically-grounded understanding of what works in practice. Section 2.2

describes the empirical methods that we will use to achieve this understanding. Others

have applied similar methods to the study of software engineers. Section 2.3 surveys these

related empirical studies.

In the course of our work, we developed two reusable technologies, which we offer

here as contributions. The first contribution arose from our investigation of the benefits of

externalizing representations of program behavior. We found that existing notations were

inadequate for representing the behaviors of multithreaded software. Section 2.4 describes

these notations and how we extended one to represent the behaviors of multithreaded soft-

ware. Our second contribution arose from the need to evaluate the complexity of different

program behaviors. The literature offers no metrics on which to base such evaluations.

Section 2.5 describes several metrics we developed for this purpose.

7

2.1 Debugging Concurrent Software

Debugging concurrent programs is notoriously difficult. In Section 2.1.1, we describe two

universal techniques that have traditionally been effective for debugging sequential soft-

ware. In Section 2.1.2, we describe properties of concurrent programs that render these

techniques ineffective. In Section 2.1.3, we survey the literature for prior attempts to alle-

viate this problem.

2.1.1 Debugging Sequential Software

Debugging is the process of diagnosing and correcting a defect in a program, which is

known to be buggy. In this dissertation, a program error refers to a runtime behavior that

violates the program’s requirements. Not all errors are observable to the user—that is, the

user may not experience a loss of functionality as a result of the error. We refer to losses

of functionality as failures. The underlying cause of an error is a defect in the program

code [138].

Diagnosing the defect accounts for the majority of effort during debugging [82]. The lit-

erature commonly characterizes diagnosis as a hypothesis-driven process [5, 46, 137, 138].

Following Araki and colleagues [5], the programmer maintains a working set of hypotheses

about the cause of the error. As diagnosis proceeds, the programmer iteratively selects a hy-

pothesis from the working set, verifies the hypothesis, and updates the working set based on

the outcome of verification. The primary purpose of verification is to test the hypothesis—

that is, to attempt to determine whether the hypothesis is correct. In the process of verifying

a hypothesis, the programmer may make new observations about the program that are rele-

vant to diagnosis. Based on the outcome of verification and any incidental observations, the

programmer may modify the working set by generating new hypotheses, or by authenticat-

ing or refining existing hypotheses. Authentication involves deciding whether a hypothesis

is correct or not. Deciding that one hypothesis is correct may imply that others are incor-

8

rect. Refinement involves making a hypothesis more constrained or more detailed. This

diagnosis process proceeds until a hypothesis, which has been authenticated as correct, is

sufficiently refined to explain the defect.

In the context of sequential programs, programmers universally employ two techniques

to successfully diagnose defects: cyclic debugging and dependence analysis. These tech-

niques are useful for verifying hypotheses and for reducing the space of plausible hypothe-

ses.

Cyclic Debugging

Cyclic debugging involves observing selected properties of the program’s internal state

during a failing run [66]. The technique is cyclic because the programmer repeatedly re-

produces the failing run, iteratively refining which properties he observes. Programmers

make the internal state observable by inserting diagnostic print statements in the code or

by using a debugger (e.g., GDB1), which enables the programmer to pause the program’s

execution and inspect the values of program variables.

Cyclic debugging is an effective means for verifying hypotheses. For example, con-

sider Figure 2.1, which depicts a defective program for computing the mean and standard

deviation for an array of numbers. This program will serve as running example throughout

this section. The defect is that the variable sum is declared as an int rather than a double,

which leads to a rounding error. If the programmer hypothesizes that the cause of the fail-

ure is that the value returned by the call to read array is incorrect (i.e., not the size of the

array as expected), he can easily verify this hypothesis by inserting a statement that prints

the value of n on line 16. He can then reproduce a failing run of the program to see if

the value reported for n matches the expected value. In this case, the hypothesis would be

refuted, and he would update his working set of hypotheses accordingly.

Cyclic debugging is also an effective means for narrowing the space of plausible hy-

1 http://www.gnu.org/software/gdb/

9

http://www.gnu.org/software/gdb/

1 #include <cstdlib >
2 #include <cmath >
3 #include <iostream >
4
5 using namespace std;
6
7 int read_array(double a[]) { ... }
8
9 int main(int, char*[])

10 {
11 double mean = 0.0;
12 double stdev = 0.0;
13 double a[BUFSIZ];
14 int sum = 0.0;
15
16 int n = read_array(a);
17
18 for (int i = 0; i < n; ++i) {
19 sum += a[i];
20 }
21
22 mean = sum/n;
23
24 for (int i = 0; i < n; ++i) {
25 a[i] = a[i] - mean;
26 a[i] *= a[i];
27 }
28
29 sum = 0.0;
30
31 for (int i = 0; i < n; ++i) {
32 sum += a[i];
33 }
34
35 stdev = sqrt(sum/(n-1));
36
37 cout << "mean: " << mean << endl;
38 cout << "stdev: " << stdev << endl;
39
40 return 0;
41 }

Figure 2.1: Defective program for computing mean and standard deviation.

10

potheses. For example, the ACE Toolkit2 includes a class ACE Trace that provides facil-

ities for logging which class methods are entered and exited during an execution of the

program [56]. The programmer can use the log produced during a failing run of the pro-

gram to focus his attention on the methods that are most likely to contain the defect—that

is, the methods that execute during a failing run. Focusing on the such methods frees the

programmer from considering hypotheses involving code that never actually executes dur-

ing a failing run.

Dependence Analysis

Dependence analysis involves determining how program statements may influence one an-

other at runtime [21]. Programmers typically perform dependence analysis implicitly as

they debug [130]. They are primarily concerned with two types of dependences: data and

control dependences. A statement s is data dependent on a statement t if there is a variable

v that s references and t defines (i.e., assigns to), and t may be the last statement to define

v before s executes. For example, in the code:

x = 10;

cout << x << endl;

the print statement is data dependent on the assignment statement because the value of x to

be printed will have been defined by the assignment. A statement s is control dependent on

a conditional statement t (e.g., an if-statement or a while-loop) if one of t’s branches must

always lead to s and another branch may bypass s . For example, in the code:

if (x > 0) {

++x;

}

2 http://www.cs.wustl.edu/˜schmidt/ACE.html

11

http://www.cs.wustl.edu/~schmidt/ACE.html

the increment statement is control dependent on the if-statement because the conditional

determines whether the increment will execute. A statement’s data and control dependences

directly influence the statement; however, the statement is also influenced, albeit indirectly,

by its transitive dependences.

Dependence analysis can effectively reduce the space of plausible hypotheses during

debugging. For example, based on a failing run of the program in Figure 2.1, the program-

mer can observe that the value of the variable mean printed by the statement on line 38 was

incorrect. By following the transitive dependences backward from that statement, the pro-

grammer focuses his attention on the statements that could have influenced the execution

of the print statement. These statements constitute a slice with respect to the print state-

ment (Section 2.1.3). The programmer can ignore the statements that do not influence the

print statement—that is, he can disregard any hypotheses he might have related to those

statements. In this case, he can ignore the statements on lines 25–36—roughly half of the

statements in the program.

Programmers often identify defects in code via bug smells—that is, the recognition that

a section of code bears characteristics of a known type of defect [49]. They may notice

suspicious-smelling code at any time during debugging. Programmers use dependence

analysis to verify that a suspicious section of code could influence the observed failure. For

example, suppose the programmer is trying to find the defect in Figure 2.1 that caused an

incorrect mean to be displayed, and he detects a suspicious smell from the for-loop starting

on line 25. He can check whether the for-loop could have affected the value of the variable

mean when it is printed on line 38 by tracing the transitive dependences forward from the

for-loop. In this case, he would find that the for-loop cannot influence the value of mean

and therefore does not contain the defect.

12

2.1.2 Challenges of Concurrency

Concurrent programs may be more responsive or perform faster than sequential programs;

however, they are more complex, and this complexity creates a number of problems during

debugging. A sequential program is one whose instructions are executed sequentially by a

single processor. In contrast, a concurrent program comprises a set of interacting sequential

programs (or processes) that execute in abstract parallelism. The parallelism is abstract

because there may only be one physical processor that the processes take turns executing

on.

There are two main paradigms for expressing concurrency in programs: the message-

passing and shared-memory paradigms. In the message-passing paradigm, processes have

disjoint memory spaces and interact via the sending and receiving of messages. In the

shared-memory paradigm, processes share a memory space and interact by writing and

reading shared variables. Our work is concerned with multithreaded programs, which gen-

erally fall under the shared-memory paradigm. In multithreaded programs, processes are

referred to as threads.

In multithreaded systems, memory accesses by threads are ordered—that is, two threads

cannot access the same memory location at the same time. Two threads that are concur-

rently vying for access to the same shared variable gain access to the variable in an order

determined by the thread scheduler, which decides the time slices that each thread gets to

execute. As threads receive their time slices, their instructions interleave. Thread schedul-

ing is nondeterministic, so for a given program, many different interleavings are possible.

As a result, different runs of the program, which are given the same inputs, may yield dif-

ferent results. For example, Figure 2.2(a) depicts a trivial multithreaded program where

functions T1 and T2 are executed concurrently by different threads. Even with this simple

multithreaded program, many different resulting values for x and y are possible depending

on the thread schedule (summarized in Figure 2.2(b)3). In this case, almost every schedule

3 In actuality, the problem is worse than the figure suggests because interleaving may occur at a finer level

13

X: volatile int x = 0;
Y: volatile int y = 0;

void T1()
{

A: x = 10;
B: y = x + 10;

}

void T2()
{

C: x = y;
D: y = 0;

}

(a)

Schedule x y

ABCD 20 0
ACBD 0 0
ACDB 0 10
CABD 10 0
CADB 10 20
CDAB 10 20

(b)

Figure 2.2: Simple multithreaded program (a) and potential thread schedules and results
(b).

produces a different result.

Nondeterministic scheduling creates the potential for a type concurrency-specific de-

fect: race conditions—that is, the situation where certain interleavings result in error behav-

ior and the correct behavior of the program depends on which thread schedule is used [87].

For example, Figure 2.3 depicts an implementation of a producer-consumer program [10]

that exhibits race conditions. The producer-consumer program comprises threads that pro-

duce characters (lines 28–32) and threads that consume characters (lines 34–38). The char-

acters are passed between the threads via a shared buffer (lines 1–25). In this example,

threads do not synchronize their accesses to the buffer and may interfere with one another.

Such interference may corrupt the buffer. For example, consider two consumers C1 and

C2 concurrently calling get on a buffer with one item. C1 starts executing in get first but

is preempted by C2 immediately after the while-loop. C2 executes the entire call to get,

leaving the buffer empty. Finally, C1, having already passed the while-loop, decrements

size, which results in the buffer having a negative size—a clear error.

of granularity than the program-statement level, depending on how the compiler translates the source code.

14

1 class Buffer
2 {
3 public:
4 Buffer() : size(0) {}
5
6 void put(char c)
7 {
8 while (size == BUFSIZ) /* do nothing */;
9

10 carray[size] = c;
11 ++size;
12 }
13
14 char get()
15 {
16 while (size == 0) /* do nothing */;
17
18 --size;
19 return carray[size];
20 }
21
22 private:
23 int size;
24 char carray[BUFSIZ];
25 };

26 Buffer buf;
27
28 void T_producer()
29 {
30 char c = produce_a_char();
31 buf.put(c);
32 }
33
34 void T_consumer()
35 {
36 char c = buf.get();
37 consume_a_char(c);
38 }

Figure 2.3: Producer-consumer example with race conditions.

15

To avoid race conditions, threads must synchronize their accesses of shared variables—

that is, they must collaborate to ensure that they do not interfere with one another as they

access the variables. The most commonly-used synchronization mechanisms for mul-

tithreaded programs are mutual-exclusion locks (or mutexes), which can ensure threads

have mutually exclusive access to shared variables, and condition variables, which enable

threads to conditionally wait [18]. For example, Figure 2.4 depicts a new implementa-

tion of the buffer that uses locks and condition variables to prevent the race conditions

in the previous implementation. The buffer is implemented using the monitor design pat-

tern [50, 107]. Following the monitor pattern, the buffer has a mutex (or monitor lock) (line

39). Clients (i.e., producer and consumer threads) must acquire the lock when they enter

a buffer method (lines 8 and 22) and release it when they return (lines 17 and 31). This

ensures that only one client can execute within the methods of buffer at a time (i.e., the

clients have mutually exclusive access to the buffer).

The buffer also uses condition variables (lines 40 and 41) to make producers and con-

sumers wait while the buffer is full and empty, respectively. A producer that calls put while

the buffer is empty will block within a call to wait on the nonfull condition variable (line

10). When a consumer removes a character from a full buffer, it calls broadcast on the

nonfull condition variable (line 29), which unblocks any waiting producers. Consumers

wait for a nonempty buffer in an analogous fashion.

Unfortunately, incorrect synchronization can lead to other types of concurrency-specific

defects, such as deadlock, which occurs when two or more threads are mutually waiting on

one another and none can make progress [10]. For example, Figure 2.5 depicts a variant

of the producer-consumer program with multiple buffers (represented as a UML class di-

agram [102]). The producer and consumer threads interact with the buffers via a buffer

manager (Buffer Manager in the figure). If the buffers are implemented as in Figure 2.4

and the buffer manager is implemented as a monitor, then the program may deadlock. To

understand why, consider a scenario where a consumer thread attempts to get a character

16

1 class Buffer
2 {
3 public:
4 Buffer() : size(0), nonfull(lock), nonempty(lock) {}
5
6 void put(char c)
7 {
8 lock.acquire();
9

10 while (size == BUFSIZ) nonfull.wait();
11
12 carray[size] = c;
13 ++size;
14
15 if (size == 1) nonempty.broadcast();
16
17 lock.release();
18 }
19
20 char get()
21 {
22 lock.acquire();
23
24 while (size == 0) nonempty.wait();
25
26 --size;
27 char rval = carray[size];
28
29 if (size == BUFSIZ - 1) nonfull.broadcast();
30
31 lock.release();
32 return rval;
33 }
34
35 private:
36 unsigned size;
37 char carray[BUFSIZ];
38
39 Mutex lock;
40 Condition nonfull;
41 Condition nonempty;
42 };

Figure 2.4: Producer-consumer buffer implemented as a monitor.

17

Producer Consumer

index : int
<<monitor>>

Buffer

1 1

<<monitor>>

Buffer_Manager

...

1..* 1..*

+ put_in_buf(c : char, i : int)

+ get_from_buf(i : int) : char

0..11

Figure 2.5: Deadlocking variant of the producer-consumer program with an array of
buffers.

from the buffer at index i . If the buffer is empty, the consumer will wait on the buffer’s

nonempty condition variable, releasing the buffer’s lock in the process. However, the con-

sumer will still be holding the buffer manager’s lock. No other clients of the buffer manager

will be able to acquire the lock to access the buffers, thus the threads will deadlock.

Determining whether a program has concurrency-specific defects is generally difficult.

Programmers may have an especially difficult time discovering defects that only mani-

fest under certain subtle thread schedules. To determine whether a program is free from

such defects, the programmer must consider all possible thread schedules. In the case of

deadlock, the programmer must reason globally about such schedules. Unfortunately, the

number of schedules grows exponentially with the number of threads, making it difficult to

understand all the potential behaviors the program may have. Furthermore, testing may not

reveal the defect because a failing schedule is not chosen.

Even when a programmer knows that a program contains a defect, concurrency makes

diagnosing the defect difficult by rendering cyclic debugging and dependence analysis in-

effective. Cyclic debugging is ineffective because it requires repeatedly producing failing

runs of the program; however, failing runs may not be reproducible if the failure depends

on subtle thread schedules. Moreover, adding print statements to the code may cause a

18

Table 2.1: Data dependences for each thread schedule of the program in Figure 2.2.
Schedules Data Dependences

ABCD { A dd−−→ B, B dd−−→ C }
ACBD, ACDB { Y dd−−→ C, C dd−−→ B }
CABD, CADB { Y dd−−→ C, A dd−−→ B }

CDAB { Y dd−−→ C, D dd−−→ B }

probe effect where the presence of the statements affects how threads are scheduled and as

a result, prevents the defect from manifesting [44].

Dependence analysis is ineffective because reasoning about data and control depen-

dences in concurrent programs is difficult. In a sequential program, the program statements

execute sequentially, which enables the programmer to trace the dependences through the

code with relative ease. In a concurrent program, control flows nonsequentially through

the code as the scheduler switches between different threads. This makes reasoning about

inter-thread dependences difficult. Moreover, the data dependences vary depending on the

thread schedule. For example, Table 2.1 lists the data dependences associated with each

thread schedule for the program in Figure 2.2. In the table, a
dd−−→ b denotes that statement

b is data dependent on statement a.

2.1.3 Attempts to Address the Challenges

The literature includes numerous approaches that address the difficulty of debugging con-

current programs. Replay approaches address the problems with cyclic debugging by mak-

ing executions deterministic. Automated slicing approaches perform dependence analysis

to compute all the statements that a specified target statement is data or control depen-

dent on. Still other approaches, such as those for detecting defects, provide information

that is useful during debugging. In this section, we survey the work related to debugging

concurrent programs.

19

Replay

Replay involves two steps: recording and playback. During recording, the program is ex-

ecuted and the replay system dynamically collects information, such as the order in which

instructions were executed or the values of program data at different points. During the

playback, the replay system uses the recorded information to faithfully reproduce the orig-

inal execution. Some nondeterminism is acceptable during playback as long as the order of

the interactions between threads is the same as in the original execution.

Programmers can apply a replay system to debugging in two ways. In the first use

case, the programmer continuously records a deployed program—that is, a program being

used “in the field.” In the second use case, deployed programs are not recorded, and the

programmer attempts to reproduce and record a failing execution “in the lab.” Recording a

failing run that occurs while the program is deployed has the benefit that the programmer is

not forced to reproduce the failure, which may be expensive and may depend on luck. If the

programmer expends the effort of finding a way to reliably reproduce a failure, then he has

defeated the purpose of the replay system in first place. Recording deployed programs has

the drawback that recording inevitably degrades the program’s performance, which may be

unacceptable to the program’s users.

The primary challenge to implementing a practical replay system is recording. For

either of the two previous use cases, recording should be minimally intrusive so as not to

degrade performance by interrupting the program’s natural execution or using too many

system resources. Moreover, for the second use case, the recording system should avoid

or at least minimize the possibility of probe effect; otherwise, it may be impossible to

reproduce (and record) the failure.

The literature includes two types of approaches to implementing replay: contents based

and ordering based. Contents-based approaches emphasize the replay of individual pro-

cesses. These approaches record all the messages that each process receives and all the

shared data values that each process reads. During playback, a single process executes and

20

is fed the recorded data by the replay system rather than actually interacting with other

threads. Curtis and Wittie [34] implemented one of the earliest replay systems, BugNet,

which was contents based and for message-passing programs. Unfortunately, in practice,

contents-based approaches do not scale well because the large volume of data they record

generates unacceptable runtime overhead.

Ordering-based approaches address the problem of recording too much data by only

recording the ordering of events and allowing the program to recompute all the other data

during playback. Carver, Tai, and colleagues [19, 20, 119, 120] developed the first ordering-

based replay system, which only records the order of explicit synchronization events (re-

ferred to as a synchronization sequence), such as the invocation of mutex operations and

message sends and receives. They store the synchronization sequence using a global queue

of process identifiers. During playback, each process may only execute a synchronization

operation if its identifier is next in the queue; otherwise it waits. LeBlanc and Mellor-

Crummey [66] developed another ordering-based replay system, Instant Replay, which

models synchronization operations as accesses of shared variables. They represent the

ordering of such accesses as a sequence of version numbers. During replay, each process

may only execute a synchronization operation if the associated variable has the same ver-

sion number as in the original execution; otherwise, the process waits. Both of these replay

systems have the limitation that the programs they replay may not contain data races—that

is, unsynchronized accesses of shared variables. Although these ordering-based approaches

are more efficient than their contents-based predecessors, they are still not efficient enough

to be practical—especially at the level of granularity required to handle data races.

Netzer and Miller [86, 85] developed a replay system capable of supporting programs

that contain data races. Their approach is based on the observation that the ordering of only

a subset of process interactions needs to be recorded to enable playback—specifically, the

ordering of interactions that represent races. The system detects such races on-the-fly—

that is, as the program executes—and decides which interactions to record accordingly.

21

Levrouw and colleagues [72], and Choi and Srinivasan [25] developed similar systems that

further reduce the recording overhead in exchange for less efficient playback. Despite the

reductions in recording overhead, these replay systems still do not scale well at the level of

shared-memory accesses. One reason for the problem is that their performance depends on

the ability to efficiently identify which variables are shared, which is nontrivial in modern

programming languages. Furthermore, a conservative approach that treats all variables as

shared is too inefficient to be practical.

Ronsse, De Bosschere, and colleagues [45, 101] developed a replay system based on

Levrouw and colleagues’ approach that works at the level of explicit synchronization op-

erations. However, like the Carver and LeBlanc systems, replay may be nondeterministic

if the program contains data races. To address this problem, Ronsse, De Bosschere, and

colleagues [101] incorporated a dynamic data-race detector (see Section 2.1.3) into their

system to automatically check for the presence of data races during playback.

Russinovich and Cogswell [103] tried to support the replay of programs that contain

data races by recording a complete thread schedule. They capture the schedule from the

operating-system thread scheduler by recording the value of an instruction counter [80] at

the points of preemption during an execution. The instruction counter has a unique value

for each instruction in an execution of the program. During playback, the scheduler uses

the stored counter values to decide when to preempt a process. Although their approach is

highly efficient, it is limited to uniprocessor systems and depends on access to the thread

scheduler that is not available under most commercial operating systems.

A final group of approaches attempts to address the inefficiency of recording with hard-

ware support [6, 84, 136]. Although, these approaches achieve the best performance, they

rely on experimental hardware architectures that are not generally available.

A general problem with cyclic debugging (and, by extension, replay) is that the fail-

ing execution may be overly long. The literature describes approaches for shortening such

executions for sequential programs, such as through delta debugging—a general approach

22

for reasoning about the differences between runs of a program [138]. However, these ap-

proaches are not effective for concurrent programs. Moreover, concurrent programs exac-

erbate the problem because a program containing a subtle concurrency defect may run for

a very long time before the defect manifests. The work on reversible execution [95, 88]

addresses this problem for concurrent programs by enabling the programmer to jump to

intermediate points in the execution during playback. These approaches generally involve

recording checkpoints—that is, snapshots of the global system state—during the original

execution. Unfortunately, checkpoints tend to be very large making these approaches too

inefficient to be used in practice.

Slicing

Slicing is an automatable application of dependence analysis [121, 129, 135]. It is a

program-transformation technique that, given a slicing criterion, removes statements in

the program so that the remaining statements represent all the transitive data and control

dependences with respect to the slicing criterion. A slicing criterion is typically a state-

ment or a subset of the variables used in a statement. The remaining statements (or slice)

may constitute an executable program. Automated slicing was originally proposed as a

way to reduce debugging effort [129], but has since found a number of other applications,

including program comprehension [75], testing [97], and formal verification [48].

Automating slicing is technically challenging and has been a hot area of research

(cf. surveys by Tip [121], and Xu and colleagues [135]). Automated slicing solutions

attempt to address several key issues: (1) slice precision, (2) slice recall, and (3) efficiency

of slicing algorithm. Slice precision decreases as more statements that cannot influence the

slicing criterion are included in the slice (i.e., a slice with no statements is 100% precise by

default). Slice recall increases as more statements that can influence the slicing criterion are

included in the slice (i.e., a slice with all the statements in the program has 100% recall by

default). Modern programming language features, such as procedures, pointers, dynamic

23

binding, and exception handling, make it difficult to compute slices with both high preci-

sion and high recall. Solutions tend to be conservative—that is, they sacrifice precision to

ensure recall. This makes sense for debugging where a slice that may not contain the defect

is of little value. Furthermore, the computations required to produce precise slices are often

inefficient or even intractable. Solutions attempt to strike a balance between efficiency and

precision—often sacrificing precision for a simpler, more-efficient slicing algorithm.

Automated slicing solutions are most commonly based on a graphical approach [93].

First, the slicer generates a control-flow graph (CFG) for the program, which is a graphical

representation of all the paths that might be traversed through the statements of a program

during execution [1]. For example, Figure 2.6 depicts the CFG for the program from Fig-

ure 2.1. Second, the slicer transforms the CFG into a program dependence graph (PDG),

which has the same nodes as the CFG, but the nodes are connected by arcs representing

their control and data dependences. For example, Figure 2.7 depicts the PDG for the pro-

gram from Figure 2.1. Finally, given a slicing criterion (e.g., a statement in the program),

the slicer computes a slice by computing all the nodes that are reachable from the slic-

ing criterion by traversing dependence arcs. For example, Figure 2.8 depicts the nodes

reachable from the statement on line 37 (i.e., the slice on line 37).

The previous example depicted static slicing, which computes a program’s dependences

by analyzing the source code. An alternative approach is dynamic slicing, which computes

dependences that appear during a particular execution of the program—that is, statements

that did not execute during the run will be omitted from the slice [61]. Dynamic slicing

has the advantage of producing smaller slices, which are tuned for particular executions.

In debugging, the smaller slice creates a smaller search space for the defect. However, the

slice must be based on a failing execution, which may be difficult to produce for concurrent

programs.

The original work on slicing concurrent programs took a dynamic approach and focused

on message-passing systems. Korel and Ferguson [60] log the sequence of statements (or

24

Control flow

11: mean = 0.0

12: stdev = 0.0

13: double a[...]

14: sum = 0.0

16: n = read_array(a)

18: i = 0

18: i < n

19: sum += a[i]

18: ++i

22: mean = sum/n

24: i = 0

24: i < n

25: a[i] = a[i] − mean

26; a[i] *= a[i]

24: ++i

29: sum = 0.0

31: i = 0

31: i < n

32: sum += a[i]

31: ++i

37: cout << mean ...

38: cout << stdev ...

35: stdev = sqrt(sum/(n−1))

Figure 2.6: Control-flow graph (CFG) for the program in Figure 2.1.

25

Data dependence

Control dependence

11: mean = 0.0

12: stdev = 0.0

13: double a[...]

14: sum = 0.0

16: n = read_array(a)

18: i = 0

18: i < n

19: sum += a[i]

18: ++i

22: mean = sum/n

24: i = 0

24: i < n

25: a[i] = a[i] − mean

26; a[i] *= a[i]

24: ++i

29: sum = 0.0

31: i = 0

31: i < n

32: sum += a[i]

31: ++i

37: cout << mean ...

38: cout << stdev ...

35: stdev = sqrt(sum/(n−1))

Figure 2.7: Program-dependence graph (PDG) for the program in Figure 2.1.

26

Data dependence

Control dependence

14: sum = 0.0

16: n = read_array(a)

18: i = 0

18: i < n

19: sum += a[i]

18: ++i

22: mean = sum/n

37: cout << mean ...

Figure 2.8: Slice on line 37 of the program in Figure 2.7.

trace) that each process executes during a particular run of a program. They compute intra-

process data and control dependences for each trace. To capture inter-process data and con-

trol dependences, they associate each message-send operation with its associated receive

operation—called communication dependence. Computing the slice involves computing

all the statements that are reachable from the slicing criterion by following dependences.

Duesterwald and colleagues [35] statically compute control dependences in the form of a

control dependence graph and insert data and communication dependences into that graph

on-the-fly. Their approach avoids the overhead of storing trace data. However, they sacri-

fice precision in the presence of loops because a single node is used for all executions of a

statement in the loop. Kamkar and Krajina [57] extended Korel and Ferguson’s approach

with support for procedure calls. None of the previous dynamic slicing approaches address

the problem of producing a failing run of the program.

Cheng [23] developed a static-slicing approach for message-passing systems by extend-

ing the previously described graphical slicing approach. In Cheng’s approach, each process

essentially has its own CFG. Intra-process data and control dependences are computed as

before. He represents inter-process data dependences as communication dependences and

27

inter-process control dependences as synchronization dependences. A statement s is com-

munication dependent on a statement t if s is data dependent on a message-receive state-

ment and an associated message-send statement is data dependent on t . A statement s is

synchronization dependent on a statement t if the start or termination of execution of t de-

termines whether s starts or terminates—for example, in the case where t is a message-send

statement and s is an associated message-receive statement. Zhao and colleagues [141] ex-

tended Cheng’s approach with support for object-oriented language features. Zhao [140]

further extended it with support for multithreaded Java features, such as condition syn-

chronization; however, he did not address the dependences that arise from unsynchronized

accesses to shared variables. The slices computed by these approaches are imprecise be-

cause they fail to take into account that inter-thread data dependences are not transitive.

Krinke [62] first addressed the static slicing of shared-memory based concurrent pro-

grams. Like Cheng, he also uses the graphical approach, except that he does not compute

the slice using simple graph reachability. Rather, his slicing algorithm uses symbolic exe-

cution to address the intransitivity of inter-thread data dependences. To capture inter-thread

data dependence, he introduces interference dependence. A statement s executed by thread

Ts is interference dependent on a statement t executed by thread Tt (Ts 6= Tt) if there

exists a schedule such that t defines a variable v , which is referenced in s , and s’s exe-

cution follows t’s with no intervening definition of v . Krinke’s original approach was in

the context of an extremely simple language, which lacked many common features, such

as loops and synchronization mechanisms. Nanda and Ramesh [83] extended Krinke’s ap-

proach with support for nested threads and loops. Krinke [63] extended his original work

with support for procedure calls. This support takes calling context into account, which

produces more precise slices. Hatcliff and colleagues [48] extended Krinke’s approach for

multithreaded Java. In particular, they added support for Java’s monitor synchronization

mechanisms. To represent the inter-thread control dependences these mechanisms create,

they introduced ready dependence. A statement s executed by thread Ts is ready depen-

28

dent on a statement t executed by thread Tt (Ts may equal Tt) if there exists a schedule

such that s will not complete unless t does. Ranganath and Hatcliff [99] addressed the in-

efficiency of Krinke’s symbolic-execution based slicing algorithm with an approach based

on escape analysis; however, their approach sacrifices some precision.

Other Approaches

Numerous other tools and methods provide support for the debugging of concurrent soft-

ware. Traditional parallel debuggers behave like a collection of sequential debuggers (e.g.,

GDB) such that processes (and their console output) are displayed individually [77]. Like

sequential debuggers, they allow the programmer to pause the program’s execution by set-

ting breakpoints and to inspect various aspects of the program’s state. The programmer

can perform such operations on individual processes or on groups of processes. The utility

of parallel debuggers is rather limited in that they do not address probe effect, do not ad-

dress the difficulty of reproducing failures, and display information at the level of program

instructions, making it difficult to reason about what is happening at the level of process

interactions.

Similar to replay, event-history browsers [30, 67, 98, 114] record events during a pro-

gram’s execution and allow the user to subsequently inspect the recorded events. They

typically store the events in databases, and inspection involves querying the databases.

This type of approach does not scale well as it imposes high overhead during recording.

The literature includes a number of approaches for detecting the presence of errors in

concurrent programs. These approaches generally provide feedback when they detect an

error that can aid debugging. Race detectors automatically discover data-race errors in con-

current programs. There are two main approaches to race detection: static and dynamic.

Static race detectors [2, 41] discover data races by analyzing the program sources. They

tend to be imprecise, reporting a large number of spurious races, because modern program-

ming language features, such as pointers, make predicting what data is shared difficult or

29

undecidable. Dynamic race detectors discover data races by analyzing the events during an

execution of the program. They perform the analysis on a recorded event history [81] or

on-the-fly [22, 24, 91, 106, 128]. They tend to be more precise than static detectors because

they analyze the events that actually occur during an execution. However, they tend to have

reduced recall, missing some races, because parts of the program that do not execute during

the run will not be analyzed. When a race detector detects a race, it provides feedback to

aid debugging, such as the statements and variables involved in the race.

Model checking [17, 26, 27, 28, 31, 36, 55, 76] detects errors by automatically ana-

lyzing whether a program violates specified correctness properties. The approach involves

constructing a behavioral model of the program. If the model checker finds that a property

is violated, it reports a counterexample describing the behavior that leads to the violation.

In practice, models that represent all possible program behaviors cannot be analyzed be-

cause they are intractably large. To make analysis tractable, models must be sufficiently

abstract, omitting aspects of the program that are not salient to the analysis. However, the

more abstract the model, the less it resembles the program’s implementation. Moreover,

the modeling languages accepted by model checkers use very different constructs than the

programming languages. These differences make it difficult to trace features in the model

to features in the code. Thus, it is difficult to tell if the model accurately represents all the

salient features of the program. Moreover, it is difficult to relate the behavior described in

a counterexample to the associated part’s of the program’s implementation.

Formal proof techniques [4, 94] provide another way to determine whether a program

satisfies correctness properties. They offer very little automated support, and the program-

mer typically must do much of the proof by hand. In performing the proof, the programmer

makes observations about where in the code violations of properties occur—for example,

he may discover that parts of the program violate a specified invariant. Such observations

are useful for debugging. Unfortunately, proof techniques are difficult to apply correctly,

and programmers rarely use them.

30

2.2 Empirical Methods

Selecting appropriate empirical research methods is key to achieving useful and valid re-

sults. A method must be capable of addressing the research questions of interest. Equally

important, the method must produce answers to the questions that the target research com-

munity will accept as scientific truth. However, research communities, and even people

within those communities, vary in their assumptions about scientific truth. This variation

arises from differences in philosophical stance. The predominant philosophical stance in

software engineering is positivism [92].4

Positivism states that “all knowledge must be based on logical inference from a set

of basic observable facts” [37]. Positivists believe that scientific knowledge is built up

incrementally from verifiable observations. Positivism emphasizes the use of quantitative

methods, which are concerned with quantifying relationships or comparing two groups to

identify cause-effect relationships [131]. Phenomena tend to be studied in highly controlled

laboratory environments—that is, in isolation from their natural context. Unfortunately,

software engineering phenomena tend to involve large-scale and highly-complex contexts

and have important aspects that are difficult to quantify. This situation makes it difficult to

validate that strictly positivist findings will generalize to practice.

In recent decades, software-engineering researchers have begun using qualitative meth-

ods to address the shortcomings of the strictly positivist approach. These methods are

concerned with studying phenomena in their natural contexts. Qualitative data emphasizes

words and pictures, not numbers. Qualitative methods address the full complexity of a

phenomena rather than abstracting complexity away like quantitative methods do. They

are useful for answering “why” questions that involve variables that are difficult to quan-

tify. Qualitative results have the drawback that they tend to be difficult to simplify and

summarize, and are often regarded as “softer” than quantitative results. Using mixed meth-

4 Other philosophical stances include constructivism, critical theory, and pragmatism, and are beyond the
scope of this dissertation.

31

ods—that is, combinations of quantitative and qualitative methods—can compensate for

the weaknesses of some methods with the strengths of others. Our work incorporates both

qualitative and quantitative methods.

2.2.1 Qualitative Methods

The question of what strategies successful programmers use to debug concurrent software

is exploratory in nature—that is, it is concerned with generating a new theory. We base

our approach to theory generation on the grounded theory approach [32]. It emphasizes

the collection of rich qualitative data. Through iterative analysis, we develop a theory that

fits the data. In the current work, we employ several qualitative methods for data collection

and analysis.

We base our data collection on think-aloud observation [39, 109, 122]. This method

involves observing participants as they engage in some activity. Participants “think aloud”

as they perform the activity—that is, they verbalize their internal monologue (or stream

of consciousness). The method provides insight into participants’ goals and intentions—

information that is particularly useful for identifying strategies. The data collected must

be highly detailed to facilitate fine-grain analysis. We collect audio and video data of each

performance to ensure that important details are not lost.

Coding constitutes the foundation of analysis. It involves the identification of concepts,

which are classes of objects, events, and actions that occur in the data [32]. Each concept is

assigned a unique identifier, which is referred to as a code. The researcher also develops a

coding scheme, which specifies how the concepts can be identified in the data [122]. For ex-

ample, a researcher might associate a code guessing with each of a participant’s utterances

that are of the form “Maybe it is X” or “Let’s try X.” The codes can be treated as quantita-

tive variables, which can be counted or subjected to other statistics [109]. Because coding

may be subjective, the validity and consistency of codes is a major concern. To address

this concern, multiple researchers code the same data and compare their results (referred

32

to as a rater-agreement exercise [109]). The researchers must reconcile any disagreement,

refining their coding scheme in the process.

The constant comparison method prescribes a process for iteratively creating and ap-

plying codes, and developing explanations of phenomena [32]. Initially, data is collected

and repeatedly reviewed and re-reviewed to formulate a hierarchy of codes. At this stage,

tentative explanations for the underlying phenomena are formed. In subsequent rounds

of data collection and analysis, the codes and explanations are reevaluated and refined as

necessary. Data may be reanalyzed during the refinement stage as well.

The cross-case analysis method divides the data into cases to be compared [109]. Using

different divisions, the data can be analyzed in different ways. For example, we are con-

cerned with comparing the strategies of successful programmers with unsuccessful. Using

cross-case analysis, we divide our data into the sessions of successful and unsuccessful

programmers. We then compare the data of the successful and unsuccessful cases to see if

there are differences in the strategies they used. We might subsequently divide the data into

cases based on some other attribute to gain another perspective on the data. Back-and-forth

analysis of cases is common in grounded theory research.

2.2.2 Quantitative Methods

Quantitative research emphasizes the numerical measurement of phenomena and the iden-

tification of cause-effect relationships [131]. In software engineering, the three most com-

mon strategies for quantitative research are surveys, case studies, and controlled experi-

ments [40]. Surveys are retrospective studies of events that involve investigating relation-

ships and outcomes after the fact. In contrast, case studies and controlled experiments are

not retrospective—that is, they involve making observations as events actually occur. Case

studies investigate a phenomenon within its real-life context, whereas controlled experi-

ments are conducted in a carefully regulated environment, such as a laboratory. Controlled

experiments are most closely associated with quantitative research [131]. We conducted an

33

experiment to test a hypothesis that emerged from our qualitative research.

Experiments are designed to investigate causal connections between measurable phe-

nomena [131]. Our work is concerned with the investigation of phenomena associated with

the performance of tasks by human participants. The experimenter manipulates some factor

of the experimental task to measure the effect. The manipulated factor and the measured

effect are referred to as the independent variable and dependent variable, respectively. If

the experiment is successful, then the effect on the dependent variable depends on the ma-

nipulation of the independent variable. Thus, the experimenter can make inferences about

a causal relationship between the variables. A challenge in experimental studies is keeping

all other factors constant, so a clear comparison of the effects on the dependent variable

can be made. A confounding variable is a factor other than the independent variable that

affects the dependent variable and that may mask the effects of the independent variable.

2.3 Related Empirical Studies

In this section, we describe the empirical studies from the literature most closely related

to our own work. These studies predominantly investigated the detailed behaviors of pro-

grammers related to debugging. We also include studies that focused on program compre-

hension, an activity closely related to debugging. The majority of this work is exploratory

in nature and involves the collection and analysis of qualitative data (esp. observations of

programmers at work).

Gould and Drongowski [46, 47] conducted early studies of programmers engaged in

debugging. In particular, they observed students and professionals diagnosing defects in

small (less than 100 SLOC) FORTRAN programs. The studies took place in a controlled

laboratory environment. Both quantitative and qualitative data yielded several interesting

results. Gould and Drongowski found that programmers “ease into” debugging—that is,

they put off dealing with more complex parts of the code until all other options are ex-

34

hausted [47]. They found evidence that simply reading code yields defect diagnoses faster

than cyclic debugging [47]. Through qualitative analysis, Gould derived a high-level model

of the debugging process, which emphasizes an iterative process of generating, verifying,

and refining hypotheses regarding the defect [46].

Weiser [130] investigated whether programmers implicitly perform slicing when they

debug. Specifically, he wanted to see if programmers mentally construct slices by tracing

data and control dependences backward through the code to find the source of an error. He

conducted a controlled experiment in which programmers debugged a program and were

tested to see if they remembered relevant slices as well as relevant contiguous code. He

found that programmers indeed remember slices, and concluded that they implicitly use a

slicing strategy when they debug.

Vessey [123] also studied the behaviors of programmers engaged in debugging. She

used the think-aloud method to investigate the debugging practices of expert and novice

programmers. The results suggest that experts tend to solve a debugging problem us-

ing a deliberate and precautionary strategy of hypothesis generation and validation. This

breadth-first problem-solving approach involves first gaining a high level of understanding

of the problem—in the process making hypotheses about the cause of the failure—and then

attempting to verify or refute the hypotheses. By contrast, a depth-first approach involves

attempting to verify hypotheses as they are formed—prior to gaining a high-level under-

standing of the problem. Furthermore, the results suggest that expert programmers use the

breadth-first approach in conjunction with system thinking, which involves creating an im-

plicit mental model of the program’s structure and function, and that novice programmers

use both breadth-first without system thinking and depth-first approaches.

Hochstein, and colleagues [9, 51, 52, 53, 54] constitute one of the few research groups

to empirically study concurrent programmers. They studied the debugging habits of com-

putational scientists who develop large concurrent applications [52]. However, scientific

applications represent a fundamentally different type of concurrent software than the reac-

35

tive server applications emphasized in our work. As such, there are marked differences in

how the two types of applications are developed. For instance, scientific applications are

commonly written using the MPI programming model [113], whereas reactive applications

commonly use the POSIX Threads model [18]. The researchers collected data by inter-

viewing scientists, which is in contrast to the detailed observations of programmers used in

our work. They found that computational scientists depend heavily on cyclic debugging,

which is performed using traditional parallel debuggers (e.g., TotalView5) and diagnostic

print statements. However, they did not find any special techniques for replicating failures.

They also noted that batch scheduling, which is commonly used with scientific applica-

tions, makes cyclic debugging more difficult because jobs can take a long time (as much as

a week) to be scheduled.

Littman and colleagues [73] investigated the nature of program understanding by ana-

lyzing the strategies and knowledge programmers employ in performing perfective main-

tenance. The participants, who were professional programmers, added a feature to a small

program, and a researcher asked them questions about their thoughts as they worked. The

results from the study suggest that a systematic comprehension strategy is more effective

than an as-needed strategy. The systematic strategy involves starting at the beginning of

the program and tracing the flow of the entire program, using various forms of simulation.

In contrast, the as-needed strategy involves studying only those portions of the code that are

believed to be useful for the task at hand. Furthermore, the results suggest that two distinct

kinds of knowledge—static and causal—must be gained during systematic comprehen-

sion. Static knowledge refers to an understanding of a program’s functional components

(e.g., roles, classes and methods), whereas causal knowledge refers to an understanding of

how the functional components interact at run time.

Several recent studies have called into question the usability of the systematic com-

prehension strategy for large programs [59, 124, 100]. These studies involved observing

5http://www.totalviewtech.com/

36

http://www.totalviewtech.com/

participants performing maintenance tasks on programs that were significantly larger than

that used in the original study. The results of the studies suggest that no participant used

the systematic strategy because of the limited scalability of the strategy. In addition, the

results of one of the studies suggest that in lieu of the systematic strategy, a methodical

approach to change tasks leads to success [100]. Such an approach involves investigating

enough of the code to understand the high-level structures of the system, preparing a plan

of the change to be made, and implementing the plan in a linear fashion. In contrast, an

approach that is ad hoc and opportunistic tended to lead to failure.

Von Mayrhauser and Vans [124] investigated the information needs of programmers

comprehending programs in the context of debugging. Their work is notable because it is

among the first to study programmers working on large-scale software (greater than 40,000

SLOC). They found that programmers who are engaged in debugging familiar programs

emphasize the need for low-level data and control flow knowledge. This low-level knowl-

edge is in contrast to higher-level knowledge about implementation plans related to the

application domain. They also found that managing hypotheses about code tends to be

taxing on cognitive resources, such as working memory. To address the problem, they

recommend the development of a tool to help manage such hypotheses.

Two related studies investigated the process programmers use for gathering and using

information during maintenance [58, 65]. These studies were both geared toward informing

the design of integrated development environments (IDEs). In the first study, participants

performed several corrective and perfective maintenance tasks on a small program [58].

The results of this study suggest that programmers use a process of searching for, relating,

and collecting information wherein the ability to evaluate the relevance of information is

key. Based on these results, the authors recommend that IDEs should provide clear cues

to help programmers judge the relevance of information, and support for collecting the in-

formation the developer deems relevant. The second study used a think-aloud design and

involved participants performing refactoring tasks on a large (roughly 55,000 LoC) pro-

37

gram [65]. The results of this study suggest that program comprehension is driven by the

seeking, evaluating, explaining, and relating of facts about the program’s design and im-

plementation. Moreover, a key factor in the comprehension process was the programmer’s

uncertainty that he had correctly grasped all the relevant facts. Based on the results, the

authors suggest that a tool that explicitly represents facts and maps them to parts of the

code could help developers work more effectively. Such a tool was previously developed

to address the concept-assignment problem, which is the problem of discovering human-

oriented concepts, such as computational intent from the application domain, and relating

those concepts to implementation structures in the code [12].

Several think-aloud studies investigate the questions programmers ask during mainte-

nance tasks [69, 111]. A goal of these studies is to develop a taxonomy of questions, which

may be used to inform the design of tools and documentation. In the first study, participants

added a feature to a small program [69]. The results of this study suggest that programmers

ask five types of questions: (1) why questions regarding the role pieces of code play, (2)

how questions regarding the method for accomplishing a goal, (3) what questions regarding

what a variable or function is, (4) whether questions regarding whether code behaves in a

certain way, and (5) discrepancy questions regarding confusion over a perceived inconsis-

tency. Two subsequent studies (conducted in tandem) extend the findings of the first study

by incorporating larger, more-realistic programs and seeking to develop a richer, more com-

prehensive taxonomy of questions [111, 112]. The results of these two studies yielded a

catalog of 44 types of questions organized in four categories related to the level of program

understanding reflected in the questions.

Numerous studies have driven the development and validation of theories regarding the

cognitive processes and knowledge structures programmers use during comprehension and

maintenance tasks (e.g., [69, 96, 115, 117, 125, 126]). These studies generally employ the

think-aloud method. Unfortunately, the theories tend not to be rendered at the level of detail

necessary to address the issues of concurrency.

38

2.4 Notations and Visualizations for Thread Interactions

In this section, we describe some notations and visualizations that serve to externalize rep-

resentations of thread interactions. First, we describe the UML sequence diagram notation,

which is a focus of our work. Second, we describe our multithreaded extension to the se-

quence diagram notation. Lastly, we describe some other notations and visualizations of

multithreaded-program behavior from the literature.

2.4.1 UML Sequence Diagrams

The Unified Modeling Language provides two notations for representing interactions: se-

quence diagrams and communication diagrams [102].6 Sequence diagrams represent sce-

narios of execution by displaying the sequence of messages exchanged between objects.

Figure 2.9 depicts a sequence diagram with various parts of the diagram labeled. The no-

tation defines two kinds of objects: active and passive. An active object has an associated

thread of control, whereas a passive object does not. Time advances down a sequence di-

agram. The objects are depicted as rectangles along the top of the diagram. The name

and type of the object is given inside the rectangle. Bars on the left and right sides of the

rectangle distinguish active from passive objects. A lifeline extends downward from each

object. Execution specifications (or activations) represent the execution of methods and are

depicted as bars that overlap the lifelines. An activation bar always covers the lifeline of

an active object because the active object continuously executes a method, which contains

a control loop. An object’s lifeline may be adorned with object states to denote a change

in the state of the object. Object states appear as roundtangles that contain a description of

the new state (typically in the form of a predicate). Sequence diagrams represent the inter-

actions between objects as a sequence of message sending actions between objects. A solid

arrow labeled with the operation name and parameters denotes the call of an operation. A

6 In this dissertation, we emphasize the use sequence diagrams to represent interactions and do not cover
communication diagrams.

39

obj1 : Type1 obj2 : Type2

sd Example

operation1(arg1, arg2)

rval1

specification

execution

call message
return message

object state

lifeline

passive objectactive object

var1 = 100

var1 = 0

Figure 2.9: Example of a UML sequence diagram.

dashed arrow denotes the return from an operation and may be optionally labeled with a

return value.

Figure 2.9 depicts an interaction between an active object obj1 and a passive object

obj2. Initially, obj2’s attribute var1 is zero. obj1 calls the operation operation1 on obj2.

The arguments to the call are arg1 and arg2. During the execution of the operation, var1 is

set to one hundred. Upon the completion of the operation, obj2 returns the value rval1 to

the caller.

Sequence diagrams provide features that are useful for modeling interactions in multi-

threaded systems. Threads can be modeled as active objects and shared resources as passive

objects. The diagram visualizes the dynamics of synchronization, showing the ordering of

interactions between threads in a single program trace. Unfortunately, the sequence di-

agram notation does not define a way to denote concurrent activations. Such activations

commonly occur in thread interactions. Moreover, the sequence diagram notation lacks

convenient features for expressing properties of multithreaded systems, such as a thread’s

execution state, which may be ready, running, blocking, or terminated. To address these

40

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

T1 T2 T3acct

T1

T2

deposit(16.00)

T3

sd Bank Withdrawal

lock = (0, { })

okToWithdraw = { T1, T2 }

balance = 10.00

balance = 26.00

lock = (0, { })

lock = (T3, { })

lock = (T1, { })

lock = (0, { })

balance = 11.00

okToWithdraw = { }

lock = (0, { })

okToWithdraw = { T2 }

lock = (T2, { })

thread

running

currently

switch

context

and set of waiters

holder (0 for unheld)

mutex state:

set of waiters

condition state:

activation

begin concurrent

ready or

running

condition broadcast

(similar for signal)

activation

end concurrent

initial state

blocked

condition wait

mutex acquire

mutex release

Figure 2.10: Multithreaded extentions to UML sequence diagram notation.

shortcomings, others have proposed limited extensions, which we describe in Section 2.4.3.

2.4.2 Multithreaded Extension to UML Sequence Diagrams

To address the lack of support for multithreading in standard UML, we designed a multi-

threaded extension to the sequence diagram notation. Figure 2.10 depicts an example that

uses our extension with the features of the extension labeled. In the example, threads T1

and T2 are initially blocking within invocations of the acct operation withdraw .

41

Our extension uses several new notations to represent the execution state of each thread.

A hatched activation bar indicates that the thread associated with the activation is in the

blocked state. A non-hatched activation bar indicates that the associated thread is in the

ready or running state. Horizontal lines that crosscut the entire diagram indicate context

switches. Labels along the left hand side of the diagram indicate when the various threads

run. The context-switch lines denote the point that the running thread changes.

The UML sequence diagram notation does not define how to denote concurrent activa-

tions of objects. We use branches of an object’s lifeline to denote concurrent activations.

When a concurrent activation ends, the branch merges once again with the original lifeline.

The UML sequence diagram notation does not provide a convenient way to denote

mutex and condition variable state. We use such object states to denote the effects of

invoking operations on mutexes and condition variables. We represent the state of a mutex

as the pair (h,W). Here, h represents the holder of the mutex (0 indicates that the mutex

is not held), and W represents the set of threads waiting on the mutex. In Figure 2.10, the

first object state after T3 calls deposit indicates that T3 has acquired the mutex name lock .

The object state immediately before T3 returns from deposit indicates that T3 has released

the lock.

We represent the state of a condition variable as the set of waiters W . The bottommost

object state in the figure indicates that T2 waits on the condition variable okToWithdraw .

This object state also depicts the release of lock by T2. The T2 activation bars become

hatched immediately following the state roundtangle to indicate that T2 begins blocking.

Furthermore, a context switch occurs as a result of T2 entering the blocking state.

2.4.3 Other Visualizations

Approaches to the visualization of thread interactions can be classified as either static or

dynamic. Static visualizations involve fixed images, whereas dynamic visualizations in-

volve animated images. Our work focues on UML sequence diagrams, which are static

42

visualizations.

Others have extended sequence diagrams to better support concurrent software. Mehner

and Wagner [78, 79] added shading conventions on execution specifications to indicate

when and within which activation threads are ready or running. This convention implic-

itly denotes when a thread is blocking (all the thread’s activations are unshaded); however,

our convention makes blocking more explicit. Moreover, their extension also does not

completely capture thread-state information, such as which thread is running and when

context switches occur. Their extension is geared toward Java and includes calls to a dis-

tinguished synchronize operation, which is invoked to lock an object. They model calls

to Java synchronized methods using execution specifications that begin with a call of the

form synchronize(this). Likewise, entry into a Java synchronized block on some object

o is modeled by a call of the form synchronize(o). Because calls to this distinguished

operation may block, this extension depicts the blocking of threads, which makes dead-

locks easier to recognize. However, Mehner and Wagner’s extension abstracts away subtle

details, such as when locks are released during condition synchronization. Our extension

represents this information using object states.

Xie and colleagues [132, 134, 133] also developed a concurrent extension to sequence

diagrams. Their extension uses colored activations to indicate the state of each thread (i.e.,

running, blocking, or ready). With this approach context switches are implicit and not as

apparent as with our notation. Moreover, their use of color makes the diagram inconve-

nient to draw by hand with a pen or pencil. It also precludes the use of colors to distinguish

the activations of different threads—a feature that our extension can support. Xie and col-

leagues’ extension assumes that all passive objects are monitors. This assumption reduces

flexibility because, unlike our extension, they do not explicitly represent mutexes and con-

dition variables. Like our extension, theirs uses object states to indicate when a monitor

lock is held; however, unlike our extension, theirs does not explicitly represent the threads

waiting on locks and condition variables.

43

Newman and colleagues [90] propose two new diagramming notations to statically vi-

sualize concurrency-related design decisions that are not easily derived through code in-

spection. Their regional state hierarchy diagram extends the UML class diagram to depict

the structure of lock-state associations. The notation identifies the shared state within a set

of classes and describes how that state is protected. Their method concurrency diagram

extends a call graph to show which methods invoke operations on which mutexes and con-

dition variables, which mutex protects each condition variable, and which data each lock

protects. Although their diagrams do not model thread interactions explicitly, they provide

supporting information that could be useful in conjunction with, for instance, a sequence

diagram.

Traditional parallel debuggers (e.g., [77]) provide a rudimentary dynamic visualiza-

tion by displaying a debugger window for each thread. Other dynamic visualization tools

show the status of various properties as a multithreaded program executes. Leroux and

colleagues [68] developed a tool that dynamically elaborates a standard UML sequence

diagram, and as the diagram grows, the tool also displays the current state of each thread.

Although static visualizations are our current focus, we plan to investigate dynamic visual-

izations in future work.

2.5 Thread-Interaction Complexity Metrics

As part of our controlled experiment, we needed to assess the complexity of thread in-

teractions so that we could see whether complexity impacts the benefit of using external

representations. We believe that the complexity of a thread interaction is driven not only by

its size, but by a number of concurrency-related properties. For instance, it stands to rea-

son that interactions involving more threads tend to be more complex than those involving

fewer threads. Complexity also seems to increase with the level of contention. For exam-

ple, an interaction over a monitor where context switches never occur while a thread is in

44

the monitor (and thus no blocking occurs) seems less complex than a similar interaction

where threads must block and unblock. Similarly, interactions with more context switches

between threads may tend to be more complex than those with fewer context switches.

We have identified three properties that we suspect contribute significantly to the com-

plexity of a thread interaction: (1) the number of threads involved in the interaction, (2) the

number of times threads block or unblock, and (3) the number of context switches. In this

section, we define rigorous metrics for these properties based on labeled transition system

(LTS) models of multithreaded programs.

2.5.1 Modeling Multithreaded Programs as LTSs

LTSs have been widely used to model concurrent programs [76]. In such models, states in

the LTS represent abstract program states, and actions in the LTS represent atomic program

instructions. For example, Figure 2.11 depicts an LTS model Example of a multithreaded

program. The program comprises two threads t1 and t2, and each thread acquires and

releases a shared lock infinitely often. Given an LTS model of a concurrent program, a

thread interaction can be modeled as a trace of the LTS. A trace refers to the sequence of

states and actions produced by executing the model. For example, Figure 2.12 depicts a

trace ExampleTrace over the Example model.

We define our metrics over traces of an LTS, where we assume the LTS faithfully mod-

els the program and also possesses the properties described below. Others (e.g., [76]) have

developed methods for modeling a program as an LTS. Our metrics assume that the model

satisfies two properties. First, each transition in the model is associated with one and only

one thread. Second, blocking and unblocking actions by threads are modeled explicitly.

For instance, the Example model possesses these properties. Each action models the exe-

cution of exactly one thread. For instance, t1.acquire models thread t1 acquiring the lock,

whereas t2.acquire models t2 acquiring the lock. Also, the actions t1.tryAcquireBlock

and t2.releaseUnblockT1 explicitly model t1 entering and exiting the blocking state, re-

45

t2.release t1.release

t2.acquire t1.acquire

t2.releaseUnblockT1 t1.releaseUnblockT2

t1.tryAcquireBlock t2.tryAcquireBlock

t1 blocks

S4:

t2 holds unlock t1 holds
t2 blocks

t1 holds,

S3:

t2 holds,
S2: S0: S1:

Figure 2.11: LTS model Example of a multithreaded program that comprises two threads
t1 and t2 that each infinitely acquires and releases a shared lock.

s0
t2.acquire
−−−−−−−→ s2
t2.release
−−−−−−−→ s0
t1.acquire
−−−−−−−→ s1
t2.tryAcquireBlock
−−−−−−−−−−−−−→ s3
t1.releaseUnblockT2
−−−−−−−−−−−−−−→ s2
t2.release
−−−−−−−→ s0

Figure 2.12: One possible trace ExampleTrace of the LTS Example from Figure 2.11.

46

spectively.7 The Example model has similar actions for blocking/unblocking t2.

2.5.2 Formal Definitions

In this section, we formally describe a multithreaded LTS—that is, an LTS suitable for

modeling a multithreaded program—and define the concept of traces over multithreaded

LTSs. Based on these definitions, we define each of our metrics.

Let States be the universal set of states, Threads be the universal set of threads, and

Actions be the universal set of actions. A finite multithreaded LTS P is the 6-tuple

〈 S , T , A, Θ, ∆, q 〉 where S ⊆ States is a finite set of states, T ⊆ Threads is a finite set

of threads, A⊆ Actions is a finite set of actions, Θ⊆ A×T denotes a total, function that

maps each action to a thread, ∆⊆ S ×Θ×S denotes a transition relation that maps a state

and an action/thread pair to another state, and q ∈ S indicates the initial state of P . For

example, Figure 2.13 depicts how the LTS Example in Figure 2.11 would be defined.

We define a trace R of an LTS P to be a 3-tuple 〈RS ,RT ,RA〉 where

• RS is a sequence over S ,

• RT is a sequence over T ,

• RA is a sequence over A, such that | RT | = | RA | = | RS | −1, RS (0) = q , and

∀ i ∈ {0 . . . | RT | −1}, (RS (i), (RT (i),RA(i)), RS (i +1)) ∈ ∆.

For example, Figure 2.14 depicts a definition of the trace ExampleTrace from Figure 2.12.

Given a trace R of P , we define the following.

• The set of threads involved in R threadSet(R) =
S

RT (i), where i ranges from 0 to

| RT | −1. For example, threadSet(ExampleTrace) = { t1, t2 }.
7 Note that it is an action by t2 that transitions t1 out of the blocking state. This model is consistent with

the way mutexes are implemented in POSIX Threads.

47

S = { s0, s1, s2, s3, s4, s5 }
T = { t1, t2 }
A = { t1.acquire,

t2.acquire,

t1.tryAcquireBlock ,

t2.tryAcquireBlock ,

t1.release,

t2.release,

t1.releaseUnblockT2,

t2.releaseUnblockT1 }

Θ = { (t1.acquire, t1),
(t2.acquire, t2),
(t1.tryAcquireBlock , t1),
(t2.tryAcquireBlock , t2),
(t1.release, t1),
(t2.release, t2),
(t1.releaseUnblockT2, t1),
(t2.releaseUnblockT1, t2) }

∆ = { (s0, (t1.acquire, t1), s1),
(s0, (t2.acquire, t2), s2),
(s1, (t1.tryAcquireBlock , t1), s3),
(s1, (t1.release, t1), s0),
(s2, (t2.tryAcquireBlock , t2), s4),
(s2, (t2.release, t2), s0),
(s3, (t1.releaseUnblockT2, t1), s2),
(s4, (t2.releaseUnblockT1, t2), s1) }

Figure 2.13: Example defined as a Multithreaded LTS.

RS = 〈 s0, s2, s0, s1, s3, s2, s0 〉
RT = 〈 t2, t2, t1, t2, t1, t2 〉
RA = 〈 t2.acquire, t2.release, t1.acquire, t2.tryAcquireBlock ,

t1.releaseUnblockT2, t2.release 〉

Figure 2.14: Definition of ExampleTrace based on a multithreaded LTS.

48

• Given a set of interesting actions B ⊆A, the sequence of occurrences of those actions

in R

occursB (R) = {(i ,a) | a ∈ B ∧ (i ,a) ∈ RA}.

For example, given the set of block actions

ExampleBlock = { t1.tryAcquireBlock , t2.tryAcquireBlock }

and the set of unblock actions

ExampleUnblock = { t1.releaseUnblockT2, t2.releaseUnblockT1 },

the sequence of block and unblock actions in ExampleTrace are

occursExampleBlock (ExampleTrace) = { (2, t2.tryAcquireBlock) }

and

occursExampleUnblock (ExampleTrace) = { (3, t1.releaseUnblockT2) },

respectively.

• The sequence of threads in threadSet(R) that reflects the order in which the threads

are scheduled in R

threadSchedule(R) = {(i , t) | (i , t) ∈ RT ∧ (i = 0 ∨ RT (i) 6= RT (i −1))}.

For example,

threadSchedule(ExampleTrace) = { (0, t2), (2, t1), (3, t2), (4, t1), (5, t2) }.

49

Given a trace R of an LTS P , we define the following metrics.

• The number of threads involved in R is | threadSet(R) |. For example, the number

of threads involved with ExampleTrace is 2.

• Given the set of block actions Block ⊆ A and unblock actions Unblock ⊆ A, such

that ABlock ∩AUnblock = ∅, the number of times threads block or unblock in R is

| occursBlock (R) ∪ occursUnblock (R) | .

For example, threads in ExampleTrace block/unblock a total of two times.

• The number of context switches that occur in R is | threadSchedule(R) | −1. For

example, four context switches occur in ExampleTrace.

Given a multithreaded LTS model, these metrics are trivial to compute for any trace R.

50

CHAPTER 3

EXPLORATORY STUDY: PLANNING AND

EXECUTION

Little is known about how programmers cope with the challenges of debugging concur-

rent software in practice. We designed and conducted an exploratory study to discover

the strategies and practices that successful programmers use. We took a qualitative ap-

proach, observing fifteen individual programmers as each performed a debugging task on

a multithreaded server application, which we seeded with a defect. With this number of

participants, we expected to observe a range of behaviors and outcomes. To reveal the

goals and intentions of participants, we instructed them to “think aloud” as they engaged in

the task. We collected rich qualitative data in the form of video recordings. Additionally,

we used questionnaires to measure the general and task-specific knowledge possessed by

participants both before and after the exercise. In this section, we describe the planning

and execution of our exploratory study.

51

3.1 Study Planning

3.1.1 Participants

Fifteen students from a graduate-level formal methods course (CSE 814) at Michigan State

University participated in the study. All participants happened to be male. Participation was

voluntary, and participants were compensated with extra credit in the course.1 To enroll

in the course, students must have taken several programming-intensive courses. We ex-

pected participants to understand multithreaded programming at the level of an undergrad-

uate operating-systems course. As preparation for the study, students received a 50-minute

lecture on the multithreaded programming model used to implement the server application.

3.1.2 Study Materials

Materials in this study include a prestudy and a poststudy questionnaire, a workstation to

perform the task with, the source code for the buggy multithreaded server, a stress-tester

application to help reproduce the failure, and the debugging task instructions, which include

a bug report describing the failure that arises from the defect.

Prestudy and Poststudy Questionnaires

The questionnaires measure knowledge using multiple-choice, true/false, and short-answer

questions. We administered the prestudy questionnaire (or prequestionnaire) prior to per-

formance of the task. The prequestionnaire measures participants’ general knowledge of

concurrent programming. We administered the poststudy questionnaire (or postquestion-

naire) after performance of the task. The postquestionnaire measures participants’ under-

standing of the program and of the seeded defect. Appendix A provides reproductions of

these questionnaires.

1 We offered alternative extra credit opportunities to students who did not want to participate.

52

Workstation

Participants performed the maintenance task on a computer workstation. We equipped

the workstation with standard Web-browsing software (e.g., Internet Explorer and Firefox)

and with software-development tools, which were familiar to the participant. For data

collection, we outfitted the workstation with a microphone headset and Camtasia2, a video-

capturing application.

Buggy Multithreaded Application

We developed a multithreaded application, eBizSim, to use in the study. The application

simulates an e-business server that processes requests from clients over the Internet. The

eBizSim server accepts network connections from remote clients, receives requests from

the clients over these connections, and simulates processing of the requests. The application

is written in C++. We kept it small (229 SLOC) so that it is manageable for a user study in

which the participants are seeing the code for the first time. To make the application more

realistic, we based its architecture on the reactor pattern [107].

The server comprises multiple threads. Each thread either plays the role of listener or

handler. A lone listener thread accepts client connections and places the requests received

over these connections on a shared request queue. Meanwhile, multiple handler threads

contend for requests by synchronizing on the request queue.

We seeded the eBizSim server with a design defect related to the proper use of condi-

tion synchronization3 in the transfer of requests between the listener and handler threads.

Condition synchronization is notoriously tricky and presents many potential pitfalls for

programmers [105]. The defect manifests in a failure under certain timing and load con-

2http://www.techsmith.com/camtasia/
3 Condition synchronization involves having a thread wait for some condition to be satisfied before pro-

ceeding to execute [76]. Waiting generally entails putting the thread “to sleep.” A sleeping thread must
be signaled by another thread to “wake up.” When a waiting thread is awakened, it typically must recheck
whether the condition is satisfied, and if not, it must wait again. Waiting and signaling are generally imple-
mented using a mechanism called a condition variable.

53

http://www.techsmith.com/camtasia/

straints. The stress-tester application provides a GUI control for adjusting the speed at

which requests are sent to the server. Using the stress tester, it is often possible to re-

produce the failure within a time frame of two to five minutes. However, we have never

been able to reproduce the failure once the server runs without fail for more than five min-

utes. Thus, in practice, it is often necessary to restart the server multiple times to produce

the failure. This design defect is representative of synchronization-related defects that are

difficult to reproduce.

The defect stems from the way the listener and handler threads synchronize as they

access the request queue. The request queue’s elements are instances of a class Request

(whose internal structure is not salient to this discussion). The request queue is managed

by an object called the pool, which encapsulates and provides synchronized access to both

the request queue and the thread pool. The pool defines a mutex4 for each resource that

it manages and a host of queue/pool-specific operations, each of which is implemented

so as to acquire (and release) the appropriate mutex at the beginning (and the end) of the

operation. We concentrate on the operations that manipulate the request queue, as their

code contained the defect.

The request queue is accessed through the operations submit request and

retrieve request. Figure 3.1 depicts the implementations of these operations. Both

methods acquire and release a mutex lock called queue lock . Thus, all calls to

submit request and retrieve request execute under mutual exclusion. Moreover,

calls to retrieve request may block when the request queue is empty. The conditional

blocking logic is implemented in lines 18–21 in retrieve request, and the correspond-

ing signaling logic (used to resume blocked threads when the blocking condition may have

changed) is implemented in lines 6–9 in submit request. The variable nonempty cond

refers to a condition variable, upon which threads may issue the operations wait, signal,

4 A mutex is a mutual-exclusion lock that threads atomically acquire and release [76]. Only one thread
at a time can hold a mutex. When a thread attempts to acquire an already-held mutex, the thread will block
until the mutex is released by the holder.

54

1 void Pool::submit_request(Request* request)
2 {
3 queue_lock_.acquire();
4 request_queue_.push_back(request);
5
6 if (queue_waiters_) {
7 nonempty_queue_cond_.signal();
8 --queue_waiters_;
9 }

10
11 queue_lock_.release();
12 }
13
14 Request* Pool::retrieve_request()
15 {
16 queue_lock_.acquire();
17
18 if (request_queue_.empty()) {
19 ++queue_waiters_;
20 nonempty_queue_cond_.wait();
21 }
22
23 if (request_queue_.empty()) {
24 queue_lock_.release();
25 return 0;
26 }
27
28 Request* request = request_queue_.front();
29 request_queue_.pop_front();
30
31 queue_lock_.release();
32 return request;
33 }

Figure 3.1: Key synchronization methods in the eBizSim server.

55

and broadcast.5 The variable queue waiters records a count of the number of handler

threads currently waiting for a request to be placed in the queue. The submit request

method checks the value of this counter to decide whether it needs to signal the condition

variable.

The defect occurs on line 18, where we replaced the line:

while (request queue .empty()) {

with the line:

if (request queue .empty()) {

Waiting in a while loop is a common pattern when programming with condition variables.

We refer to this pattern as the wait-in-while idiom. To see how this defect may manifest

in a failure requires reasoning about possible interactions between two handler threads and

the listener thread during concurrent activations of retrieve request and an activation

of submit request when the request queue is empty.

Instructions and Bug Report

The instructions given to participants ask them to play the role of an eBizSim maintainer

in a scenario in which a user has reported a sporadic but troubling failure of the program.

The participant’s job is to fix the bug for the user. Figure 3.2 depicts the bug report filed

by the user. In addition to a description of the failure, the bug report includes advice for

reproducing the failure using the stress tester. Such detailed instructions for reproducing

the failure are often difficult to come by but are equally often necessary to allow a vendor

to reproduce a problem observed at a client site. For example, in the case of the buggy

Therac-25 medical electron accelerator, a developer experimented for days to reproduce

the failure [71].
5 Our implementation is in C++ and uses primitives from the ACE toolkit. Readers familiar with Java can

think of signal as analogous to notify and broadcast as analogous to notifyAll.

56

Bug Report / Change Request

We are experiencing a problem with the eBizSim server program, wherein it
intermittently exits with the error message:

error: Pool::dispatch_request() failed

This error has been fairly difficult to reproduce. So far, the most reliable way
we have found to reproduce it is to run the stress tester with a setting of 4.27.
Even with this setting, the program may take several minutes to exhibit the error.
Occasionally, the program will run at the above setting for a long time (on the
order of 5 minutes) without failing. In these cases, restarting the server and the
stress tester seems to help in drawing out the error.

Figure 3.2: Bug report provided to participants.

3.2 Execution

Prior to running the study, we recruited participants from the graduate formal-methods

course. We sent an email to the enrolled students soliciting participation. We used extra

credit in the course as an inducement. So that students would not be penalized for not

participating, we offered an alternative means for earning the extra credit: an extra-credit

homework assignment. Students indicated their participation by filling out a consent form.

The form describes the activities involved with participation as well as the time commit-

ment. The form reassured participants that any materials they produced for the study (e.g.,

filled-out questionnaires) will either be kept private or, if shared, be anonymized using

randomly-assigned ID numbers.

3.2.1 Preparation

Several days prior to performing the maintenance task, participants received group instruc-

tion and completed the prequestionnaire. Group instruction took the form of a 50-minute

lecture on concurrency constructs and their implementation using the ACE toolkit [108].

The goal of this lecture was to ensure that participants were well-prepared to undertake the

57

assigned maintenance task and to mitigate the effects of differences in prior knowledge on

their performance. Following the lecture, the participants completed the prequestionnaire

on concurrency terminology and concepts.

3.2.2 Execution of Study Procedure

We scheduled participants for individual three-hour sessions, conducted in a private office.

During the first 15–20 minutes, we introduced participants to the equipment and environ-

ment, and calibrated the audio-recording application. Next, participants engaged in think-

aloud on a warm-up task. The task involved correcting a defect in the implementation of a

bubblesort procedure [33]. Prompters trained in the think-aloud method accompanied the

participants as they engaged in the maintenance task. When a participant would fall silent,

the prompter would ask him to “please, keep talking.” Following the warm-up, we gave

participants a brief tour of the directories containing the eBizSim software and provided

them with the bug report. We also provided participants with scratch paper, a brief guide

to concurrency constructs in ACE, and a C++ manual [118]. Participants were permitted to

browse the Internet as they deemed necessary while performing the task.

Participants were allotted up to 150 minutes to complete the task. Those who completed

the task sooner could stop the session at that time. Immediately following the sessions, par-

ticipants took the postquestionnaire, which was designed to evaluate their comprehension

of the eBizSim server and the defect.

58

CHAPTER 4

EXPLORATORY STUDY: STRATEGIES AND

CODING SCHEMES

The goal of this study was to find relationships between the strategies and practices of

programmers (strategies for short), and the level of success on task. Having collected the

think-aloud data, we identified a set of strategies, which we deemed to be of interest. We

drew this set from two sources. First, we performed detailed reviews (and re-reviews) of

the think-aloud data, identifying distinct behaviors that the participants exhibited during

their sessions. Second, we surveyed the literature for strategies that were claimed to lead

to success on programming tasks. In the end, we singled out six strategies for study. In this

section, we describe each of these strategies in turn and explain how we code them in our

data.

4.1 Failure-Trace Modeling

We discovered participants using a previously-undocumented strategy, which we call

failure-trace modeling, for determining whether a hypothetical error state is reachable by

some execution of the program. The strategy aims to produce a failure trace, which demon-

strates how the system transits among various internal states, at least one of which is a clear

error state, up to the point of failure. Following the strategy, the programmer first formu-

59

lates an error suffix, which models a fragment of a candidate failure trace and ends in a clear

error state. Next, the programmer attempts to verify that the error suffix is feasible—that

is, consistent with an actual execution trace. The general process and the models produced

are best illustrated by example. We use a multithreaded sequence diagram to depict these

models.1

4.1.1 Example

Figure 4.1 depicts an (infeasible) candidate error suffix, as articulated by one of the par-

ticipants in our study. Here, two handler threads (denoted h1 and h2) concurrently at-

tempt to retrieve a request from an empty request queue. Because the queue is empty,

both threads wait on the condition variable nonempty cond (abbreviated qNonempty in the

figure). Shortly thereafter, the listener thread (denoted l) invokes a submit request oper-

ation, which adds a request (denoted r) to the queue and, according to the figure, invokes

a broadcast operation on qNonempty. In response to the broadcast, both handler threads

resume and attempt to reacquire the lock. Here, h1 acquires the lock and is able to proceed,

after which it pulls r off of the queue and releases the lock. Thread h2 acquires the lock next

and proceeds. However, because the queue is once again empty, the retrieve request

method returns 0, which causes h2 to enter an error state.

The notational conventions in Figure 4.1 deserve additional explanation. To distinguish

type/class names (e.g., Pool) from role names (e.g., Handler), we render the latter in italics.

To indicate that the queue is empty at the start of the suffix and show how it mutates during

the trace, the lifeline of the pool object (denoted rhp) is adorned with object states (e.g.,

“q = ()”), which are depicted inside roundtangles that are centered atop the correspond-

ing activation bars. Additionally, to reduce nonessential clutter, messages corresponding to

method invocations are rendered abstractly, without showing all the objects involved, but

showing the thread that invokes them. For example, calls to retrieve request are ac-

1 See Section 2.4.2 for a description of the notation.

60

h2 : Handlerl : Listenerh1 : Handler rhp : Pool

retrieve_request

r

submit_request(r)

retrieve_request

0

h1

h2

l

h1

h2

sd Infeasible Failure Trace

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

qLock = (0, {})

qNonempty = { h1 }

qLock = (h2, {})

qNonempty = { h1, h2 }

qLock = (0, {})

qLock = (l, {})

q = (r)

qNonempty = {}

qLock = (0, {})

qLock = (h1, {})

q = ()

qLock = (0, {})

qLock = (h1, {})

qLock = (0, {})

ERROR!

qLock = (h1, {})

qLock = (0, {})

q = ()

qNonempty = {}

Figure 4.1: Strongly-articulated, yet infeasible model of an error trace.

61

tually made from within activations of another pool method, dispatch request (omitted

for clarity), and a more detailed model would show the retrieve request messages em-

anating from activations (of dispatch request) that are attached to the pool’s lifeline. As

the figure does not depict activations of dispatch request, we instead show the messages

emanating from the lifelines of the thread executing the elided activations.

A programmer might construct such a model to use in determining if the failure is a

result of a call to retrieve request that returns null. The model documents the initial

state of the relevant object (i.e., the pool), and it describes the number and role(s) of the

interacting threads. Additionally, the activation predicates are consistent with the semantics

of available synchronization primitives (in this case, with acquire, release, wait and

broadcast). Such a model represents a candidate error suffix. If the initial state of the

model is consistent with a reachable program state, and if the actions and state transitions

in the model are consistent with the code, then the model describes a feasible trace that

ends in an error and that therefore exhibits a defect.

4.1.2 Feasibility Analysis

A candidate error suffix exhibits an actual error only if it is feasible. Such a model seldom

begins in the initial state of the program, and it usually elides many details. Thus, when

reasoning about thread interactions, the programmer can easily construct a model that is not

feasible. This holds especially true in the context of maintenance where the programmer

may lack a global view of the program. In fact, the model in Figure 4.1 is not feasible

because the code executed by the listener thread uses signal rather than broadcast to

notify a handler thread of a request in the queue. Thus, only one of the handlers will be

awakened during the activation of submit request, whereas the model depicts both as

being awakened.

Generally speaking, a deep analysis is required to decide whether a candidate error

suffix is feasible. Given an error suffix, this analysis can be performed by (1) instantiating

62

the abstract components with concrete objects, activations, threads, and states, and (2)

checking that the initial state of the instantiated model is consistent with a state reachable

from the initial state of the program. Instantiating the abstract components involves binding

the abstract actors (depicted as active objects in the figure) to activations of operations on

concrete objects by concrete threads, and verifying that the sequence of activation- and

object-state transitions depicted in the error suffix is consistent with the implementation of

the associated operations in the code. Feasibility analysis may involve global reasoning

and is generally difficult.

4.1.3 Strength of Articulation

In studying the failure-trace modeling strategy, we discovered distinct differences in the

quality (i.e., clarity and distinctness) of the models articulated by our participants. Some

referred to threads only in the abstract, whereas others also identified which thread acted

as the listener and which threads acted as handlers. Additionally, some participants artic-

ulated the interactions that might culminate in an error with sufficient detail that we could

construct an error suffix, such as is depicted in Figure 4.1, whereas others did not articulate

necessary information for formulating an error suffix. For example, a participant might say

that an operation is invoked, but not say which thread invokes the operation. Or, in contrast,

he might not say when a thread acquires (releases) a lock or when it waits (awakens from a

wait).

We classify a model as strongly articulated if it satisfies three properties. First, it must

describe a collaboration among distinct actors and objects with well-defined synchroniza-

tion states. That is, it should always be clear which actors, if any, are blocking, are holding

a mutex lock, are waiting on a mutex lock, and are waiting on a condition variable. Second,

the model must describe how actions by the actors cause the objects and other actors to tran-

sition among these synchronization states. For instance, an actor must invoke acquire on

a mutex lock to become holder of the lock. In a strongly articulated model, an actor should

63

never become holder of a lock without having made the necessary call to acquire. Third,

it must be articulated (e.g., drawn or verbalized) in sufficient detail to enable formulation

of a well-formed UML sequence diagram, such as the one in Figure 4.1.

4.1.4 Coding Scheme

We looked for evidence of the failure-trace modeling strategy using four attributes: mod,

err, art, and succ. These attributes indicate various levels of modeling. The mod attribute

indicates that the participant gave evidence of modeling some interaction among multiple

threads synchronizing over shared data. The err attribute indicates that he modeled an inter-

action that manifests in an error state (although the model may represent an infeasible error

suffix). The art attribute indicates that he produced a model that was strongly articulated.

The succ attribute indicates that he produced a strongly-articulated model that accurately

describes the error that led to failure. We also considered coding for feasibility checking;

however, no participant exhibited behavior that we could associate with this activity.

We count as evidence of modeling any description (be it a verbalization or a drawing)

that supposes the existence of two or more threads and one or more shared objects and that

proceeds to develop a sequence of actions by and among these entities. Clearly, err, art, and

succ imply mod. However, a modeled interaction need not involve an error state (or indeed

have anything to do with the failure in question), and modeling may or may not be strongly

articulated. Moreover, err does not imply art, and art does not imply err. Additionally, succ

implies but is not equivalent to err ∧ art.

4.2 Breadth-First Approach to Diagnosis

Vessey [123] previously found that experts apply breadth-first problem solving, which in-

volves pursuing multiple lines of reasoning and deliberately investing intellectual resources

into competing hypotheses to avoid jumping to conclusions. When debugging concurrent

64

software, we expect that programmers will tend to have difficulty reducing the space of

plausible hypotheses regarding the cause of the defect because the usual techniques for

doing so, cyclic debugging and dependence analysis, are ineffective. Thus, programmers

are confronted with a large space of competing hypotheses to analyze. However, analy-

sis of a hypothesis is often laborious and time consuming because it involves reasoning

about complex thread interleavings. Therefore, programmers should invest effort in such

analyses sparingly and deliberately. The prior work refers to such behavior as breadth-first

problem solving and suggests that experts apply it during debugging [123].

Breadth-first refers to the order in which hypotheses are analyzed. Initially, the pro-

grammer forms a small set of hypotheses (possibly only one). The analysis of a hypothesis

(the parent) typically yields new, more specific and detailed hypotheses (children). Thus,

the parent-child relationships between hypotheses take on a tree-like structure where the

leaves are hypotheses that do not warrant further refinement. The breadth-first approach is

roughly analogous to a breadth-first search in graph theory. That is, hypotheses at higher

levels of the tree(s) are generally analyzed before those that are lower. Note that the ap-

proach does not follow a strict breadth-first search in the algorithmic sense. As a conse-

quence of this approach, competing hypotheses are considered before the effort is invested

to analyze and refine any one in particular. In contrast, a depth-first approach tends to

pursue a linear path through the tree, ignoring competing hypotheses until no alternative

remains.

4.2.1 Modeling Hypothesis Elaboration and Refinement

We investigated the application of breadth-first problem solving by studying how well par-

ticipants generated hypotheses and whether they appeared to be considering multiple com-

peting hypotheses rather than jumping to conclusions. To support this analysis, we devel-

oped a model of the space of hypotheses that could pertain to the failure in our study and of

the parent-child relationship among these hypotheses. To construct such a model, we used

65

an extended form of software fault trees, which model the causal relationships between the

possible events that could lead to a failure. As a programmer debugs a defect, he formulates

hypotheses that correspond to events in the fault tree. Thus, as he generates hypotheses,

he can be seen as elaborating the fault tree. By associating utterances and actions in the

think-aloud data to events and patterns of elaboration in the fault tree, we checked which

participants applied the breadth-first approach, whether there was a relationship between

the approach and success, and whether concurrency hindered the approach. The remain-

der of this section provides a brief introduction to the model we developed, including a

proposed extension to the standard fault-tree notation. Although a formal treatment of this

proposed extension is beyond the scope of this work, we suggest how it might be formal-

ized in terms of standard compiler abstractions (page 70). The uninterested reader may

safely skip over this speculative material.

Extended Fault-Tree Notation

We explain our fault-tree notation by example. Figure 4.2 depicts a portion of the fault

tree for the failure under study. We provide the complete fault tree in Appendix C. Each

box (or node) in the tree represents an event, which is an observation about the properties

of system objects made at some moment in time. Although events here are informal, we

have an idea about how we might formalize them (page 70). However, fully developing

this formalization is beyond the scope of this dissertation. Each event has a label (e.g., root

and M1) so that it may be referred to by name. The label is listed in the upper compartment

of the event node.

A node in the fault tree comprises a control point, a state predicate, and an optional

timing constraint. These parts are listed on separate lines in the lower compartment of the

node. The control point represents the location of a particular thread’s execution with re-

spect to the source code. Appendix A provides a listing of the source code for the eBizSim

application. Each event is observed at a distinct control point. For example, node M1’s

66

rval =−1

∃T0 : Handler

T0 exits call(server.cc:25)

root

M1.t < root .t

M1

rval = 0

L1

rval = 0
L1.t < root .t

R1

rval =−1
R1.t < root .t

T0 exits call(Pool.cc:35)T0 exits call(Pool.cc:30)T0 exits call(Pool.cc:25)

queue.empty
M5.t < M6.t < M2.t

M6

∃T1 : Handler | T1 6= T0M4.t < M2.t

queue.empty

M4

T0 exits (Pool.cc:107)

T1 exits call(Pool.cc:116)

∃T3 : Handler | T3 6= T0

M3

rval = 0
M3.t < M1.t

T0 exits call(Pool.cc:115)

M8.t < M9.t < M3.t
queue.empty

M9

T3 exits call(Pool.cc:116)

true
M2.t < M1.t

T0 trav ifCond(Pool.cc:110)→ (Pool.cc:111)
M2

¬queue.empty
M5.t < M2.t

T0 enters (Pool.cc:110)

M5

M7.t < M3.t
rval = 0

∃T2 : Listener

T2 exits call(Dispatcher.cc:19:accept request)

M7

¬queue.empty
M8.t < M3.t

T0 enters (Pool.cc:115)

M8

Figure 4.2: Part of the fault tree for the eBizSim failure.

67

control point, “T0 exits call(Pool.cc : 30)”, specifies that the M1 event is observed when

thread T0 exits the call (to retrieve request from queue) on line 30 of the file Pool.cc.

A thread’s existence must be declared before the thread can be referred to in a control point.

We describe thread declarations below.

The state predicate expresses a property of the system’s state that is true when the event

is observed. For example, event M4 has the state predicate “queue.empty”, which indicates

that the request queue is empty when the event is observed. The state predicate “true”, as

seen in M2, indicates no particular property of the system state. When the event’s control

point is the exit from a function, we use the keyword rval in the state predicate to refer

to the value returned by the function call. For example, the M1 event’s state predicate

indicates that the value returned by the call on line 30 of Pool.cc is 0. Note that rval is

meaningful only if the event’s control point is the exit of a call.

The timing constraint specifies the order in which the event occurs relative to other

events. For expressing timing constraints, we use M .t to denote the time event M occurred.

For example, the timing constraint in the event node M1 indicates that event M1 occurs

before event root . As another example, the timing constraint in event node M9 indicates

that event M9 occurs after event M8 and before event M3.

Event nodes may be connected by edges, which indicate parent-child relationships be-

tween the nodes. The event nodes and edges form a hierarchical tree structure. In the figure,

parent nodes always appear vertically higher than their children. If a child event occurs, its

parent event must occur. That is, the occurrence of a child enables its parent. The fault tree

has a distinct root event, which represents the failure event. The leaf nodes of the fault tree

represent events whose likelihood of occurring can be assessed without further refinement.

The analyst decides which events are appropriate to represent as leaf nodes.

Edges in the fault tree may pass through logic gates. An OR gate indicates alternative

enabling events. For example, the edges that connect the node root with its children L1,

M1, and R1 pass through an OR gate. Thus, the occurrence of any one of the child events

68

enables the root event. An AND gate indicates a conjunction of multiple child events, all

of which must occur together to enable the parent. To make the notion of together more

precise, we conjoin the time constraints of the child events. For example, the edges that

connect M5 and M6 to their parent M2 pass through an AND gate. Thus, an occurrence

M5 followed by an occurrence of M6 enables M2.

A node or logic gate may be annotated with a thread declaration. The declaration has the

form “∃ThreadName : ThreadRole |Constraint”, where the ThreadRole and Constraint

parts are optional. It expresses that there exists a thread named ThreadName that plays

the role of ThreadRole and adheres to some Constraint . The Constraint is typically used

to distinguish the declared thread from other previously declared threads. The visibility of

a ThreadName in the fault tree is limited to the subtree rooted by the node or gate that

bears the thread declaration. For example, node root is annotated with a declaration for the

thread T0 which plays the role of a Handler in the system. Note that the root event must

always declare a thread because the event’s control point must have an associated thread.

As another example, the AND gate connected to nodes M5 and M6 is annotated with a

declaration for the thread T1 that plays the role of Handler and is a different thread than

T0.

Fault-Tree Example

Having explained our fault-tree notation, we now provide a high-level description of the

fault tree in Figure 4.2. The root event in the tree represents an error state that manifests

in the failure described in Figure 3.2. The error occurs at time root.t when a thread T0

observes an invocation of the dispatch request method (line 25 of server.cc) returning

-1. The code for dispatch request (lines 21–41 of Pool.cc) can return -1 in any one

of three statements. Nodes L1, M1, and R1 represent events that will cause one of these

statements to be executed. Evaluation of retrieve handler at line 25 of Pool.cc could return

0 (L1), thereby causing dispatch request to return -1 (line 27). Nodes M1 and R1 can

69

be understood similarly. Figure 4.2 shows the M1 subtree, which is the alternative that

actually caused the seeded defect. Triangles indicate where subtrees have been elided.

The M1 subtree explains how an invocation of retrieve request could have returned

0. Either evaluation of the if condition on line 110 of Pool.cc succeeded (event M2), or

the method invocation on line 115 returned 0 (M3). Likewise, the M2 subtree explains

how the if condition on line 110 could have succeeded. Either T0 exits the body of the

first conditional block with the queue being empty (M4); or T0 reaches line 110 believing

the queue is non-empty, but another thread empties the queue before T0 can execute the

if statement on line 110. The remaining events in Figure 4.2 model how T0 could have

retrieved a 0 that was inserted into the queue by the listener thread (represented by T2) or

how T0 could have tried to pop an empty queue.

†Proposed Formalization of Fault Trees

To represent events more precisely, we propose to formalize them in terms of control flow

graphs (CFGs), which we previously introduced in Section 2.1.3. Here, we assume CFG

nodes are labeled with instructions in three-address code, which comprises statements sim-

ilar to those in an assembly language [1]. The three-address code language includes assign-

ment statements, simple arithmetic statements, and control-flow statements (e.g., goto). A

three-address statement typically contains no more than two operands and one result (thus,

three addresses). Compound statements in the source, such as “x = a * b + c / d”,

engender a sequence of three-address statements, such as:

temp1 = a * b

temp2 = c / d

x = temp1 + temp2

Therefore, a single statement in the program may engender many nodes and edges in the

CFG.

70

Given a CFG of the program, control points now represent the location of a particular

thread’s execution with respect to the CFG. We distinguish three types of control points

at which an event may be observed. For a thread T and CFG nodes N and N ′, an event

may occur (1) when T enters N , denoted “T enters N ”; (2) when T exits N , denoted

“T exits N ”; or (3) when T traverses the CFG edge from N to N ′, denoted “T trav N →

N ′”. By convention, T enters N occurs prior to when T actually executes the instruction

at node N , which means another thread could execute between the observation and T ’s

execution. In contrast, T exits N is coincident with termination of the instruction at N .

To describe the CFG node of a control point, we use an informal CFG-node designator.

At the minimum, the designator lists the source file and line number associated with the

CFG node. For example, “Pool.cc:110” indicates the CFG node associated with line 110 of

the source file Pool.cc. In cases where the line of code engenders multiple CFG nodes, we

have two ways to disambiguate the CFG node. First, we prefix the CFG-node designator

with a qualifier to indicate the type of instruction in the CFG node being designated. For

instance, the control point for the event node root is given as “T0 exits call(server.cc:25),”

which indicates that the event is observed when the thread T0 exits the CFG node that

contains the call instruction associated with the function call on line 25 of server.cc. In

this case, there is only one function call on that line, dispatch request, so no further dis-

ambiguation is necessary. In addition to the call qualifier, we have an ifCond qualifier that

designates the CFG node containing the if-goto instruction that branches to the CFG node

designated by the target of a trav specifier. The second way to disambiguate CFG nodes

is by appending the concrete syntax of a program statement or expression after the file and

line number in the CFG-node designator. For example, the control point for event node M7

is given as “T2 exits call(Dispatcher.cc:19:accept request),” which indicates that the event

is observed when the thread T2 exits the call to the function accept request on line 19

of the file Dispatcher.cc. In this case, there are two function calls on line 19, so we disam-

biguate which call we mean by adding the name of the function (i.e., accept request) to

71

the CFG-node designator.

4.2.2 Coding Scheme

We looked for evidence of a breadth-first approach with one attribute: bread. The attribute

indicates that a participant attempted to use a breadth-first approach to diagnosing the de-

fect. To perform the encoding, we associated each plausible hypothesis that a participant

discovered or analyzed with an event in the fault tree. We say that a participant discovered

an event if he somehow verbalized the control point, state predicate, and/or time constraint

associated with the event. We say he analyzed the event if he attempted to determine how it

could be enabled. In some cases, event discovery and analysis are clearly articulated in the

protocols. For instance, participant 06 was analyzing the root event when he uttered, “un-

der what conditions can we end up returning an error from dispatch request?” While trying

to answer this question, he discovered and succinctly verbalized the enabling events L1,

M1, and R1. In other cases, we had to infer event discovery and/or analysis from clues in

the protocols. For instance, we coded participant 09 as having discovered event M4 when,

while analyzing event M2, he verbalized a scenario in which a waiting thread awakes to

find the request queue empty. Because it was discovered during the analysis of M2, we say

participant 09 discovered M4 as an enabler while analyzing M2. We coded a participant as

bread if he analyzed competing events before investing heavily in a particular subtree, and

if he analyzed a sufficiently large number of the events in the fault tree down to depth two.

4.3 Systematic Comprehension

Littman and colleagues [73] claim that the use of a systematic comprehension strategy,

which involves reading the entire source in a thorough and structured way, predicts success

on maintenance tasks, such as debugging. We previously described this work in Section 2.3.

In contrast to a systematic strategy, an as-needed strategy involves reading only those parts

72

of the code that are believed to relevant to the task at hand and ignoring the rest and does

not predict success. They claim that the systematic strategy leads to the development of

a strong mental model of a program, which they define as containing static and causal

knowledge about the program. Static knowledge refers to an understanding of a program’s

functional components (e.g., roles, classes and methods), whereas causal knowledge refers

to an understanding of how the functional components interact at run time. This prior

work also claims that both strategies produce sufficient static knowledge, but the as-needed

comprehension strategy produces weaker causal knowledge than the systematic strategy.

By definition, the systematic strategy involves the programmer performing extensive

mental execution of the data flow paths between subroutines [73]. The programmer pro-

ceeds by starting at the main routine and following the control and calling structure of the

subroutines. He must “actually imagine the behavior of the program as if it were running

in time,” thereby providing him with “causal knowledge about the order of actions in the

program” [73]. A programmer needs causal knowledge to diagnose and fix the defect in

the eBizSim program, which manifests as an erroneous ordering of the program actions

under certain thread schedules. Other prior work extols the effectiveness of the systematic

strategy for understanding programs with delocalized plans [116]. Synchronization logic

typically manifests as a delocalized plan. Although others [59, 124, 100] have expressed

doubt about the effectiveness of systematic comprehension for large software systems, the

eBizSim program is small enough to be read in its entirety within the time frame of the

participant sessions.

A strong mental model contains both static and causal knowledge about the program.

Static knowledge includes knowledge of the objects that the program manipulates, the ac-

tions the program performs, and the program’s functional components—that is, segments

of code that, together, accomplish a task. For multithreaded programs, static knowledge in-

cludes knowledge of threads and their roles, shared data, and synchronization mechanisms.

Knowledge of threads and thread roles includes knowing what threads are spawned by the

73

program, what roles the threads play, and where in the code the threads are spawned, be-

gin executing, and terminate. Knowledge of shared data includes knowing which data are

shared by multiple threads, the roles of the threads that access the data, and the locations

of critical sections involving the data. Knowledge of synchronization mechanisms includes

knowing the mutex locks, condition variables, and abstract conditions that are used to syn-

chronize accesses to shared data.

Causal knowledge pertains to the interactions among functional components. The need

to take into account the multitude of potential thread interleavings in a concurrent system

makes understanding these potential interactions difficult.

4.3.1 Coding Scheme

We looked for evidence of a systematic comprehension strategy with one attribute: syst. We

coded participants as using the systematic strategy if they made it a goal to first understand

the entire unmodified program before attempting to diagnose and correct the defect. Such

participants investigated the code by starting from the main function and tracing the control-

flow and calling paths, by reading the contents of each file from top to bottom, or by some

combination of the two. We coded participants as using the as-needed strategy if they

were clearly not concerned with understanding the entire program, but rather only wanted

to understand enough to complete the task. Such participants investigated the program by

starting at the point in the code where the failure manifested (as indicated by the bug report)

and, using local information, examined only the parts of the code they felt they needed to

understand.

4.4 Cyclic Debugging

Cyclic debugging is a widely-used to technique for diagnosing a defect. The technique

involves repeatedly executing a failing run of the buggy program to observe the program’s

74

internal state as it executes. The internal state is made observable with diagnostic print

statements or with the help of a debugger. With each iteration, the programmer adjusts

which state information is observable (e.g., by adding/modifying diagnostic print state-

ments) until the output sufficiently explains how the failure occurs. Although the technique

may be effective in the context of sequential software, it is ineffective when failures are dif-

ficult to reproduce, which is the case with the program in our study. Section 2.1.1 describes

cyclic debugging in detail.

4.4.1 Coding Scheme

We looked for evidence of cyclic debugging using three attributes: inst, refine, and found.

The attributes record various levels of the technique. The inst attribute indicates that a

participant instrumented the code by adding diagnostic print statements. The refine at-

tribute indicates that a participant refined diagnostic statements to expose more detailed

internal-state information based on the diagnostics provided by a previous failing run of

the program. The found attribute indicates that a participant produced a failing trace whose

diagnostics indicate the error state that led to failure and the sequence of synchroniza-

tion events that caused the program to enter this state. Clearly, each of refine and found

implies inst. However, found does not imply refine, even though we expect found to be

highly correlated with refine. We collected refine to measure the level of investment in this

technique—that is, whether the participant taking an iterative approach to narrowing down

the source of the defect. The criteria for recording found are quite strong: a run has to

produce a failure trace whose diagnostics show at least two handler threads waiting, the

listener thread arriving and signaling both of them, one handler waking and emptying the

queue, and the second waking to an empty queue.

75

4.5 Pattern Matching

Ben-David Kolikant [11] observed that novices tend to us a pattern-based technique to solve

synchronization problems. Novices use memorized patterns of code to reason about how

synchronization code should be written. Such patterns include programming idioms, such

as the wait-in-while idiom (described in Section 3.1.2). The pattern-based technique is ef-

fective for programs that build using familiar patterns. Unfortunately, novices often do not

understand the synchronization mechanisms that underlie the patterns and have difficulty

in situations where familiar patterns are not applicable.

4.5.1 Coding Scheme

We looked for evidence of pattern matching using one attribute: pat. The attribute indicates

that a participant recognized the violation of the wait-in-while pattern. We accepted utter-

ances that display familiarity with the idiom, such as “seems like a problem we’ve seen in

class before, where if you don’t embed your condition variable in a [while],” as evidence

of this attribute.

4.6 Tweaking the Code

We also observed some participants appealing to what seemed to be little more than luck.

They tweaked the synchronization code without explanation or expectation of success,

seemingly in an attempt to luck into a fix. After making a tweak, participants would often

re-execute the program to see if the change fixed the defect. However, this testing has an

inherent weakness because the absence of a failure does not constitute proof of success

in the context of concurrent software. Moreover, the difficulty of reproducing the failure

should make the futility of this strategy evident.

76

4.6.1 Coding Scheme

We looked for evidence of this behavior with one attribute: luck. We recorded luck when a

participant modifies the synchronization logic or other logic that could affect thread sched-

ules and then executes the program to “see what happens.” Examples include reordering

the lines:

nonempty_queue_cond_.signal();

--queue_waiters_;

in submit request, and removing all of the code involving the queue waiters variable.

In each of these cases, the participant uttered something to indicate a lack of any real

expectation that the tweak would solve the problem—for example, “if that actually was the

problem, I’ll be upset.”

77

CHAPTER 5

EXPLORATORY STUDY: ANALYSIS AND

DISCUSSION

Having identified strategies of interest and developed coding schemes for them, we ana-

lyzed the think-aloud data. The main goal of our analysis was to identify the strategies and

practices that successful participants tended to use. Section 5.1 details how we performed

the analysis and the results that emerged. Section 5.2 discusses our interpretation of the

results and the potential limitations of our study.

5.1 Analysis

Prior to the analysis, we identified five distinct attributes related to success, three related to

diagnosis and two related to correction, and developed coding schemes for them. The three

attributes related to success at diagnosing the defect are loc, rat, and conf. We record loc

for each participant who was able to narrow his search to the code segment that contains

the seeded defect. This attribute is recorded without regard to whether the participant could

explain why the code was buggy or whether the participant was ultimately able to correct

the defect. We record rat for each participant who was able to explain why the buggy code

is defective. As evidence of rat, we look for verbalizations, such as: “when wait returns,

the queue is not guaranteed to be non-empty,” or, “I now see how the queue can be empty

78

when the thread exits the if block.” Clearly, rat implies loc, but the converse is not true. The

attribute conf indicates an expression of high confidence that the participant has correctly

diagnosed the defect. As evidence of conf, we look for explicit declarations of confidence

such as “I am really confident that I identified the problem correctly,” and exclamations

that implicitly indicate confidence such as, in reference to a defect diagnosis, “that’s gotta

be it!” Notice that this attribute indicates a participant’s opinion of his performance and

need not reflect real success. The two attributes related to success at correcting the defect

are fix and noNew. We record fix for each participant who successfully fixed the seeded

defect, which essentially means that he changed the if block into a while block in the

retrieve request method. We record noNew for each participant who fixed the seeded

defect as indicated and did not introduce a new defect.

Our analysis comprised two main steps. First, using the coding schemes we devel-

oped, we encoded the think-aloud data for the strategy and success attributes. At least

two researchers individually encoded each session. Then, they compared their encodings,

resolved any differences, and, if necessary, refined the coding scheme(s). Table 5.1 sum-

marizes the attributes and their definitions, and Table 5.2 lists the results of our encoding

(“+” indicates true and “-” indicates false). Second, we performed cross-case analyses to

assess the relationship between each strategy and success. We distinguished five levels of

success in our analyses: loc, rat, rat ∧ conf, fix, and noNew. For each level of success,

we partitioned the participants into two groups: one that achieved the level and one that

did not. We looked for significant differences between these groups with respect to each

strategy attribute. We used the Fisher exact probability test [110] to assess the likelihood

that an observed difference occurred by random chance. The Fisher test is appropriate for

small sets of dichotomous data such as ours. We set the alpha for the test at 0.05. Table 5.3

summarizes the results of our Fisher tests, depicting the p-values that are at or below the

alpha in bold.

In the remainder of this section, we describe in detail the results of our analyses. First,

79

Table 5.1: Attributes of success and participant behavior.
Attribute Description

loc Participant identified that the failure is triggered by returning zero on
line 22 in retrieve request (see Figure 3.1).

rat Participant provided correct rationale to explain why the buggy code is
defective.

conf Participant expressed high confidence that he had correctly diagnosed
the defect.

fix Participant replaced the buggy if statement with a while statement in
retrieve request.

noNew Participant fixed the defect without introducing any new defects.

mod Participant gave evidence of modeling some interaction among multiple
threads synchronizing over shared data.

err Participant gave evidence of modeling an interaction that manifests in an
error state (although the model may represent an infeasible error suffix).

art Participant produced a model that was strongly articulated.
succ Participant produced a strongly-articulated model that accurately de-

scribes the error that led to failure.

bread Participant took a breadth-first approach to diagnosing the defect (as
opposed to a depth-first approach).

syst Participant used a systematic comprehension strategy (as opposed to an
as-need strategy).

inst Participant instrumented the code by adding diagnostic print statements.
refine Participant refined diagnostic statements to expose more detailed

internal-state information based on the diagnostics provided by a pre-
vious failing run of the program.

found Participant produced a failing trace whose diagnostics indicate the error
state that led to failure and the sequence of synchronization events that
caused the program to enter this state.

pat Participant recognized violation of a pattern commonly used to imple-
ment condition synchronization in monitors.

luck Participant tweaked the synchronization code without explanation or ex-
pectation of success, seemingly in an attempt to luck into a fix.

80

Table 5.2: Assignment of attributes to participants.

Attribute
Participant

Frequency
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

loc + - + + - + + + + + + + + - + 12
rat + - - - - + + + + + - + - - + 8

conf - - - + - + + - + + - - - - + 6
fix + - - - - + + + + + - + - - + 8

noNew + - - - - + - + + + - + - - - 6

mod + + - + - + + + + + + + - - + 11
err + + - + - + + + + + - - - - + 9
art - + - - - + + + + + + + - - + 9

succ - - - - - + + - + - - - - - + 4

bread + - - - - + - + + + + + + + + 10

syst - - + - + + + + + + + + - - + 10

inst + + + + - + + + + + + + + + - 13
refine + + + + - + + + + - + + - + - 11
found - - - - - - - - - - - - - - - 0

pat - - - - - + + - + + - + - - + 6

luck + + + + + - - - + - + + + + - 10

Table 5.3: Statistical results of cross-case analyses (p-values).
Attribute loc rat rat ∧ conf fix noNew

mod 0.1538 0.0256 0.2308 0.0256 0.1032
err 0.5253 0.0406 0.0889 0.0406 0.2867
art 0.5253 0.0406 0.0889 0.0406 0.2867

err ∧ art 1.0000 0.0406 0.0070 0.0406 0.3147
succ 0.5165 0.0769 0.0037 0.0769 1.0000

bread 0.5055 0.1189 0.6004 0.1189 0.0889

syst 0.5053 0.1189 0.1009 0.1189 0.5804

inst 0.3714 1.0000 1.0000 1.0000 0.4857
refine 1.0000 1.0000 0.5604 1.0000 0.6043

pat 0.2286 0.0070 0.0020 0.0070 0.1357

luck 0.5055 0.0256 0.0170 0.0256 0.5804

81

we provide descriptive statistics regarding the levels of success. Second, we describe the

results of the cross-case analyses for each strategy. Some strategies warranted additional

analyses, which we describe as well.

5.1.1 Levels of Success

Figure 5.1 depicts the frequencies of the various levels of success in the data. Twelve of the

fifteen participants succeeded in localizing the defect to the correct segment of code (loc).

Given this strong majority, we did not find a statistically significant relationship between

any attribute and loc (see Table 5.3). Because of the lack of interesting results, we will not

discuss analyses involving loc further in this chapter. Only eight participants were able to

explain the defect (rat). As shown in Table 5.2, these same eight participants were also able

to fix the defect (fix). Five of the eight participants who explained the defect did so with

confidence (rat ∧ conf). Six of the eight participants who fixed the defect did so without

introducing any new defects (noNew).

5.1.2 Failure-Trace Modeling

We performed cross-case analyses of our data to look for relationships between the use of

failure-trace modeling and various measures of success. Figure 5.2 depicts the frequencies

of each modeling attribute among the participants at each level of success. The first five

rows of the Table 5.3 provide the statistical results of the comparisons.

We compared the participants who correctly diagnosed the defect with those who did

not. We found that participants in the first group were significantly more likely to model

(mod) (p < 0.05), to produce an error suffix (err) (p < 0.05), and to produce a strongly-

articulated model (art) (p < 0.05). Furthermore, all the participants who successfully con-

structed a failure trace (succ) correctly diagnosed the defect. These results suggest that

there is a strong relationship between modeling and correctly diagnosing the defect.

We compared the participants who correctly diagnosed the defect with confidence (rat∧

82

 0

 2

 4

 6

 8

 10

 12

 14

 16

loc rat fix noNew

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

true
false

rat /\ conf

Frequencies of Success

Measures of Success

Figure 5.1: Frequencies of various measures of success.

conf) with those who did not. We found that the first group was significantly more likely to

produce both an error suffix and a strongly-articulated model (err ∧ art) (p < 0.01), and to

successfully model a failure trace (succ) (p < 0.01). This result suggests that participants

who applied the failure-trace modeling strategy more thoroughly were more likely produce

a (correct) diagnosis that they were confident in.

We analyzed the data for relationships between modeling and fixing the defect. We

compared the participants who fixed the defect (fix) with those who did not. We found that

the first group was significantly more likely to engage in failure-trace modeling (mod, err,

art, and err∧ art) (p < 0.05). As with diagnosis, all participants who successfully produced

a failure trace (succ) fixed the defect. However, modelers seem to have been susceptible

to introducing new defects. We found this by comparing the participants who produced a

correct solution without introducing new defects (noNew) to those who did not. Although

a greater proportion of the first group engaged in modeling at all levels, the difference be-

tween the groups did not rise to statistical significance for this small sample. One possible

83

 0

 2

 4

 6

 8

 10

 12

true false true false true false true false true false

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between mod and Success

mod

noNewfixrat /\ confratloc

not mod

 0

 2

 4

 6

 8

 10

 12

true false true false true false true false true false

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between err and Success

noNewfixrat /\ confratloc

err
not err

Figure 5.2: Relationships between failure-trace modeling and success attributes.

84

 0

 2

 4

 6

 8

 10

 12

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between art and Success

art

noNewfixrat /\ confratloc

not art

true false true false true false true false true false

 0

 2

 4

 6

 8

 10

 12

true false true false true false true false true false

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between err /\ art and Success

noNewfixrat /\ confratloc

not err /\ art
err /\ art

Figure 5.2 (cont’d)

85

 0

 2

 4

 6

 8

 10

 12

true false true false true false true false true false

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between succ and Success

succ

noNewfixrat /\ confratloc

not succ

‘ Figure 5.2 (cont’d)

explanation for this is that, although failure-trace modeling enabled participants to under-

stand how the failure occurred, some modelers may still be lacking the design knowledge

needed to change the code correctly.

Although we found a clear relationship between failure-trace modeling and success,

we also found evidence of limitations with the approach. Two participants who created

strongly-articulated models were unsuccessful at diagnosing the defect. Moreover, only

four of the nine participants who produced strongly-articulated models produced the correct

failure trace. This finding seems to be important because of the strong relationship we

found between producing the correct trace and successfully diagnosing the defect with

confidence.

We also checked to see if participants represented models externally, and if so, whether

the models were strongly articulated. In this case, we evaluate the strength of articula-

tion strictly in terms of the external representation, not taking into account any utterances

86

made by the participant. None of the participants used the computer to represent a model.

Four participants represented models on paper. Only participant 15 drew sequence dia-

grams to model interactions.1 He drew three such diagrams, only one of which was both

well-formed and strongly articulated. None of his diagrams ended in an error. Three other

participants (10, 11, and 14) produced textual representations of models. A textual repre-

sentation typically comprised the sequence of operations that execute during a hypothetical

interaction. Participant 10 externalized two models as text, whereas participants 11 and 14

externalized one each. Of these four models, only one was strongly articulated (participant

10’s); however, that model represented an infeasible failure trace. Overall, participants

created very few external representations of models, and the models they did externalize

tended to be of low quality.

5.1.3 Breadth-First Approach to Diagnosis

Table 5.4 depicts the events from the root and M subtree that each participant attempted

to analyze. The bottom row indicates the percentage of events that participants discovered.

The far right column provides the number of participants who analyzed each node.

These data show that participants generally analyzed certain events (e.g., M1, M2, and

M4), and generally ignored or failed to discover others (e.g., M5–M9). Every participant

analyzed root, L1, and M1. Within M1, thirteen participants analyzed M2, and only three

analyzed M3. Within M2, twelve analyzed M4, and only two analyzed the M5/M6 subtree.

Within M3, no one analyzed M7, and only one participant analyzed the M8/M9 subtree.

Coverage is similar within the L subtree. Thirteen of the fifteen participants analyzed R1.

Twelve of the thirteen analyzed R2. No participant analyzed every event in fault tree, and

only participant 01 analyzed at least half of the events.

Recall that to be coded as bread, a participant must have analyzed a sufficiently large

1 Another participant (06) drew a small sequence diagram that only depicted the actions of a single thread
(not an interaction between multiple threads).

87

Table 5.4: Fault tree coverage by participants.

Node Depth
Coverage by participant

Sum
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

root 0 + + + + + + + + + + + + + + + 15

L1 1 + + + + + + + + + + + + + + + 15
M1 1 + + + + + + + + + + + + + + + 15
R1 1 + - + + + + - + + + + + + + + 13

L2 2 + - + - - + + + + + + + + + + 12
L3 2 + - - - - - - - - - - - - - - 1
M2 2 + - + + - + + + + + + + + + + 13
M3 2 + + - + - - - - - - - - - - - 3
R2 2 + - - + + + - + + + + + + + + 12

L4 3 + - - - - + + + + + + + + - + 10
L5 3 - - - - - - - - - - - - - - - 0
L6 3 - - - - - - - - - - - - - - - 0
L7 3 - - - - - - - - - - - - - - - 0
L8 3 - - - - - - - - - - - - - - - 0
L9 3 - - - - - - - - - - - - - - - 0
M4 3 + - - + - + + + + + + + + + + 12
M5 3 - - - + - - - - - - - - - + - 2
M6 3 - - - + - - - - - - - - - + - 2
M7 3 - - - - - - - - - - - - - - - 0
M8 3 - + - - - - - - - - - - - - - 1
M9 3 - + - - - - - - - - - - - - - 1

Pct. coverage: 52 29 29 48 24 43 33 43 43 43 43 43 43 48 43

88

 0

 2

 4

 6

 8

 10

 12

true false true false true false true false true false

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between bread and Success

bread

noNewfixrat /\ confratloc

not bread

Figure 5.3: Relationships between use of the breadth-first approach and success attributes.

number of events in the fault tree down to depth two. In our study, a participant met this

criteria if he analyzed events root, L1, L2, M1, M2, R1, and R2. Although events L3 and

M3 were at depth two, we excluded them as outliers.2 Table 5.2 lists the ten participants

who we coded as bread. Only participant 01 analyzed all events down to depth 2 in the

fault tree.

Our cross-case analysis did not find a significant relationship between the use of a

breadth-first approach and success. Figure 5.3 depicts the frequencies of our cross compar-

ison. Breadth-first participants were more successful than depth-first for all measures of

success; however, none of the differences rose to the level of statistical significance. Seven

breadth-first participants were successful at both diagnosing (rat) and fixing (fix) the defect

(rat), whereas three were not successful by either measure. Only one depth-first participant

was successful by these measures, whereas the other four were unsuccessful.

Focusing on the group we coded as having applied the breadth-first approach, nine

2 Only one participant analyzed L3, and only three analyzed M3.

89

of the ten analyzed events L4 and M4. No one in the group considered events L5–L9

and M7–M9, and only 1 considered the M5/M6 subtree. These omissions are noteworthy.

Perhaps the participants ran out of time. Although it seems unlikely that they all ran out

of time at nearly the same points, they may have grown weary after working for over

two hours and begun to make errors of omission. Alternatively, given the rate of success

in this group, they may have decided that they had found and fixed all of the defects in

the system. However, if they drew this conclusion without having analyzed a large swath

of potential causes of failure, then either: (1) we wrongly included them in the group

applying a breadth-first problem-solving approach, (2) at some point during the study they

abandoned this approach, or (3) something about the problem made the omitted hypotheses

difficult to formulate. Assuming our grouping is correct, we interpret these omissions as

a breakdown of the breadth-first problem-solving approach, which should otherwise have

led to the discovery of these events.

To see whether concurrency was a factor in this breakdown of the approach, we dis-

tinguish between a type of hypothesis whose analysis requires reasoning about concurrent

behavior versus a type that only requires reasoning about sequential behavior. A hypoth-

esis requires reasoning about concurrent behavior if its associated node in the fault tree

has at least one of the following two properties. First, the node has a timing constraint

that orders events executed by different threads. Second, the node is part of a conjunct

of events (i.e., child nodes joined by an AND gate) and one of the events in the conjunct

has a timing constraint that orders events executed by different threads. A hypothesis only

requires reasoning about sequential behavior if its associated node in the fault tree has nei-

ther of these properties. The nodes in Table 5.4 that only require reasoning about sequential

behavior are root, L1–L3, M1–M3, and R1–R2. The remaining nodes require reasoning

about concurrent behavior.

In our data, hypotheses that require reasoning about concurrent behavior are less likely

to be analyzed than those involving sequential reasoning. In the concurrent category, five

90

of the six events were analyzed by two or fewer participants, and only one (M4) was widely

analyzed. In the sequential category, three of the four nodes were analyzed by thirteen or

more participants, and only one (M3) was, for the most part, not analyzed. Moreover, the

code that gives rise to this lone unanalyzed event (M3) follows (in the source code) from

the code associated with M2, which contains synchronization primitives. When concurrent

reasoning is required, participants seem largely to pursue a small number of hypotheses

and fail to consider the competitors. This suggests concurrency may be a factor in the

breakdown of the breadth-first problem-solving approach.

5.1.4 Systematic Comprehension

Our cross-case analysis did not find a significant relationship between the use of a system-

atic comprehension strategy and success. Ten of the fifteen participants used the strategy.

Figure 5.4 depicts the frequencies of our cross comparisons. These data show that partic-

ipants who applied the systematic strategy were, on average, more successful on task by

all measures of success. However, this result is not statistically significant for any measure

of success. In contrast to the results of the Littman study, our data show that use of the

systematic strategy alone is not a strong predictor of success.

Static and Causal Knowledge

We evaluated participants’ static and causal knowledge with our poststudy questionnaire.

We partitioned the questions into those that emphasize static knowledge and those that em-

phasize causal knowledge. Table 5.5 summarizes the participants’ scores on the postques-

tionnaire. Participants generally did well on the static questions with a mean score of 84%.

In contrast, they struggled on the causal questions with a mean score of only 55%.

To test the claim that the systematic strategy leads to a stronger mental model than

the as-needed strategy, we compared the scores of the participants who used the systematic

strategy (syst) with those who did not (¬syst). Table 5.6 summarizes the results of the com-

91

 0

 2

 4

 6

 8

 10

 12

true false true false true false true false true false

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between syst and Success

syst

noNewfixrat /\ confratloc

not syst

Figure 5.4: Relationships between use of the systematic comprehension strategy and suc-
cess attributes.

Table 5.5: Poststudy questionnaire results.

Questions Mean Std. Dev.
Quartile

Min. Lower Med. Upper Max.

Overall 0.68 0.20 0.25 0.60 0.71 0.83 0.93
Static 0.84 0.19 0.41 0.73 0.89 1.00 1.00
Causal 0.55 0.23 0.13 0.47 0.53 0.74 0.88

92

Table 5.6: Relationship between systematic strategy and program knowledge.

Questions
syst ¬syst Diff. in

Means
Prob. (p)

Mean Std. Dev. Mean Std. Dev.

All 0.73 0.21 0.57 0.16 0.16 0.13
Static 0.88 0.19 0.76 0.17 0.11 0.27
Causal 0.62 0.23 0.43 0.18 0.19 0.11

parison. We performed a heteroscedastic, two-tailed t-test to determine if the difference in

means between the groups is significant. Although participants who used the systematic

strategy exhibited higher scores on both static and causal knowledge questions, the differ-

ence in scores was not statistically significant. The absence of a statistically significant

difference here suggests that the benefits of the systematic strategy with respect to a strong

mental model may be reduced in the context of concurrent software. One possible expla-

nation for this is that programmers who engage in the systematic strategy are implicitly

analyzing data and control dependences. However, concurrent software makes reasoning

about such dependences difficult, thus reducing the effectiveness of the systematic strategy.

Section 2.1.2 provides rationale for this difficulty.

To test the claim that there is a relationship between a strong mental model and suc-

cess on task, we performed a cross-case analysis of participants various levels of success.

Table 5.7 depicts the results of our analysis. For each success attribute, we compared the

scores of the successful and unsuccessful participants. We performed a heteroscedastic,

one-tailed t-test to determine if the difference in scores between the groups is significant.3

The results show significant differences in the causal knowledge of successful and un-

successful participants for measures of success, except the weakest (loc). However, they

only show a significant difference in static knowledge for noNew. This is consistent with

Littman colleagues’ claim that causal knowledge tends to distinguish successful and un-

successful programmers.

3 We use a one-tailed test here because being unsuccessful on task should not have a positive effect on
postquestionnaire score. If we observed such a result, we would attribute it to random chance.

93

Table 5.7: Relationship between knowledge and success.

Attribute Questions
Successful Unsuccessful Diff. in

Means
Prob. (p)

Mean Std. Dev. Mean Std. Dev.

loc
Overall 0.7 0.22 0.61 0.13 0.09 0.19
Static 0.84 0.2 0.83 0.18 0.02 0.45
Causal 0.59 0.25 0.44 0.1 0.15 0.07

rat
Overall 0.79 0.14 0.56 0.2 0.23 0.02
Static 0.92 0.12 0.75 0.22 0.16 0.06
Causal 0.69 0.17 0.41 0.2 0.28 0.01

rat ∧ conf
Overall 0.79 0.16 0.62 0.21 0.17 0.052
Static 0.92 0.15 0.8 0.2 0.12 0.11
Causal 0.7 0.18 0.49 0.22 0.22 0.04

fix
Overall 0.79 0.14 0.56 0.2 0.23 0.02
Static 0.92 0.12 0.75 0.22 0.16 0.06
Causal 0.69 0.17 0.41 0.2 0.28 0.01

noNew
Overall 0.81 0.13 0.6 0.21 0.21 0.01
Static 0.95 0.06 0.77 0.21 0.18 0.02
Causal 0.7 0.17 0.46 0.22 0.24 0.02

94

Table 5.8: Performance on the poststudy questionnaire.
Type Question Overall rat rat ∧ conf fix noNew

Static

1 82 88/76 87/80 88/76 89/78
2 80 88/71 100/70 * 88/71 83/78
3 77 84/68 75/78 84/68 96/64 *
4 83 100/64 * 100/75 * 100/64 * 100/72 *

5.1 85 100/68 * 100/78 * 100/68 * 100/75 *
6 88 97/77 * 95/84 97/77 * 100/80 **
7 91 88/95 80/97 88/95 100/85

11 83 94/71 90/80 94/71 100/72 *
12 87 88/86 100/80 88/86 83/89

Causal

5.2 55 53/58 55/56 53/58 58/53
8 63 67/57 61/63 67/57 73/55

9.1 63 78/45 * 75/57 78/45 * 83/49 *
9.2 52 60/43 60/48 60/43 63/44
9.3 58 66/50 65/55 66/50 71/50

10.1 68 70/66 72/66 70/66 71/66
10.2 58 80/56 82/63 80/56 76/64
13 33 25/43 40/30 25/43 17/44
14 67 100/29 ** 100/50 *** 100/29 ** 100/44 **
15 44 66/20 * 65/34 66/20 * 67/29 *
16 34 55/11 * 68/18 * 55/11 * 57/19
17 60 100/14 *** 100/40 *** 100/14 *** 100/33 **

Additionally, we performed a cross-case analysis of participants that achieved the four

highest levels of success (rat, rat ∧ conf, fix, and noNew) and their scores on individual

questions from the poststudy questionnaire. Table 5.8 summarizes performance on the

individual postquestionnaire questions, listing the overall average, and for each category

of success, listing the average for the successful group and the unsuccessful group (S /U).

Question are sorted by the type of knowledge they are designed to evaluate (i.e., static or

causal). For each question, we performed a heteroscedastic, one-tailed t-test to determine

if the difference in means between the groups is significant. Significant differences are

indicated in bold-face, with ∗= (p < 0.05), ∗∗= (p < 0.01), and ∗∗∗= (p < 0.001).

Participants performed well when evaluating static knowledge of important objects in

the implementation of the eBizSim server (question 1). There were no significant differ-

95

ences between successful and unsuccessful participants on this question.

They also performed well on questions that evaluated knowledge of shared data, ad-

dressing shared objects and data structures (questions 4 and 5.1), scoring over 80% when

asked to identify server classes that might be concurrently accessed by multiple threads

(question 4) and when asked to describe the purposes of the main data structures (question

5.1). Significant differences were found on all categorizations of success for these ques-

tions. However, when asked to identify the different types of threads (i.e., thread roles) that

might be involved in concurrent access to those data structures (question 5.2) performance

dropped to 55%. This drop was seen across both the successful and unsuccessful groups.

Questions 2, 3, 11, and 12 evaluated static knowledge of threads and thread roles. Par-

ticipants were generally able to propose names for the two roles that threads could play

and to describe the responsibilities assumed by threads playing each role (question 2), to

state how many threads might play each role (question 3), and to answer questions about

thread creation (questions 11 and 12). Performance on these questions was related to some

categorizations of success and not with others, but with no clear pattern.

Participants were successful when asked to describe the “life cycle” of the

Request Handler objects in the system (question 6). These objects are created when the

system initializes, used to process requests during their lifetime, and then destroyed when

the system terminates. Differences between successful and unsuccessful participants were

significant in three of the four categories.

Questions 7 and 8 addressed the behavior of the dispatch request method, asking

participants to list the major activities performed during this method (question 7) and to

identify those activities in which the actor might block and explain the conditions and

synchronization objects and operations involved (question 8). Participants were able to list

the major activities, but no significant difference existed across the groups. However, they

struggled to identify all of the conditions under which an actor might block, with many

participants either stating that an actor could block trying to acquire the mutex lock, or that

96

an actor could block on a condition variable, but failing to state both.

Questions addressing causal knowledge proved challenging. Two of these causal ques-

tions (questions 9 and 10) were scenario based. Such questions posit some state of the

system (e.g., “... a thread, call it T, after beginning execution of dispatch request, success-

fully retrieves a request handler from the pool”), and then ask what may occur next if, for

example, the queue is empty, or has 1 request, or has 10 requests. A list of six activities was

provided, and the participants were asked to select those activities that could occur next. We

only observed a statistically significant difference for the noNew categorization, and only

for question 9.1. Although participants performed well on these questions overall, a sub-

group of scenarios proved problematic. All of the problematic scenarios involved reason-

ing about how the state of the system may change between the time a thread invokes a wait

statement and when that invocation returns. Condition synchronization is generally diffi-

cult to reason about because so many actions may transpire between when a thread invokes

and returns from a wait. Many of the incorrect answers we observed in questions related to

condition synchronization indicate that participants made incorrect inferences about causal

relationships between the values of counting variables (such as queue waiters) and the

number of threads currently blocked on the queue.

Questions 14 and 15 honed in on the actual defect, asking participants to identify the

nature of the synchronization defect that was seeded into the program. Question 14 was

a multiple-choice question, in which the correct description of the defect was selected by

67% of the participants. Question 15 asked participants to describe, in their own words,

the design defect that leads to the intermittent failure of the eBizSim server. Only four

participants received full credit for this question, despite greater numbers of participants

who were able to find and fix the flaw, or to select the correct description from a multiple-

choice question. Clearly, this causal knowledge and the ability to articulate it is more

difficult than identifying the defect from a series of choices or than actually fixing the

defect in the implementation.

97

Participants struggled when asked to consider interactions of the eBizSim server with

an outside agent, the stress tester, and to discuss the effect of stress-tester speed in causing

the server to crash (question 16). We found significant differences between the successful

and unsuccessful groups under the rat, rat ∧ conf, and fix categories.

Finally, participants were asked to describe how they fixed or would fix the design flaw

that leads to the intermittent failure in the eBizSim server (question 17). Interestingly,

participants performed better (60%) at describing the fix than at describing the defect. We

found a significant difference between the successful and unsuccessful groups under all

categorizations.

In summary, participants were generally able to acquire static knowledge relevant to

a multithreaded program, performing well at understanding key data structures and thread

roles involved in synchronization and describing the life cycles of objects and threads. They

began to struggle when asked to list all of the conditions under which an actor might block,

often recalling only some of those conditions (mutex locks or condition variables). Further,

they had greater difficulty with questions related to causal knowledge, particularly with

certain scenario-based questions, and with free-form explanations of the nature of the fault

itself and of interactions with other agents.

Littman and colleagues’ claim of a relationship between a strong mental model and

success on task appears to hold here. However, the systematic strategy does not seem to

be as effective at providing that model when applied to concurrent software. Types of

knowledge that appear to be related to success, under one definition or another, included

static knowledge of shared objects and data, and detailed knowledge of the life cycles

of threads and objects. We found that certain types of causal knowledge have a strong

relationship with success, including the ability to describe concrete scenarios under which

a defect might occur.

98

5.1.5 Cyclic Debugging

In our cross-case analysis, we found no relationship between the use of cyclic debugging

and success. Thirteen of the fifteen participants instrumented the code (inst), and eleven

refined their instrumentation based on a prior run of the program (refine). No participants

succeeded in producing a failure trace with the technique. We partitioned the participants

by the various attributes of success, but no partitioning showed a significant difference with

respect to the use of execution-based tracing (inst or refine). Successful and unsuccessful

participants at all levels employed the strategy. However, those in the group that correctly

diagnosed the defect with confidence (rat ∧ conf) appeared to use such tracing to localize

the error to the retrieve request method, and then to switch to other strategies. For ex-

ample, one such participant ran the program once to confirm that the failure was produced,

and then spent some time reading the code and locating the dispatch request method.

He then instrumented the code in that method to determine which of the several steps in

that method was failing. While the program was running, he continued to study the code,

but was “hesitant to do too much” until he “narrowed things down by at least one level.”

Once he achieved that, he sketched out a sequence diagram. However, he continued to run

the program in the background, saying, “We’ll just keep this going while we think.” In

contrast, those in the unsuccessful group appeared to continue to pursue cyclic debugging

further.

5.1.6 Pattern Matching

Our cross-case analysis found evidence of a relationship between pattern matching and

various levels of success. Only six of the fifteen participants recognized the wait-in-while

idiom (pat). Figure 5.5 depicts the frequencies of our cross-case analysis. Participants

who successfully diagnosed the defect (rat), did so with confidence (rat ∧ conf, and fixed

the defect (fix) all tended to do pattern matching significantly more than their unsuccessful

counterparts (p < 0.01 in all cases). However, we did not find a significant relationship

99

 0

 2

 4

 6

 8

 10

 12

true false true false true false true false true false

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between patt and Success

patt

noNewfixrat /\ confratloc

not patt

Figure 5.5: Relationships between recognition of the wait-in-while idiom and success
attributes.

between the use of pattern matching (pat) and successfully fixing the defect without intro-

ducing new defects (noNew). This finding may arise because the eBizSim application uses

a variant of the wait-in-while pattern. The variant augments the idiom with counters to

prevent unnecessary signaling. Among the participants who introduced a new defect while

fixing the defect (fix ∧ ¬noNew), the defects they introduced always involved misuses of

these counters. Furthermore, we observed that all participants who recognized this viola-

tion of the wait-in-while pattern did so in the context of modeling. No participant merely

recognized that the pattern had been violated and fixed the code solely on that basis.

The relationship between the recognition of the wait-in-while idiom and success sug-

gests that training with such common patterns is another key element. That roughly half

of the participants did not note this violation, despite a recent lecture on the topic in class,

suggests that lecture alone may be insufficient to convey this concept and that hands-on

exercises may be necessary. The limitations of pattern-matching should also be taught, so

100

that programmers are mindful of when the technique is appropriate.

5.1.7 Tweaking the Code

Our cross-case analysis found evidence of a relationship between tweaking and failure at

the task. Ten of the fifteen participants exhibited tweaking. Figure 5.6 depicts the frequen-

cies of our cross comparisons. Participants who failed to explain the defect (¬rat) and who

failed to fix the defect (¬fix) were significantly more likely to engage in tweaking (luck)

(p < 0.05 in all cases). It seems likely that the relationship of the tweaking strategy with

failure to correctly diagnose or correct the defect is a by-product of the failure to com-

prehend the nature of the defect; those participants did not know what else to do. The

relationship between this strategy and an unsuccessful outcome suggests that programmers

should not waste time in this way, and might better spend their time attempting to localize

the error, looking for violations of well-established patterns, modeling the behavior of the

system, and constructing candidate error traces.

5.2 Discussion

In summary, this exploratory study has provided insights into the strategies that program-

mers use to address the challenges of debugging concurrent software, and the practices pro-

grammers employ that are related to success on task. Our findings suggest that failure-trace

modeling is an important factor in successful debugging. Participants who used the strategy

were significantly more successful than those who did not. Moreover, greater commitment

to the strategy yielded higher levels of success. For instance, we observed that participants

who produced strongly-articulated error traces were more likely to correctly diagnose the

defect with confidence. Furthermore, all participants who produced an actual failure trace

diagnosed the defect with confidence and fixed the defect.

Although we found a clear relationship between failure-trace modeling and success, we

101

 0

 2

 4

 6

 8

 10

 12

true false true false true false true false true false

N
u
m

b
e
r

o
f
P

a
rt

ic
ip

a
n
ts

Measures of Success

Relationship Between luck and Success

luck

noNewfixrat /\ confratloc

not luck

Figure 5.6: Relationships between code tweaking and success attributes.

also observed some limitations of the approach. Not all participant who produced strongly-

articulated error traces were successful on task. Moreover, only a small number of failure-

trace modelers were able to produce a model of an actual failure trace. The potential

behaviors of concurrent programs are highly complex. The need to reason about such

behaviors while performing failure-trace modeling may strain cognitive resources, such as

working memory [7]. Such strain may hinder success with the strategy. This hypothesis

is supported by the observation that participants modeled predominantly “in their heads,”

with only limited external support for reducing cognitive load.

We observed that the ability to recognize the violation of a particular concurrent pro-

gramming idiom was closely related to success. Participants who noted our violation of the

wait-in-while idiom were significantly more successful at diagnosing and fixing the defect

than those who did not. This suggests the importance of bug smells [49] for generating

hypotheses as to the cause of a failure.

102

Due to the nature of concurrency, programmers engaged in debugging must consider

many plausible hypotheses as to the cause of the defect. These hypotheses arise from

the multitude of possible behaviors a concurrent program may exhibit. The importance

of managing hypotheses, so that they are investigated in a systematic fashion and are not

lost or forgotten, is clear. However, we consistently found a breakdown in the breadth-first

approach used by many of our participants. These participants failed to analyze many plau-

sible hypotheses. Moreover, we found evidence that concurrency was a factor in whether

or not hypotheses were analyzed. Hypotheses that required reasoning about interactions

between multiple threads were analyzed far less often than those that required reasoning

about the behavior of a single thread.

We observed several practices that were not related to success. Participants who

tweaked the code, trying to fix the defect through luck, were significantly less success-

ful than those who did not. A majority of participants engaged in cyclic debugging despite

its well-understand limitations in the context of concurrent software. However, only the

participants who also engaged in failure-trace modeling were successful on task.

The systematic comprehension strategy, which was previously found to lead to success

on tasks [73], did not have a significant relationship with success here. One explanation

is that the technique relies on the programmer performing an implicit dependence analysis

as he engages in the strategy. With concurrent software, the dependences are difficult to

understand, and this difficulty may account for the ineffectiveness of the strategy. One ex-

planation given for the success of the systematic strategy is that it provides the programmer

with causal knowledge about the program. Interestingly, we observed a significant relation-

ship between the possession of causal knowledge and success on task. However, we did not

find a significant relationship between the use of the systematic strategy and possession of

such knowledge. This result suggests that successful participants gained causal knowledge

through other means.

103

5.2.1 Limitations

We identified several aspects of our study that may limit how well our findings generalize to

practice. The limited scale of the eBizSim application may be a limitation. This limitation

was difficult to avoid because of the logistical constraints of the study. To address this

problem, other types of studies, such as case studies, that allow for larger, more realistic

programs are needed.

The composition of our participant pool may be a limitation. The behaviors of students

may not be representative of programmers in general. Moreover, the CS students at Michi-

gan State University that make up our participant pool are predominantly male, so our

results may not generalize to female programmers. Continued sampling of different types

of programmers is needed to address this limitation. In particular, industrial practitioners

should be studied.

The absence of strong incentives for participants to succeed may be a limitation. Par-

ticipants were only asked to participate for a relatively limited length of time. The natural

incentives to succeed that exist in a real-world setting are difficult to duplicate in a study

involving students. Again, other types of studies, such as case studies, with a more realistic

structure of incentives are needed.

Our choice of seeded defect may be a limitation. The defect may not be representative

of the kind of synchronization defects that arise in practice. More sampling of defects is

required to address this limitation.

A potential limitation of the study concerns the use of the think-aloud because the

cognitive resources required for introspection may affect how participants perform. For-

tunately, numerous studies show that participants who only are asked to “verbalize their

inner dialogue,” as were the participants in this study, perform comparably on measures of

performance with participants who are not asked to think aloud [38]. After an hour into

our study, one participant who had thought that the method would be a hindrance stated,

“[Talking aloud] turned out not to be a big deal. Especially while I was thinking through

104

sequences of events, I pretty quickly became unaware of the fact that I was talking out

loud.”

105

CHAPTER 6

CONTROLLED EXPERIMENT: PLANNING AND

EXECUTION

Our exploratory study found that the use of the failure-trace modeling strategy is impor-

tant for success when debugging concurrent software; however, it also found limitations

with the strategy. Some participants who modeled were not successful on task, and less

than half of those modelers were able to produce an actual failure trace. Our observation

that participants predominantly modeled internally (Section 5.1.2) leads us to hypothesize

that cognitive strain may have limited success. To test this hypothesis, we conducted a con-

trolled experiment to test whether externally representing models improves a programmer’s

ability to reason correctly about the potential behaviors of concurrent software. Such rea-

soning is critical to success with failure-trace modeling; therefore if we observe a benefit

to externalizing in this context, we can infer that the benefit should extend to the strategy.

6.1 Experiment Planning

Our experiment aims to test whether externally representing models improves program-

mers’ reasoning ability in the aggregate. We compared external modeling with modeling

done exclusively internally. The external representation took the form of multithreaded se-

quence diagrams (Section 2.4). Using a multithreaded program, a set of interactions, and

106

a set of questions about the interactions, we measure reasoning ability as the number of

correct answers.

6.1.1 Participants

The participants were 44 undergraduate CS students enrolled in a software design course

(CSE 335) at Michigan State University. Students could volunteer to participate in the

study, and were compensated with extra credit.1 To enroll for the course, the students

must have completed at least one course that emphasized programming in C++. One C++

course should provide adequate background to comprehend the programs in this study,

which use only basic C++-language features. We did not expect participants to have a

background in multithreaded programming. As part of the study, we taught participants

about the multithreaded programming model and the ACE thread library.

6.1.2 Experimental Materials

The study materials comprise a preexperiment questionnaire (prequestionnaire for short)

and an experiment questionnaire (questionnaire for short). We used the prequestionnaire to

block and balance our treatment groups (see Section 6.1.4). The experiment questionnaire

served as the primary study instrument.

Preexperiment Questionnaire

The prequestionnaire measures the ability to reason about the potential behaviors of a mul-

tithreaded program. To answer the questions correctly, the participant must understand the

multithreaded programming model and be able to apply their knowledge to comprehend

a particular program. We designed the prequestionnaire to measure how well participants

have mastered the multithreaded programming model up to level 3 in Bloom’s taxonomy

of the cognitive domain [13]. This level emphasized the ability to apply a concept (e.g.,

1 We offered alternative extra credit opportunities to students who did not want to participate.

107

a programming model) in new situations (e.g., the comprehension of an unfamiliar pro-

gram). The questions involved small, simple examples that required little context. We

kept the scale small so that participants could complete the prequestionnaire in under thirty

minutes.

The questions refer to a small (73 SLOC) multithreaded banking program. The pro-

gram comprises four threads performing operations on a shared database object, which

manages bank-account information. The database supports readers-writer style synchro-

nization [64]—that is, it allows readers to concurrently execute its operations but provides

each writer thread with exclusive access while executing operations. In the prequestion-

naire program, two of the threads play the role of reader and two play the role of writer.

To keep the program small, we elided much of the “business logic”—that is, the code

concerned with the specific banking functions—so that participants could focus on the syn-

chronization logic.

The prequestionnaire presents seven scenarios of interaction involving reader and writer

threads. For each scenario, it asks one or two multiple-choice questions about the scenario

for a total of eight questions. The questions either ask about the state of the program

at the end of the scenario, about the behaviors that might happen immediately following

the scenario, or about why certain events (e.g., a state transition or operation invocation)

occurred during the scenario. Figure 6.1 depicts a scenario and question from the preques-

tionnaire. Appendix B provides a listing of the program source code that the question refers

to. Observe that the scenario describes an interaction among a reader and a writer thread.

Many details of the interaction are elided. To answer the question correctly, the participant

must apply his knowledge of the semantics of the synchronization mechanisms to infer the

elided actions and state transitions. Appendix B provides a complete reproduction of the

prequestionnaire along with solutions to the questions.

108

Scenario: An interaction involving one reader R and one writer W . Assume
W is in the running state within an invocation of start write and R is in the
ready state. A context switch occurs just after W increments n writers by one.
W transitions to the ready state, and R transitions to the running state. R invokes
start read and quickly transitions to the blocked state.

Question: Why does R enter the blocked state? (select one of the following)

(a) R enters the blocked state via the call to wait on line 50 because n writers
is non-zero at the time.

(b) Deadlock occurs. Because W holds the lock, R can’t possibly acquire the
lock.

(c) R enters the blocked state via the call to wait on line 36 because n writers
is non-zero at the time.

(d) R enters the blocked state via the call to acquire on line 35.

(e) R enters the blocked state due to the occurrence of a context switch.

Figure 6.1: Sample preexperiment-questionnaire scenario and question.

Experiment Questionnaire

The experiment questionnaire, like the prequestionnaire, measures the ability to reason

about the potential behaviors of a multithreaded program; however, the questions in the ex-

periment questionnaire are designed to be more cognitively taxing. The questions refer to a

small (56 SLOC) multithreaded server program, which we seeded with a defect. The server

simulates an e-business server that accepts and processes requests from remote clients. The

server comprises multiple threads, each of which plays one of two distinct roles—that of

a listener or a handler. A single listener thread monitors the network, listening for client

requests and placing them on a request queue as they arrive. Two handler threads take

requests from the request queue and simulate processing the requests. We seeded the pro-

gram with a defect because we are primarily concerned with how programmers reason

about thread interactions in the context of debugging tasks. The defect is related to thread

synchronization and allows a handler to erroneously invoke the pull operation on an empty

109

request queue.

The questionnaire presents four scenarios with one question each. The questions are

all the same. They ask whether the scenario is consistent with the source code, and if so,

whether the scenario causes the program to enter a clear error state. Figure 6.2 depicts an

example of a scenario and question. Appendix B provides a listing of the program sources

that the scenario refers to. Observe that the scenario describes an interaction among a

listener thread and two handler threads. As with the prequestionnaire, many details of

the interaction are elided and must be inferred by the participant. Appendix B provides a

complete reproduction of the questionnaire along with solutions to the questions.

6.1.3 Hypotheses, Parameters, and Variables

Our experiment has one independent variable: the use of external representations of thread

interactions. It has two treatments: the exclusive use of internal representations (internal)

and the use of external representations in the form of sequence diagrams (external). It

has one dependent variable: the ability to reason correctly about thread interactions (C).

We measured C using the experiment questionnaire and report the measurement as the

proportion of correct answers (i.e., a score in the range [0.0,1.0]).

Table 6.1 lists our hypotheses for testing the effect of using external representations.

The null hypothesis (H0) states that using external representations has no effect on ability

to reason—that is, there is no difference in the mean scores of questionnaires filled out

while externalizing and those filled out using only internal representations. The alternative

form of the hypothesis (Ha)—that is, what we expect to happen—states that externalizing

yields better scores on the questionnaire than using only internal representations. We do

not anticipate the result C (external) < C (internal) because the participants have access to

their internal facilities while externalizing. If we observed such a result, we would assume

it was due to random chance or a defect in the experiment (e.g., participants were not given

enough time to complete the questionnaire).

110

Scenario: Assume there is a listener thread, L, and two handler threads, H1 and
H2, and that

• queue is empty,

• waiters is zero, and

• all the threads are at the beginning of their respective control loops.

Consider the scenario where:

(1) H1 calls retrieve and blocks inside the operation.

(2) L calls submit (with argument r) and is preempted at line 17.

(3) H2 calls retrieve and blocks inside the operation.

(4) L returns from submit and is preempted at the top of its control loop. In the
process, H1 transitions to the ready state.

(5) H2 returns from retrieve and is preempted at the top of its control loop.

Question: Is the scenario consistent with the code? If so, does the scenario
result in the program entering an error state? (Select one of the following.)

(a) Consistent & No Error: The scenario is consistent with the code and does
not result in the program entering an error state.

(b) Consistent & Error: The scenario is consistent with the code and does
result in the program entering an error state.

(c) Inconsistent: The scenario is not consistent with the code.

Figure 6.2: Sample experiment-questionnaire scenario and question.

Table 6.1: Hypotheses tested by our experiment.
Dependent variable Null hypothesis (H0) Alternative hypothesis (Ha)

Score on questionnaire C (external) = C (internal) C (external) > C (internal)

111

Figure 6.3: Part of a sequence-diagram template.

6.1.4 Experiment Design

Our experiment had one factor (i.e., whether models of thread interactions are externalized

as sequence diagrams) and two treatments (i.e., externally representing models as sequence

diagram and internally representing models). We used a between-subjects design—that is,

each participant received only one of the treatments. We partitioned our participants into

two treatment groups: the external group and the internal group. We used the preexper-

iment questionnaire to balance the groups. To do the partitioning, we ordered the partic-

ipants by their prequestionnaire scores. We randomly ordered participants with the same

score. We assigned alternating participants to each group. This approach produces groups

with similar mean scores and standard deviations.

To test our hypothesis, the external group and the internal group both filled out the

experiment questionnaire. We asked the external group to draw a sequence diagram of each

scenario before answering questions about that scenario. We provided them paper printed

with sequence-diagram templates (Figure 6.3) to help them draw the diagrams. In contrast,

we the asked the internal group to answer the questions “in their heads”—that is, without

drawing pictures or writing notes. We collected all testing materials from participants, so

that in addition to evaluating their answers, we could analyze their diagrams.

112

6.2 Execution

6.2.1 Preparation

Prior to running the study, we recruited participants from the software-design course. We

sent an email to the enrolled students soliciting participation. We used extra credit in the

course as an inducement. We offered an alternative extra-credit homework assignment, so

students who opted not to participate could also earn the extra credit. Students indicated

their participation by filling out a consent form. The form described the activities involved

with participation as well as the time commitment. The form reassured participants that

any materials they produced for the study (e.g., filled-out questionnaires) will either be kept

private or, if shared, be anonymized using randomly-assigned ID numbers. To help ensure

an acceptable level of motivation from participants, we deceived participants by stating

that participants who perform poorly on the study questionnaires will not receive the extra

credit. Deception is commonly employed in human-subjects studies and is deemed ethical

if there is no risk of harm to the participants [3]. We assured the participants that if they

made a reasonable effort they would receive the credit. In truth, we awarded all participants

the extra credit, regardless of how they performed on the questionnaires. We collected 49

completed consent forms.

6.2.2 Execution of Experiment Procedure

The entire study involved three 80-minute sessions spread out over two weeks. All sessions

were held during the course’s regular meeting time. Non-participants who were enrolled in

the course were permitted to attend the sessions. During the first two sessions, participants

received a two-part lecture on multithreaded programming in C++. The parts were 80 and

50 minutes long, respectively. As part of the lecture, we taught students how to use our

multithreaded sequence-diagram extension (see Section 2.4.2). During the last 30 minutes

of the second session, participants filled out the preexperiment questionnaire. We collected

113

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.00 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00

F
re

q
u
e

n
c
y

Preexperiment Questionnaire Score

Frequency Distributions for Preexperiment Questionnaire

External Group
Internal Group

Figure 6.4: The frequency distributions of the scores of the external and internal groups
on the preexperiment questionnaire.

50 completed preexperiment questionnaires.

Between the second and third sessions, we graded the prequestionnaires and partitioned

the participants into treatment groups. We used the procedure described in Section 6.1.4

to perform the partitioning. After partitioning, the external and internal groups had similar

means and standard deviations:

External Group: Mean = 0.510 Std. Dev. = 0.255

Internal Group: Mean = 0.505 Std. Dev. = 0.240

Figures 6.4 and 6.5 provide some additional descriptive statistics. The statistics support

that our partitioning produced well-balanced groups with respect to the prequestionnaire.

For the final session, the treatment groups met in separate rooms and filled out the

experiment questionnaire. We chose to have them meet in separate rooms, so that if one

group tended to finish faster than the other, the slower group would not feel pressure to

rush. We collected 44 completed questionnaires along with any drawings and notes that

participants produced. Finally, we graded the experiment questionnaires and performed

our analysis.

114

 0.25

 0.75

P
re

e
x
p

e
ri
m

e
n
t

Q
u

e
s
ti
o
n
n

a
ir
e
 S

c
o
re

Treatment Group

 External Internal

 1.00

 0.50

 0.00

Figure 6.5: The scores of the external and internal groups on the preexperiment question-
naire.

6.2.3 Data Validation

We did not throw out any experiment questionnaires. However, six participants who com-

pleted the prequestionnaire did not complete the experiment questionnaire. One of the six

never filled out a consent form and presumably was not a participant in the study. The other

five dropped out of the study prior to taking the experiment questionnaire. The attrition had

only a minor impact on the balancing of the treatment groups. The final groups mean and

standard deviations on the prequestionnaire were as follows:

External Group: Mean = 0.494 Std. Dev. = 0.260

Internal Group: Mean = 0.494 Std. Dev. = 0.236

115

CHAPTER 7

CONTROLLED EXPERIMENT: ANALYSIS AND

DISCUSSION

Having administered and scored the experiment questionnaire, we performed a quantita-

tive analysis, which compares the scores of the treatment groups to see if their was a sta-

tistically significant difference. Additionally, we perform two supplementary qualitative

analyses. Section 7.1 details our analyses and the results that emerged from them. Sec-

tion 7.2 discusses our interpretation of the analysis results and threats to the validity of the

experiment.

7.1 Analysis

In this section, we present descriptive statistics for the data that we collected in the ex-

periment. Then, we address our hypothesis that tests the effect of externalizing models of

thread interactions with sequence diagrams on the ability to reason correctly about potential

program behaviors. Finally, we present some supplemental analyses of the data.

7.1.1 Descriptive Statistics

Table 7.1 provides statistics regarding the results of the experiment questionnaire. The table

shows the results for the questions individually as well as in the aggregate. For each of the

116

Table 7.1: Results of the experiment questionnaire.

Question(s)
External Group Internal Group

Diff. in Means Prob. (p)
Mean Std. Dev. Mean Std. Dev.

1 0.59 0.50 0.32 0.48 0.27 0.04
2 0.64 0.49 0.14 0.35 0.50 0.0002
3 0.55 0.51 0.45 0.51 0.09 0.28
4 0.41 0.50 0.32 0.48 0.09 0.27

1–4 0.55 0.31 0.31 0.27 0.24 0.005

F
re

q
u
e

n
c
y

Experiment Questionnaire Score

0.25 0.75
 0

 2

 4

 6

 8

 10

 12

0.00 0.50 1.00

Frequency Distributions for Experiment Questionnaire

External Group
Internal Group

Figure 7.1: Frequency distribution for the experiment questionnaire scores.

four questions, we scored participants one point if they answered correctly; otherwise, we

scored zero points. We computed each participant’s overall score as the mean of their

scores on the questions (i.e., overall score in the range [0.0,1.0]). The results show that

the external group produced a higher mean score than the internal group on all questions.

Figures 7.1 and 7.2 provide additional descriptive statistics.

117

 0.25

 0.75

E
x
p
e

ri
m

e
n

t
Q

u
e
s
ti
o
n

n
a
ir
e
 S

c
o

re

Treatment Group

 1.00

 0.50

 0.00

 External Internal

Figure 7.2: Box plot of the experiment questionnaire scores.

7.1.2 Hypothesis Testing

We performed a two-sample t-test to assess the statistical significance of the difference in

the questionnaire scores of the treatment groups. We performed a similar t-test on the in-

dividual questions. We used a one-tailed t-test because (1) we predicted that the external

group will have a higher mean prior to executing the study, and (2) if the internal group

produced a higher score, we would attribute the difference to random chance (i.e., no sig-

nificant difference) regardless of the size of the difference. We set the level of significance

(α) to 0.05. We report the results (i.e., the p values) of the t-tests in the rightmost column

of Table 7.1. The difference in means is greatest on questions 1 and 2, and we found both to

be statistically significant. The differences in means for questions 3 and 4 is smaller, and is

not statistically significant. Looking at the results for all the questions in the aggregate, the

external group scored 0.27 higher than the internal group, and the difference is statistically

significant. Based on the difference in overall scores, we rejected our null hypothesis H0

and accepted our alternative hypothesis Ha .

118

7.1.3 Supplementary Analyses

To supplement our hypothesis-checking analysis, we performed two additional analyses of

the data. Recall that each question on the experimental questionnaire has a scenario that

describes a thread interaction. We analyzed the complexity of the interactions to see if

there was a relationship with the differences in scores of the two treatment groups. We

also analyzed the quality of diagrams produced by the external group to see if there was a

relationship with performance on the questionnaire.

Interaction-Complexity Analysis

Using the approach from Section 2.5, we applied several metrics to the four scenarios of

interaction from the questionnaire. We first modeled the program from the questionnaire

as an LTS in the FSP language [76]. Appendix D provides a listing of our FSP code.

The resulting model has 1097 states and 2416 transitions. Next, we computed a trace that

represents each interaction using the LTSA tool. From each trace, we computed the total

number of transitions, the number of threads involved, the number of context switches, and

the number of block/unblock actions. Appendix D provides a complete description of the

traces. We report these measurements in Table 7.2. The rightmost column of the table

lists the differences in the external and internal group scores on the questions (statistically

significant differences in bold). Based on the data, there is no apparent relationship between

the number of transitions or the number of threads and the difference in scores. However,

the number of context switches and block/unblock actions are noticeably higher for the

questions that showed larger differences in scores. This pattern suggests that as scenario

complexity increases under these metrics, the effect of externalizing also increases.

Diagram-Quality Analysis

We performed an analysis to check for a relationship between diagram quality and ques-

tionnaire score. We evaluated the sequence diagrams collected from the external group.

119

Table 7.2: Complexity measurements over the thread interactions from the questionnaire.
Question Transitions Threads Context Switches Blocks/Unblocks Diff. in Means

1 22 3 4 4 0.27
2 11 3 3 4 0.50
3 15 3 2 1 0.09
4 13 3 2 1 0.09

 0.25

 0.75

 0.4 0.5 0.6 0.7 0.8 0.9

E
x
p
e
ri
m

e
n
t−

Q
u

e
s
ti
o

n
n

a
ir
e

 S
c
o
re

 1.00

 0.50

 0.00

 0.3 0.2 0.1 0.0 1.0

Diagram−Quality Score

Figure 7.3: Plot of the relationship between diagram quality and questionnaire score.

We assigned a score to each diagram in the range [0.0,1.0]. The score captured not only

the correctness of the diagram, but also the level of detail. For example, diagrams that

did not explicitly represent state changes to the mutex objects received a lower score than

those that did. We did not require participants to use our sequence-diagram extension (see

Section 2.4.2); however, participants who used the extension tended to omit fewer details.

Appendix B provides a complete description of the evaluation rubric. We assigned each

participant in the external group an overall diagram-quality score, which is the mean of

their individual diagram scores. Figure 7.3 depicts the relationship between questionnaire

and diagram scores. The scatter plot suggests that as diagram quality increases, the ability

to reason about potential program behaviors also increases.

120

7.2 Discussion

In this section, we discuss the results of the experiment. First, we evaluate the results and

discuss their implications for practice. Second, we discuss threats to the validity of the

results.

7.2.1 Evaluation of Results and Implications

Overall, the results support our hypothesis that externally representing models of thread in-

teractions with sequence diagrams improves ability to correctly reason about the behavior

of concurrent programs. We were able to reject the null hypothesis because the exter-

nal group performed significantly better on the experiment questionnaire than the internal

group (p < 0.05). This finding supports our claim that externalizing improves the rate of

success with the failure-trace modeling strategy.

Our results also suggest that interaction complexity is a key factor in reasoning. By

analyzing complexity-relevant attributes of the interactions from the experiment question-

naire, we found that the effect of externalizing was greater for the interactions with higher

levels of these attributes. In particular, the external group scored noticeably higher on inter-

actions with more context switches and block/unblock actions. Questions with lower levels

of these attributes exhibited a much smaller difference. This finding suggests that the cogni-

tive strain associated with reasoning about complex interactions may be an important factor

in the ability to reason correctly. We hypothesize that external representations alleviate the

cognitive strain, thereby improving programmer’s ability to reason correctly. These results

also suggest that programmers can model internally up to some threshold of complexity

without significant negative effects on reasoning ability.

Finally, our results suggest that high-quality diagrams are important for successful rea-

soning. Diagram quality comprises both the correctness of the diagram and the level of

detail. By analyzing the sequence diagrams produced by the external group, we found

121

evidence that questionnaire scores tend to increase as diagram quality increases.

7.2.2 Threats to Validity

This section discusses threats to the validity of our experiment and how we addressed them.

We adopt the categories and terminology prescribed by Wohlin and colleagues [131]. They

recognize four types of validity: conclusion, internal, construct, and external.

Conclusion Validity

Conclusion validity is the degree to which correct conclusions can be drawn about relations

between the treatment and the outcome. We recognize the following possible threats.

Reliability of measures: Questions on the questionnaires may be ambiguous or difficult

for participants to understand. We addressed this threat by having multiple investi-

gators review the questionnaires as well as conducting a pilot run of the experiment

using the questionnaires.

Reliability of treatment implementation: The treatment groups filled out the experiment

questionnaire in separate sessions. The administration of the sessions may have var-

ied, thus affecting participants’ outcomes. We addressed this threat by providing the

same script to the investigators who administered the questionnaires. Moreover, we

provide the investigators with the same instructions regarding how to address ques-

tions from participants.

Internal Validity

Internal validity is the degree to which conclusions can be drawn about the causal effect

of independent variables on the dependent variable. We recognize the following possible

threats.

122

Maturation: Participants may have improved their mastery of concurrent programming

between the time that they completed the preexperiment questionnaire and the ex-

periment questionnaire—in fact, simply filling out the preexperiment questionnaire

may have caused them to learn. Such learning can throw the treatment groups out of

balance if one group learns faster than the other. We minimized this threat by keep-

ing the time between the preexperiment questionnaire and experiment questionnaire

short (i.e., less than a week). Moreover, we ensured that neither group was given

more motivation to learn than the other. For example, we did not reveal to partic-

ipants the types of questions they would be asked to answer prior to filling out the

experiment questionnaire.

Resentful demoralization: The internal group may have felt unduly restricted by using

only internal representations of the thread interactions and underperformed on the

experiment questionnaire. Similarly, the external group may have resented the ad-

ditional work associated with drawing the sequence diagrams and underperformed.

We addressed this threat by administering the experiment questionnaire to the groups

simultaneously in separate rooms. Moreover, we did not reveal to each group the in-

structions that the other group received.

Construct Validity

Construct validity is the degree to which the independent and dependent variables accu-

rately measure the concepts they purport to measure. We recognize the following threat.

Inadequate preoperational explication of constructs: Ability to reason correctly about

thread interactions is a difficult concept to completely measure. Participants must be

able reason about an interaction at some level to answer the questions in the experi-

ment questionnaire. Moreover, someone who cannot answer those questions must be

limited in their reasoning to some extent. However, there may be types of reasoning

that our questions failed to test.

123

External Validity

External validity is the degree to which the results of the research can be generalized to the

population under study and other research settings. We recognize the following possible

threats.

Interaction of selection and treatment: The participants in our study may not be repre-

sentative of professional software engineers. However, the results can be useful in

an industrial context for two reasons [14]. First, studies performed in laboratory set-

tings allow the investigation of a larger number of hypotheses at a lower cost than

field studies. Second, the hypotheses that seem to be supported in the laboratory

setting can be subsequently tested in more realistic industrial settings with a better

chance of discovering important and interesting findings.

Interaction of setting and treatment: The programs and scenarios used in this study may

not be representative of industrial software in terms of their size and complexity. We

kept materials relatively small in scale to meet the time constraints of our controlled

experiment. We partially addressed this threat by giving the e-business server a real-

istic multithreaded architecture based on the Reactor design pattern [107].

Several different application domains emphasize the use of concurrency (e.g., reac-

tive systems and scientific applications). Programmers in these domains commonly

employ different architectures and programming models. Our study emphasized

reactive server applications written using the POSIX threads programming model.

Therefore, the results of our study may not generalize to other application domains.

124

CHAPTER 8

DISCUSSION

The goal of our work is to understand the strategies and practices that successful program-

mers employ during the debugging of concurrent software. The empirical studies described

in the previous chapters have contributed several key findings toward our goal and gener-

ated interesting new research questions. Additionally, we learned practical lessons in the

conduct of empirical software engineering during the course of these studies. In this sec-

tion, we discuss our research findings and their implications for practice (Section 8.1), the

lessons learned (Section 8.2), and future work (Section 8.3).

8.1 Research Findings

An important finding of our work is that successful programmers use failure-trace mod-

eling during debugging. Our exploratory study found that successful participants were

significantly more likely to use the strategy than unsuccessful. However, we also observed

some participants who were unsuccessful with the strategy. Two such participants were

completely unsuccessful on task, and many more, although successful at fixing the defect,

failed to produce an actual failure trace. Participants predominantly modeled internally, and

cognitive overload may have been an important factor in these cases. External representa-

tions can improve performance on cognitively-taxing tasks [139]. Our controlled experi-

ment found that creating external representations of models indeed improves programmers

125

ability to reason correctly about potential program behavior. Participants in the experi-

ment who drew sequence diagrams of thread interactions were significantly more success

at reasoning about potential behavior than those who worked exclusively internally.

Our findings with respect to failure-trace modeling have important implications for

practice. The benefits afforded by failure-trace modeling make the strategy a strong candi-

date for tool support. A failure-trace modeling tool might provide features for creating and

manipulating sequence diagrams. A graphical interface could deliver an externalization

similar to that used in our experiment. Having such a tool would implicitly encourage pro-

grammers to engage in failure-trace modeling. Currently available sequence-diagramming

tools (e.g., Papyrus1) provide limited support for concurrency, but they could be adapted to

support our multithreaded extension (Section 2.4).

Our experiment also found that correct and highly-detailed diagrams yield the greatest

benefits. The failure-trace modeling tool could have features for detecting and preventing

errors in diagrams. For instance, the tool could automatically analyze the buggy source

code to generate a call graph—that is, a directed graph that represents calling relationships

between the methods in a program [104]. The tool could use the graph to warn the pro-

grammer about potentially missing method calls in the diagram. Another common source

of errors is the complex and subtle semantics of synchronization mechanisms [105]. The

tool could automatically track the state of synchronization objects and enforce the proper

semantics of their operations to prevent them from entering invalid states. In addition to en-

suring correct diagrams, the tool could also encourage the programmer to add more details

to their diagrams. The programmer could be prompted to add some of these details, and

the tool could automatically elaborate others. For instance, the tool could automatically

add hatching to an actor’s activations when the programmer specifies the invocation of a

synchronization operation (e.g., condition-variable wait) that results in blocking. The tool

could also actively help the programmer produce a failure trace. Based on one diagram,

1http://www.papyrusuml.org/

126

http://www.papyrusuml.org/

it could automatically suggest alternative diagrams that exhibit different thread schedules.

Sequence diagrams could also be dynamically generated from specific executions of the

program [15, 16]. Even if the programmer is unable to reproduce the failure, a generated

diagram of a non-failing run may still provide a useful starting place to begin searching for

the defect.

Another important finding was that concurrency thwarts attempts to systematically

manage hypotheses regarding the cause of the defect. Such management of hypotheses

is known to be key to success in debugging [123]. The explosion of plausible hypotheses

induced by concurrency makes this practice all the more important. Our exploratory study

found many participants engaged in a breadth-first approach to diagnosing the defect. How-

ever, we observed a consistent breakdown in the approach, and as a result, many hypotheses

were not investigated. We see two possible causes for this breakdown. First, participants

may have been forgetting to check hypotheses. Although the buggy program was small,

it engendered a comparatively large number of plausible hypotheses. Between the tasks

of reasoning about the program’s behavior and managing the hypotheses, participants may

have been under a heavy cognitive load. As with failure-trace modeling, participants pre-

dominantly managed hypotheses internally. Thus, they may have been prone to forgetting

hypotheses that they postponed checking. Second, participants may have had difficulty

identifying some hypotheses. The complexity of concurrent software makes it difficult to

reason about its potential behaviors. If the formulation of a particular hypothesis requires

reasoning about a subtle interaction among multiple threads, then programmers may fail

to recognize the hypothesis. Indeed, our data show that participants were much less likely

to analyze hypotheses that involved reasoning about the behavior of multiple concurrently-

interacting threads than hypotheses that involved reasoning about a single thread.

The importance and difficulty of managing hypotheses also makes the practice a prime

candidate for tool support. Such a tool could enable programmers to externalize their hy-

potheses. One debugging expert [138] prescribes externalizing hypotheses as textual lists

127

with accompanying notes regarding the state of each hypothesis (e.g., confirmed or refuted).

Based on our experiences modeling the space of hypotheses with fault trees, we propose

a tool that organizes hypotheses in a graphical fault tree, which incorporates our multi-

threaded extensions (Section 5.1.3). Our tool would record the same information as the

textual approach as well as conveying the structural relationships between the hypotheses.

We may be able to extend existing fault tree tools (e.g., OpenFTA2) for this purpose. These

features focus on addressing the issue of remembering hypotheses. We can also imagine

features to help programmers identify hypotheses. For example, a multithreaded-program

slicer (e.g., Indus3) could be used to suggest potential dependences.4 Dependence infor-

mation is known to be useful in formulating hypotheses [138]. However, slicers have not

been widely used for concurrent software for debugging, so it is an open question whether

they are effective.

Another finding of our work was that the systematic comprehension strategy, which

others [73] have claimed leads to success on programming tasks, does not lead to success

when applied to concurrent software. We observed ten of our participants using the strat-

egy; however, we did not find a significant relationship between its use and success. One

of the claimed benefits of the strategy is a strong mental model, which comprises both

static and causal knowledge of the software [73]. The systematic strategy is supposed to be

especially effective for gathering causal knowledge. In contrast, the as-needed comprehen-

sion strategy is thought to be less effective for gathering this type of knowledge. However,

we found that participants who obtained higher levels of knowledge (causal or otherwise)

were not significantly more likely to use the systematic strategy than the as-needed strat-

egy. The downfall of the strategy may be that it involves an implicit dependence analysis.

That is, in tracing through the control flow of the program (as per the systematic strategy),

the programmer gains knowledge of data and control dependences. Unfortunately, such

2http://www.openfta.com/
3http://indus.projects.cis.ksu.edu/
4 Slicers tend to be imprecise, so it is up to the programmer to determine whether a reported dependence

is an actual one.

128

http://www.openfta.com/
http://indus.projects.cis.ksu.edu/

dependences are difficult to identify in concurrent software.

As predicted by the literature [73], we found that the possession of a strong mental

model, and especially causal knowledge, was related to success. This finding suggests that

programmers acquire causal knowledge through means other than the systematic strategy.

Failure-trace modeling may engender such causal knowledge. It stands to reason that by

analyzing possible thread interactions, the programmer could discover subtle data and con-

trol dependences. However, unlike the systematic strategy, failure-trace modeling is not

applied globally to the system. Therefore, failure-trace modeling generates causal knowl-

edge in an as-needed fashion. The literature claims that the systematic strategy cannot be

applied practically to large software, and successful programmers of such software use a

methodical (albeit as-needed) approach to comprehension [100]. Like large software, the

complexity of concurrent software also appears to necessitate as-needed comprehension.

Therefore, a methodical approach may be associated with success in our context as well.

Unfortunately, we were unclear how to code for the methodical approach in our study

because the original analysis of the approach emphasized the navigation behavior of par-

ticipants in the context of a large software system. In contrast, the application in our study

was small and involved little navigation.

A surprising observation from our think-aloud study was that participants engaged

heavily in cyclic debugging. Even those who demonstrated a capacity for strongly-

articulated modeling exhibited this behavior. Almost all of the participants began by using

the execution-based tracing strategy. However, successful participants tended to use the

strategy only to localize the defect. They switched to failure-trace modeling to actually

produce a failure trace. Many participants ran an instrumented program in the background

throughout the session. Furthermore, many used the approach in an attempt to confirm

(by absence of failure) the correctness of their solution. The participants who continued to

invest in cyclic debugging long past the point of diminishing returns, instead of switching

to failure-trace modeling, were ultimately unsuccessful. Many participants expressed un-

129

derstanding the limitations of the technique, but continued to use it anyway. This suggests

that more hands-on training is needed to develop greater “buy in” regarding the limitations

of the cyclic debugging. Such training could involve laboratory exercises using artifacts

similar to those in our study. Thus, students would gain first-hand experience with these

limitations.

8.2 Lessons Learned

During large, complex studies, such as ours, many practical issues arise. We gathered

insights into how to address some of these issues throughout the course of our work. In this

section, we discuss two particular issues we encountered and our experiences and insights

in addressing them. The first issue pertains to the difficulty of packaging think-aloud data of

programmers into a form that is usable to other researchers and economical to produce. The

second issue pertains to the difficulty of transcribing many hours of think-aloud sessions.

8.2.1 Sharing Think-Aloud Data

In reporting on a think-aloud study, sufficient think-aloud data must be provided so that

other researchers can replicate the analysis or run their own analyses [89]; however, we

found satisfying this requirement problematic. Traditionally, textual transcripts of partic-

ipants’ utterances are shared with other researchers. Such transcripts are sufficient when

participants use predominantly internal representations while engaged in tasks. However,

we found such transcripts insufficient for our study.

The programmers in our study worked with a rich set of tools and documents throughout

their tasks. To interpret their utterances correctly requires a detailed understanding of the

context in which each utterance was made. Examples of such context include the source

file currently in view and whether the participant is passively reading or actively editing

a file. Unfortunately, properly documenting the context is difficult. Recording detailed

130

action protocols, which are transcripts of the observable actions taken by participants, is

not practical because the volume of information that must be encoded is overwhelming.

For example, consider the amount of text needed to describe the activity of a mouse pointer

over a two-hour session. Attempts to reduce the level of detail by abstracting the actions

produced highly subjective protocols, which would make it difficult for other researcher to

validate our work. Moreover, we may omit details that other researchers need to test their

own theories.

To address these problems, we propose distributing think-aloud data of programmers as

subtitled, silent screen-capture videos. Protecting the identities of participants is a foremost

ethical concern in human-subjects studies [3]. Therefore, sharing raw videos (with audio

intact) is unacceptable. Identifying characteristics such as a participant’s voice or likeness

should not be released under any circumstances. Video editing software can be used to

remove the audio track, which effectively sanitizes (i.e., removes sensitive information

from) the data. Of course, participants must be instructed not to do anything during their

session, such as checking email, that would give away their identity. However, in the event

that such a slip occurred, video-editing software could be used to remove or block out the

offending parts of the video.

Subtitling the videos effectively synchronizes a verbal transcript with the detailed con-

text information that is needed for interpretation. Software applications for editing subtitles

are widely available (e.g., Jubler5). Conveniently, they commonly store subtitles in a text

file that is separate from the video file. Video-player applications (e.g., Window Media

Player) automatically insert the subtitles into the video during playback. Because the sub-

title file is in plain text, it is not difficult to translate the file into another format, such as

a comma-separated volume (i.e., a spreadsheet). Thus, a subtitle editor can be used to

simultaneously subtitle the video and produce a transcript of the utterances.

In addition to allowing others to validate your work, these subtitled videos provide an

5http://www.jubler.org/

131

http://www.jubler.org/

excellent resource for other researchers. Collecting and transcribing think-aloud data is

costly and labor intensive. This is especially true in the case of programmers of concurrent

software where participants with the necessary skill set are difficult to find and often need

some additional training (as was the case in our study). Videos could be used by other

researcher to economically develop and test new theories. Moreover, the videos could be

used to test and refine new study designs before “going live.”

8.2.2 Transcribing Think-Aloud Sessions

Transcribing think-aloud sessions is tedious and time consuming. In an effort to ease the

task, we employed a software application, Dragon NaturallySpeaking6, which is reputed to

be among the best transcription tools. The software provides functionality for translating

spoken words recorded in an audio file (e.g., MP3) to text. It is recommended that the

software be “trained” for the person’s voice to be transcribed. Each participant engaged

in a thirty-minute training session with the transcription software prior to their think-aloud

session. Unfortunately, despite this training, the transcripts produced by the software were

completely unusable. Although the software produced text that was phonetically similar to

the participants utterances, very few words in the text matched the words actually spoken.

In the end, it was easier to create the transcripts manually by listening to the audio than it

was to correct the generated transcripts.

We see two possible causes for the poor quality of transcription. First, the software may

have required more training. However, it would not have been reasonable to ask for more

of our participants’ time. Second, during training participants tended to use a different

speaking voice than during their think-aloud sessions. The training software required that

participants use a loud, clear voice. However, participants tended to mumble and speak in

a lower register while engaged in think-aloud. Unfortunately, trying to make participants

speak clearly during think aloud may be distracting to them and degrade their performance.

6http://www.nuance.com/naturallyspeaking/

132

http://www.nuance.com/naturallyspeaking/

In the final analysis, we found the transcription software to be of no help, and performed

transcription completely by hand.

Another lesson learned was just how difficult and time-consuming transcription is. We

recruited eight computer-science undergraduate students to do the transcribing. Addition-

ally, we transcribed a one-hour and eighteen-minute session ourselves. We kept a log of

when and how long we worked on the transcription and found that it took sixteen hours

and fifty-three minutes to complete (with an average time of almost thirteen minutes to

transcribe each minute of video). We were surprised by how difficult it was to transcribe

an utterance correctly without listening to it several times. This need for constant replaying

undoubtedly contributed to the long transcription time.

We used the Jubler tool to perform the transcription, and found that several of its fea-

tured eased the task. Note that Jubler is intended to be used as a subtitle editor, but its

features are also appropriate for transcription. Figure 8.1 depicts the interface of the tool.

Jubler’s main features are a video-preview window, an audio-waveform window, and a

spreadsheet of utterances. By far the must helpful feature was the audio waveform preview

window. Clicking on points in the waveform cause the video to jump to that point. More-

over, portions of the waveform can be selected so that the selection can be replayed repeat-

edly by clicking a button. Another helpful feature was the video-preview window, which

conveniently provided contextual information during transcription. The spreadsheet of ut-

terances also incorporated helpful features. The time offset and duration of each utterance

is automatically recorded based on the currently selected portion of the waveform. Also,

selecting an utterance from the spreadsheet causes the video preview and the waveform to

jump to the appropriate time offset. Although manual transcription inherently tedious and

labor-intensive, these features effectively reduce some of the effort.

133

audio waveformvideo preview

current utterancespreadsheet of utterances

Figure 8.1: Jubler subtitle editor.

134

8.3 Future Work

Our findings raise interesting questions for future research. One such question is whether

failure-trace modeling continues to be a strong predictor of success when the defect is

difficult to localize (i.e., to isolate to a segment of code). Two features of the exploratory

study aided in localizing the defect. First, participants were able to reproduce the failure,

albeit with some difficulty. Second, the bug report included an error message that could be

traced directly to a specific line of code. Real-world debugging contexts may not have these

features, making the defect considerably more difficult to localize. In future work, we will

study how programmers cope with these challenges. Our future study will share the basic

design of the exploratory study, except that no error output will be provided and the failure

will be effectively unreproducible without manipulating the thread scheduler. In this study,

we will look for the localization strategies that lead to success and test whether the ability

to localize the defect is a stronger predictor of success than failure-trace modeling.

Another interesting question raised by our work relates to the factors that lead to the

breakdown in the systematic management of hypotheses regarding the cause of the failure.

We observed that participants in our study failed to analyze many plausible hypotheses.

One possible reason for this is that cognitive strain caused them to forget to analyze hy-

potheses, which they noticed during the course of debugging. Another possible reason is

that they had difficulty identifying certain hypotheses in the first place. These potential

causes are not mutually exclusive, and we will seek to discover which of them has the

greater effect.

We will address this question with a series of controlled experiments. One experiment

will compare the use of external representations of hypotheses with the use of strictly inter-

nal representations. The experiment will have two treatment groups: an internal group that

is asked to use only internal representations and an external group that is asked to external-

ize hypotheses. We will observe each group as they perform several debugging tasks. To

measure how many hypotheses each group analyzes, we will prompt them to think aloud.

135

In our analysis, we will check whether the internal group, which is under a heavy cognitive

load, analyzes significantly fewer hypotheses than the external group, which has external

representations to reduce their load.

Another experiment will evaluate the benefits of possessing a program dependence

graph (PDG) [93] (i.e., a graph containing all the data and control dependences of a pro-

gram) with respect to identifying hypotheses. If formulating hypotheses is a significant

problem, a PDG will provide additional information on which to base hypotheses. The

experiment will have two treatment groups: a PDG group that is given access to PDGs and

a no-PDG group that is not. Each group will perform several debugging tasks. Using the

external representations they produce, we will analyze whether the PDG group identifies

significantly more hypotheses than the no-PDG group.

136

CHAPTER 9

CONCLUSIONS

Debugging concurrent software is notoriously difficult. Techniques that programmers de-

pend on to successfully debug sequential software are ineffective when applied to concur-

rent software. Furthermore, tools have failed to address the problem, and the literature

provides little advice about what techniques are effective.

The motivation of the work described in this dissertation is to address the problem

by understanding the strategies and practices that successful programmers use when de-

bugging. Such an understanding will both provide advice for programmers and suggest

effective tool designs. Toward this goal, we conducted empirical studies of programmers

debugging concurrent software applications. Specifically, we ran an exploratory think-

aloud study in which we observed fifteen programmers debugging a small multithreaded

server application, which we seeded with a defect. Consistent with its exploratory design,

this study produced a number of theories regarding the behaviors that distinguish successful

from unsuccessful programmers. We conducted a follow-up experiment to test and refine

one of these theories.

Three key claims emerged from our studies. The first claim is that successful program-

mers use the previously-undocumented failure-trace modeling strategy while debugging.

The strategy involves modeling interactions among various threads in the system with the

objective of discovering a failure trace—that is, an interaction that ends in an error. Find-

137

ing a failure trace aids in diagnosing the defect because it explains how the program fails.

Participants who were successful in our exploratory study were significantly more likely

to engage in this strategy than those who were unsuccessful. However, we observed lim-

itations of the strategy: two participants who used it were completely unsuccessful, and

many others were unable to model an actual failure trace. Cognitive strain may have been

an important contributor to these limitations because participants predominantly modeled

internally.

The second claim is that external representations during failure-trace modeling im-

proves the rate of success with the strategy. This claim emerged from our controlled ex-

periment. We compared the ability of programmers who create external representations in

the form of UML sequence diagrams to reason about the potential behavior of a concurrent

program with that of programmers who use exclusively internal representations. We found

that the “external” participants were significantly more successful at correctly reasoning

about program behavior than the “internal” ones. Furthermore, our data also suggest that

the benefit of external representations increases as the complexity of the program behavior

increases.

The third claim is that concurrency makes systematically managing hypotheses regard-

ing the cause of a defect more difficult. This claim is supported by the data of our ex-

ploratory study, which suggests that many participants attempted to take a breadth-first

approach to diagnosing the defect. However, the approach consistently broke down, leav-

ing many potential causes of the defect unexplored. The complexity of concurrent soft-

ware causes an explosion in the number of potential causes of a defect. Participants pre-

dominantly managed hypotheses internally, and the high volume of hypotheses may have

strained their cognitive resources, causing them to forget hypotheses. We also found evi-

dence that concurrency makes hypotheses difficult to discover in the first place. Participants

were much less likely to analyze hypotheses that involved reasoning about interactions

among multiple threads than they were to analyze hypotheses that only involved reasoning

138

about one thread.

In conclusion, the claims produced by our work represent a good first step toward our

long-term goal of understanding the debugging strategies and practices of successful pro-

grammers. These claims show great potential for informing the design of new tools as well

as educational curricula. Carrying this work forward, we will seek to develop new claims

with exploratory studies of different types of applications, defects, and programmers; and

we will continue to test and refine our existing claims with controlled experiments and case

studies. Moreover, we will develop and evaluate tools that follow directly from our empiri-

cal observations. We believe that by grounding debugging solutions in an understanding of

how programmers successfully debug concurrent software in practice, we will eventually

provide real relief from this vexing problem.

139

APPENDIX A

EXPLORATORY STUDY MATERIALS

This appendix presents the materials used in our exploratory study. Section A.1 contains the

server application, which we seeded with a synchronization defect. Sections A.2 and A.3

contain reproductions of the prestudy and poststudy questionnaires, respectively.

A.1 eBizSim Source Code

Dispatcher.h

1 // -*- C++ -*-
2
3 #ifndef SERVER_DISPATCHER_H
4 #define SERVER_DISPATCHER_H
5
6 #include "Pool.h"
7
8 class Dispatcher
9 {

10 public:
11 Dispatcher(Pool* handler_pool);
12 virtual ˜Dispatcher() {}
13
14 virtual int run();
15
16 private:
17 Pool* handler_pool_;
18 };
19

140

20 #endif /* not SERVER_DISPATCHER_H */

Dispatcher.cc

1 // -*- C++ -*-
2
3 #include "Dispatcher.h"
4
5 #include "Request.h"
6
7 using namespace std;
8
9 Request* accept_request();

10
11 Dispatcher::Dispatcher(Pool* handler_pool)
12 : handler_pool_(handler_pool)
13 {}
14
15 int
16 Dispatcher::run()
17 {
18 while (true) {
19 handler_pool_ ->submit_request(accept_request ());
20 }
21 }

Request.h

1 // -*- C++ -*-
2
3 #ifndef SERVER_REQUEST_H
4 #define SERVER_REQUEST_H
5
6 #include <string >
7
8 class Request
9 {

10 public:
11 virtual ˜Request() {}
12
13 // Returns the number of bytes of input or -1 on failure.
14 virtual int parse() = 0;

141

15
16 // Returns a string representation of the request.
17 virtual const std::string& to_string() const = 0;
18 };
19
20 #endif /* not SERVER_REQUEST_H */

Request Handler.h

1 // -*- C++ -*-
2
3 #ifndef SERVER_REQUEST_HANDLER_H
4 #define SERVER_REQUEST_HANDLER_H
5
6 #include "Request.h"
7
8 class Request_Handler
9 {

10 public:
11 Request_Handler(unsigned id);
12
13 // Returns -1 on failure.
14 int process(Request* client_request);
15
16 protected:
17 void simulate_request_processing(Request* client_request);
18
19 private:
20 unsigned id_;
21
22 /// Variable for simulating request processing.
23 unsigned cur_time_;
24 };
25
26 #endif /* not SERVER_REQUEST_HANDLER_H */

Request Handler.cc

1 // -*- C++ -*-
2
3 #include "Request_Handler.h"
4

142

5 #include <cassert >
6 #include <iostream >
7 #include <ace/ACE.h>
8 #include <ace/OS.h>
9 #include "Request.h"

10
11 using namespace std;
12
13 Request_Handler::Request_Handler(unsigned id)
14 : id_(id), cur_time_(id)
15 {}
16
17 int
18 Request_Handler::process(Request* client_request)
19 {
20 assert(client_request != 0);
21
22 if (client_request ->parse() == -1) {
23 return -1;
24 }
25
26 simulate_request_processing(client_request);
27 delete client_request;
28
29 return 0;
30 }
31
32 void
33 Request_Handler::
34 simulate_request_processing(Request* client_request)
35 {
36 const int SERVICE_TIME [10] = { 1, 1, 0, 2, 1,
37 0, 1, 1, 0, 2 };
38 cur_time_ += id_;
39 cur_time_ %= 10;
40 ACE_OS::sleep(SERVICE_TIME[cur_time_]);
41 cout << "HANDLER " << id_ << ’ ’
42 << "PROCESSED REQUEST: " << client_request ->to_string()
43 << endl;
44 }

Pool.h

1 // -*- C++ -*-
2

143

3 #ifndef SERVER_REQUEST_HANDLER_POOL_H
4 #define SERVER_REQUEST_HANDLER_POOL_H
5
6 #include <deque >
7 #include <vector >
8 #include <ace/ACE.h>
9 #include <ace/Thread_Mutex.h>

10 #include <ace/Condition_Thread_Mutex.h>
11 #include "Request.h"
12 #include "Request_Handler.h"
13
14 class Pool
15 {
16 public:
17 Pool(int max_handlers);
18 ˜Pool() {}
19
20 int dispatch_request();
21 void submit_request(Request* request);
22
23 private:
24 std::vector <Request_Handler*> pool_;
25 ACE_Thread_Mutex pool_lock_;
26 ACE_Condition_Thread_Mutex nonempty_pool_cond_;
27 unsigned pool_waiters_;
28
29 std::deque <Request*> request_queue_;
30 ACE_Thread_Mutex queue_lock_;
31 ACE_Condition_Thread_Mutex nonempty_queue_cond_;
32 unsigned queue_waiters_;
33
34 void add_handler_to_pool(Request_Handler* handler);
35 Request_Handler* retrieve_handler_from_pool ();
36 Request* retrieve_request_from_queue ();
37 };
38
39 #endif /* not SERVER_REQUEST_HANDLER_POOL_H */

Pool.cc

1 // -*- C++ -*-
2
3 #include "Pool.h"
4
5 #include <cstdio >

144

6 #include <iostream >
7 #include <algorithm >
8
9 using namespace std;

10
11 Pool::Pool(int max_handlers)
12 : nonempty_pool_cond_(pool_lock_), pool_waiters_(0),
13 nonempty_queue_cond_(queue_lock_), queue_waiters_(0)
14 {
15 // Allocate handlers.
16 for (int i = 0; i < max_handlers; ++i) {
17 add_handler_to_pool(new Request_Handler(i + 1));
18 }
19 }
20
21 int
22 Pool::dispatch_request()
23 {
24 // First, retrieve a handler from the pool.
25 Request_Handler* handler = retrieve_handler_from_pool ();
26
27 if (handler == 0) { return -1; }
28
29 // Second, retrieve a request from the queue.
30 Request* request = retrieve_request_from_queue ();
31
32 if (request == 0) { return -1; }
33
34 // Third, use the handler to process the request.
35 if (handler ->process(request) == -1) { return -1; }
36
37 // Fourth, return the handler to the pool.
38 add_handler_to_pool(handler);
39
40 return 1;
41 }
42
43 void
44 Pool::submit_request(Request* request)
45 {
46 queue_lock_.acquire();
47
48 request_queue_.push_back(request);
49
50 if (queue_waiters_) {
51 nonempty_queue_cond_.signal();
52 --queue_waiters_;

145

53 }
54
55 queue_lock_.release();
56 }
57
58 void
59 Pool::add_handler_to_pool(Request_Handler* handler)
60 {
61 pool_lock_.acquire();
62
63 pool_.push_back(handler);
64
65 if (pool_waiters_) {
66 nonempty_pool_cond_.signal();
67 --pool_waiters_;
68 }
69
70 pool_lock_.release();
71 }
72
73 Request_Handler*
74 Pool::retrieve_handler_from_pool()
75 {
76 Request_Handler* handler;
77
78 pool_lock_.acquire();
79
80 if (pool_.empty()) {
81 ++pool_waiters_;
82 nonempty_pool_cond_.wait();
83 }
84
85 if (pool_.empty()) {
86 pool_lock_.release();
87 return 0;
88 }
89
90 handler = pool_.back();
91 pool_.pop_back();
92
93 pool_lock_.release();
94
95 return handler;
96 }
97
98 Request*
99 Pool::retrieve_request_from_queue()

146

100 {
101 Request* request;
102
103 queue_lock_.acquire();
104
105 if (request_queue_.empty()) {
106 ++queue_waiters_;
107 nonempty_queue_cond_.wait();
108 }
109
110 if (request_queue_.empty()) {
111 queue_lock_.release();
112 return 0;
113 }
114
115 request = request_queue_.front();
116 request_queue_.pop_front();
117
118 queue_lock_.release();
119
120 return request;
121 }

server.cc

1 // -*- C++ -*-
2
3 #include <cassert >
4 #include <iostream >
5 #include <ace/ACE.h>
6 #include <ace/OS.h>
7 #include <ace/Thread_Manager.h>
8 #include "Dispatcher.h"
9

10 using namespace std;
11
12 // File-local variables.
13 namespace
14 {
15 const int MAX_THREADS = 20;
16 const int MAX_HANDLERS = 20;
17
18 Pool handler_pool(MAX_HANDLERS);
19 }
20

147

21 void*
22 thread_root(void*)
23 {
24 while (true) {
25 if (handler_pool.dispatch_request() == -1) {
26 cerr << "error: Pool::dispatch_request() failed\n";
27 exit(1);
28 }
29 }
30
31 return 0;
32 }
33
34 int
35 ACE_MAIN(int argc , char* argv[])
36 {
37 assert(argc == 1);
38
39 Dispatcher dispatcher(&handler_pool);
40
41 // Spawn threads.
42 ACE_Thread_Manager::instance()->spawn_n(MAX_THREADS ,
43 thread_root , 0);
44
45 // Start the dispatcher.
46 cout << argv[0] << ": begin accepting requests..." << endl;
47 dispatcher.run();
48
49 return 0;
50 }

Makefile

1 # -*- Makefile -*-
2
3 CPPFLAGS = -D_REENTRANT ‘pkg-config --cflags ACE‘ -I../include
4 CXXFLAGS = -Wall -g
5 LIBS = ../lib/librequest.a ‘pkg-config --libs ACE‘
6
7 server_SOURCES = \
8 Dispatcher.cc \
9 Request_Handler.cc \

10 Pool.cc \
11 server.cc
12

148

13 server_OBJECTS = $(server_SOURCES:.cc=.o)
14
15 all: server
16
17 server: $(server_OBJECTS)
18 g++ $(CXXFLAGS) -o $@ $(server_OBJECTS) $(LIBS)
19
20 clean:
21 $(RM) server $(server_OBJECTS)

149

A.2 Prestudy Questionnaire

General knowledge of C++ Questions 1 and 2 below refer to Figure A.1, which defines
three classes.

1. Suppose the following variable declarations appeared in a context in which the class
definitions in Figure A.1 are visible.

A a; /* Stmt V1 */
A* aPtr; /* Stmt V2 */
B b; /* Stmt V3 */
B* bPtr = new C; /* Stmt V4 */
C c = new C; /* Stmt V5 */

According to the rules of the C++ type system, which of the following statements is
correct?

(a) Statements V1, V3, and V5 will compile correctly, but V2 and V4 will generate
an error.

(b) Statements V1, V2, V3, and V5 will compile correctly, but V4 will generate an
error.

(c) Statements V2, V3, V4, and V5 will compile correctly, but V1 will generate an
error.

(d) Every declaration V1 through V5 is type correct and will compile without error.

(e) None of the above

2. Which of the following sequences of statements will produce the output:

In A::f1()
In B::f2()
In C::vf1()
In C::vf2()

(a) C c; c.f1(); c.f2(); c.vf1(); c.vf2();

(b) B b; C c; b.f1(); b.f2(); c.vf1(); b.vf2();

(c) B* bPtr=new C; bptr->f1(); bPtr->f2(); bPtr->vf1();
bPtr->vf2();

(d) All of the above

(e) None of the above

150

1 class A
2 {
3 public:
4 void f1() { cout << "In A::f1()" << endl; }
5 virtual void vf1() { cout << "In A::vf1()" << endl; }
6 virtual void vf2() = 0;
7 };
8
9 class B : public A

10 {
11 public:
12 void f2() { cout << "In B::f2()" << endl; }
13 virtual void vf2() { cout << "In B::vf2()" << endl; }
14 };
15
16 class C : public B
17 {
18 public:
19 void f1() { cout << "In C::f1()" << endl; }
20 void f2() { cout << "In C::f2()" << endl; }
21 void vf1() { cout << "In C::vf1()" << endl; }
22 void vf2() { cout << "In C::vf2()" << endl; }
23 };

Figure A.1: Example C++ code for questions 1 to 2.

151

Familiarity with the ACE toolkit

3. The ACE class Thread Manager provides two means for spawning threads—
individually and in groups. The member function spawn n creates a group of threads
and takes two formal parameters, an unsigned integer numThreads and a pointer
(named rootFunc) to a void* returning function that takes one parameter of type
void*. Which of the following statements best describes the protocol by which
spawn n assigns work to the threads it creates?

(a) The spawn n method performs some initialization and then invokes the
rootFunc function, passing numThreads as a parameter to this invocation. It
is the programmer’s responsibility to write rootFunc to explicitly spawn an
individual thread for each unit of work and to clean up any resources used
by these threads once they terminate. The programmer-supplied function de-
termines the number of threads available by casting the numThreads parameter
from a void* to an unsigned int. spawn n assumes that rootFunc will block
until all spawned threads have terminated, unless an error occurs in which case
rootFunc should return -1. Upon successful termination of all spawned threads
rootFunc should return 0.

(b) The spawn n method creates numThreads threads, each of which is then im-
mediately dispatched to execute rootFunc. The invocation of spawn n then
returns, leaving the spawned threads to execute concurrently with the thread
that invoked spawn n. Each spawned thread terminates as soon as its execution
of rootFunc returns or the process exits.

(c) Same as (b) above, except that the invocation of spawn n waits until all spawned
threads have terminated before returning.

(d) The spawn n method creates a pool of numThreads threads, each of which is
then dispatched to execute rootFunc. As each spawned thread completes its
execution of rootFunc, it is either terminated or returned to the pool based on
the value returned by rootFunc. Once returned to the pool, the thread is again
dispatched to execute rootFunc. This process continues indefinitely. Once all
threads have terminated, spawn n returns.

(e) None of the above.

152

Prior working knowledge of concurrency concepts Questions 4 through 14 reference
ten different scenarios of interaction among concurrent actors that access a shared database
object. These actors in this example perform transactions that invoke a series of methods on
the database object, and we distinguish two different types of actors—readers and writers.
To illustrate, suppose that the database is storing bank-account information and provides
methods for depositing funds, withdrawing funds, and checking the balance of accounts
given their account numbers. A typical reader might be interested in computing the total
balance of a list of accounts and thus might execute the sequence of operations:

unsigned sum=0;
for(unsigned i=0; i < 10; i++) {

sum += db->getBalance(accounts[i]);
}

On the other hand, a writer will perform a transaction that modifies the contents of the
database. For example, a writer client might perform a transaction that transfers $50.00
between accounts acct1 and acct2 by executing the sequence of operations:

db->withdraw(acct1, 50);
db->deposit(acct2, 50);

Assuming the database is implemented as a monitor, it should be safe for multiple reader
transactions to execute concurrently because reader clients do not modify the contents
of the database object. However, a writer transaction should never execute concurrently
with any reader or any other writer transaction. The database supports this readers-
writer style of synchronization by providing four methods—startRead(), stopRead(),
startWrite(), and stopWrite()—which reader and writer threads use to signal the start
and finish of one of these transactions.

Figures A.2, A.3, and A.4 contain the C++ code for the database class, and the reader
and writer actors. Notice that the “account management” operations for class Database
have been elided here for brevity. Class Database:

• is implemented according to the monitor-object pattern, using the private variable
lock as the monitor lock;

• defines two counting variables, nReaders and nWriters , which record the number
of concurrently executing reader and writer transactions respectively; and

• defines two condition variables, okToRead and okToWrite , which are used to syn-
chronize reader and writer threads as they begin and end their transactions.

Please take a moment to familiarize yourself with this code.

153

1 #include <ace/Thread_Mutex.h>
2 #include <ace/Condition_Thread_Mutex.h>

3 class Database
4 {
5 public:
6 Database();
7
8 void startRead() const;
9 void stopRead() const;

10
11 void startWrite() const;
12 void stopWrite() const;
13
14 // ... functions for reading/writing database entries ...
15
16 private:
17 // The number of readers currently reading
18 mutable unsigned nReaders_;
19
20 // The number of writers currently writing
21 mutable unsigned nWriters_;
22
23 mutable ACE_Thread_Mutex lock_;
24 mutable ACE_Condition_Thread_Mutex okToRead_;
25 mutable ACE_Condition_Thread_Mutex okToWrite_;
26
27 // ... data structure for storing entries ...
28 };

Figure A.2: Definition of class Database.

154

29 Database::Database()
30 : nReaders_(0), nWriters_(0),
31 okToRead_(lock_), okToWrite_(lock_)
32 {}

33 void Database::startRead() const
34 {
35 lock_.acquire();
36 while (nWriters_ > 0) okToRead_.wait();
37 ++nReaders_;
38 lock_.release();
39 }

40 void Database::stopRead() const
41 {
42 lock_.acquire();
43 --nReaders_;
44 if (nReaders_ == 0) okToWrite_.signal();
45 lock_.release();
46 }

47 void Database::startWrite() const
48 {
49 lock_.acquire();
50 while (nWriters_ > 0 || nReaders_ > 0) okToWrite_.wait();
51 ++nWriters_;
52 lock_.release();
53 }

54 void Database::stopWrite() const
55 {
56 lock_.acquire();
57 --nWriters_;
58 okToWrite_.signal();
59 okToRead_.broadcast();
60 lock_.release();
61 }

Figure A.3: Implementation of the Database member functions.

155

62 // Global database object
63 Database db;

64 void* reader(void*)
65 {
66 for (;;) {
67 db.startRead();
68 // ... perform some read operations on db ...
69 db.stopRead();
70 }
71 }

72 void* writer(void*)
73 {
74 for (;;) {
75 db.startWrite();
76 // ... perform some read/write operations on db ...
77 db.stopWrite();
78 }
79 }

80 #include <ace/Thread_Manager.h>

81 int main(int, char*[])
82 {
83 ACE_Thread_Manager::instance()->spawn_n(2, writer , 0);
84 ACE_Thread_Manager::instance()->spawn_n(2, reader , 0);
85 ACE_Thread_Manager::instance()->wait();
86
87 return 0;
88 }

Figure A.4: Implemenation of the reader and writer actors, and the main function.

156

Scenario 1 (an interaction involving one reader and one writer): Assume the reader thread
is running within the invocation of startRead(), and the writer thread is in the ready
state. A context switch occurs just after the reader thread increments nReaders
by one. The reader thread transitions to ready and the writer thread transitions to
running. The writer thread invokes startWrite().

4. Shortly thereafter:
(a) The writer thread obtains the monitor lock.
(b) The reader thread suspends but does not release the lock.
(c) The writer thread suspends.
(d) Both reader and writer threads suspend, and deadlock occurs.
(e) None of the above

Scenario 2 (an interaction involving one reader and one writer): Assume the reader
thread is in the running state and the writer thread is suspended inside the call to
okToWrite . The reader thread invokes stopRead() and enters the monitor. It sets
the nReaders to 0 and issues the call okToWrite .signal().

5. As a result:
(a) The writer thread remains suspended.
(b) The writer thread transitions to ready and acquires the monitor lock.
(c) The writer thread transitions to ready but does not yet acquire the monitor

lock.
(d) The writer thread transitions to running and acquires the monitor lock.
(e) The writer thread transitions to running and does not acquire the monitor

lock.
6. Upon completing the invocation okToWrite .signal(), the reader thread:

(a) Must change state to ready and release the monitor lock
(b) Must change state to ready and retain the monitor lock
(c) May remain running and must retain the monitor lock
(d) Must remain running and may release the monitor lock
(e) Must suspend and release the monitor lock

Scenario 3 (an interaction involving one reader and one writer): Assume that, after the
reader thread has returned from its invocation of startRead(), a context switch
occurs, and the writer thread invokes startWrite().

7. Shortly after the writer thread issues the call to startWrite():
(a) The writer thread remains running until the invocation completes.
(b) The writer thread suspends on the monitor lock.
(c) The writer thread obtains the monitor lock but then suspends shortly there-

after.
(d) The reader thread suspends.
(e) Deadlock occurs.

157

Scenario 4 (an interaction involving one reader and one writer): Assume the writer
thread is running within the invocation of startWrite() and the reader thread is
in the ready state. A context switch occurs just after the writer thread increments
nWriters by one. The writer thread transitions to ready and the reader thread tran-
sitions to running. The reader thread invokes startRead(), but suspends afterwards.

8. Why does the reader thread suspend?
(a) The reader thread suspends on okToWrite , since nWriters is non-zero

at the time.
(b) Deadlock occurs. Since the writer thread is in the monitor, the reader thread

can’t possibly enter the monitor.
(c) The reader thread suspends on the monitor lock.
(d) The reader thread suspends on okToRead .wait(), since nWriters is

non-zero at the time.
(e) The reader thread suspends due to the occurrence of a context switch.

Scenario 5 (an interaction involving two readers): Assume the reader thread (r1) has com-
pleted the invocation of startRead() and the other reader thread (r2) is in the ready
state. A context switch occurs. r1 transitions to ready and r2 transitions to running.
r2 issues a call to startRead().

9. What will happen as a result of this invocation of startRead()?
(a) r2 enters the monitor but suspends on okToRead .wait(), since

nReaders is non-zero at the time.
(b) r2 enters the monitor but suspends on okToRead .wait(), since

nWriters is non-zero at the time.
(c) r2 suspends on the monitor lock.
(d) r2 enters the monitor and increases nReaders to two.
(e) r2 suspends due to the occurrence of a context switch.

Scenario 6 (an interaction involving one reader and one writer): Assume the reader thread
is running within the invocation of startRead() and that the writer thread, having
issued a call to startWrite() is suspended on the monitor lock.

10. When the reader thread returns from startRead(), thus releasing the monitor
lock:
(a) The reader thread must transition to ready; the writer thread must transition

to running.
(b) The reader thread must transition to suspended; the writer thread must tran-

sition to running.
(c) The reader thread may remain running; the writer thread must remain sus-

pended.
(d) The reader thread may remain running; the writer thread must transition to

ready.
(e) Deadlock occurs.

158

Scenario 7 (an interaction involving one reader and one writer): Assume the writer thread
has completed its invocation of startWrite() and the reader thread is in the ready
state. A context switch occurs. The writer thread transitions to ready and the reader
thread transitions to running. The reader thread issues a call to startRead().

11. Shortly thereafter:

(a) The reader thread completes the invocation of startRead() without sus-
pending.

(b) The writer suspends because the reader has entered the monitor.
(c) The reader thread suspends on the monitor lock.
(d) The reader thread suspends on okToRead .wait().
(e) Both (b) and (d) are true; thus deadlock occurs.

Scenario 8 (an interaction involving one reader and one writer): Assume the reader thread
is running within the invocation of stopRead() and the writer thread, having issued
an invocation of startWrite() is now suspended on the monitor lock. The reader
thread invokes okToWrite .signal().

12. As a result of the signal:

(a) The reader thread releases the monitor lock; the writer thread transitions to
running.

(b) The reader thread releases the monitor lock; the writer thread transition to
ready.

(c) The reader thread retains the monitor lock; the writer thread remains sus-
pended.

(d) The reader thread retains the monitor lock; the writer thread transitions to
ready.

(e) Deadlock occurs.

Scenario 9 (an interaction involving two reader threads): Assume the reader thread (r1) is
running within the invocation of startRead() and the other reader thread (r2) is in
the ready state. A context switch occurs just after r1 increments nReaders by one.
r1 transitions to ready and r2 transitions to running. r2 then invokes startRead().

13. Shortly thereafter:

(a) r2 enters the monitor but suspends because nReaders is non-zero when
r2 enters the monitor.

(b) r2 enters the monitor and increases nReaders to two.
(c) r2 suspends on the monitor lock.
(d) r2 completes its invocation of startRead() without suspending.
(e) Deadlock occurs.

159

Scenario 10 (an interaction involving two writer threads): Assume the writer thread (w1)
has completed its invocation of startWrite() and the other writer thread (w2) is in
the ready state. A context switch occurs. w1 transitions to ready and w2 transitions
to running. w2 issues a startWrite().

14. As a result of this invocation of startWrite():
(a) w2 enters the monitor and suspends on okToWrite , retaining the monitor

lock.
(b) w2 enters the monitor and suspends on okToWrite , releasing the monitor

lock.
(c) w2 suspends on the monitor lock.
(d) w2 enters the monitor and increases nWriters to two.
(e) Deadlock occurs.

The following questions are not related to any scenario.

15. What feature(s) of the monitor implementation of class Database prevent race con-
ditions in updating counting variables (nReaders and nWriters)?

(a) calls to wait on the condition variables okToRead and okToWrite .
(b) calls to signal or broadcast on the condition variables okToRead and

okToWrite .
(c) the fact that calls to wait implicitly release the lock before the calling thread

suspends.
(d) the need for any thread to acquire the monitor lock before entering the monitor.
(e) None of the above.

16. What feature(s) of the monitor implementation prevent a writer from entering the
Database while reader(s) are present?

(a) calls to wait on the condition variables okToRead and okToWrite .
(b) calls to signal or broadcast on the condition variables okToRead and

okToWrite .
(c) the fact that calls to wait implicitly release the lock before the calling thread

suspends.
(d) the need for any thread to acquire the monitor lock before entering the monitor.
(e) None of the above.

17. Why does the wait method release the lock and then acquire it again?

(a) To “wake-up” a reader thread that was previously blocked on the wait.
(b) To “wake-up” a writer thread that was previously blocked on the wait.
(c) To promote efficiency.
(d) To prevent deadlock.
(e) None of the above.

160

A.3 Poststudy Questionnaire

Questions related to the specific program under study.

1. Once the eBizSim server is initialized and accepting requests, how many instances
of each of the following classes are there at any given time? (Give a number or a ”?”
if the number varies.)

1.1. ACE SOCK Stream

1.2. Listener Socket

1.3. Dispatcher

1.4. Request Handler

1.5. Request Handler Pool

2. In the eBizSim server, each and every thread plays one of two distinct roles. Think up
a name for and briefly describe each role by explaining the responsibilities assumed
by any thread that plays it.

3. For each role that you listed in Question 2, please answer:

• In the normal execution of this system, will there ever be more than one thread
playing this role?

• If more than one, then how many?

4. Select from the following list the server classes whose instances might be concur-
rently accessed by multiple threads. (Select all that apply.)

(a) Listener Socket

(b) Dispatcher

(c) Request Handler

(d) Request Handler Pool

(e) None of the above

161

5. Consider the Request Handler Pool class.

5.1. Briefly describe the purpose of the two main data structures encapsulated by
class Request Handler Pool.

5.2. Might any of these data structures be accessed concurrently by multiple
threads? For each such data structure, name the thread role(s) (from Question 2
that are involved.

6. Briefly describe the life of a Request Handler object in the system (e.g., when is it
created, what does it do during its life, and when is it destroyed).

7. Briefly list the major activities performed during an invocation of the operation
dispatch request() in class Request Handler Pool in the normal case, i.e., as-
suming that there are no errors.

8. Of the activities you listed in Question 7, during which of these activities might the
actor block? For each such activity, explain the conditions under which the actor will
block and the synchronization objects and operations that are involved in implement-
ing this behavior.

9. Consider the scenario in which a thread, call it T , after beginning execution of

Request Handler Pool::dispatch request()

successfully retrieves a request handler from the pool. For each of the following
cases, list all of the activities in Figure A.5 that may then occur at this point in the
scenario:

Case I: the request queue is empty.

Case II: the request queue has 1 request.

Case III: the request queue has 10 requests.

10. For each of the following cases, list all of the activities in Figure A.6 that may occur,
assuming that T and U are distinct threads.

Case I: when the activity begins, T holds the lock on request queue .

Case II: when the activity begins, T is waiting on the condition variable
nonempty queue cond .

162

(a) T locks request queue and then waits on nonempty queue cond .

(b) Another thread, U , locks request queue and then waits on
nonempty queue cond .

(c) T locks request queue , retrieves a request, and then releases the lock.

(d) Another thread, U , locks request queue , retrieves a request, and then releases the
lock.

(e) Another thread, U , locks request queue , submits a request, and then releases the
lock.

(f) Another thread, U , locks request queue , submits a request, calls

nonempty queue cond .signal(),

and then releases the lock.

Figure A.5: Activities for Question 9.

(a) T retrieves a request from request queue .

(b) U retrieves a request from request queue .

(c) U submits a request to request queue .

(d) U retrieves a request handler from handler pool .

(e) U returns a request handler to handler pool .

(f) U waits on the condition variable nonempty queue cond .

(g) U signals the condition variable nonempty queue cond .

Figure A.6: Activities pertaining to Question 10.

163

11. Which of the following statements is true?

(a) As an incoming request arrives over the network, a thread is created and then
dispatched to handle that request.

(b) Initially, MAX THREADS threads are created to handle requests. New threads
are then spawned if more than MAX THREADS requests need to be processed
concurrently.

(c) Initially, MAX THREADS threads are created to handle requests. If a request ar-
rives and there are no threads available to handle it (because they are handling
other requests) the new arrival is dropped.

(d) All of the threads that will ever be used to handle requests are created before
the first request arrives.

(e) None of the above.

12. Suppose the constants MAX THREADS and MAX HANDLERS are modified so that
MAX HANDLERS < MAX THREADS. Which of the following statements would be true
in this case?

(a) MAX THREADS threads will be created and will then compete (synchronize) with
one another for access to a more limited number (MAX HANDLERS) of handlers.

(b) The call to spawn n will block until at least MAX THREADS requests have arrived.

(c) An error will occur and the system will exit because there are not enough han-
dlers for all of the available threads.

(d) The system will deadlock.

(e) None of the above.

13. Suppose the constants MAX THREADS and MAX HANDLERS are modified so that
MAX HANDLERS > MAX THREADS. Which of the following statements would be true
in this case?

(a) Only MAX THREADS handlers will actually be allocated.

(b) MAX THREADS threads will be created and will, eventually, cycle through all of
the available handlers provided more than MAX HANDLERS requests arrive before
the system halts.

(c) An error will occur and the system will exit because there are not enough
threads to execute all of the available handlers.

(d) Once MAX THREADS requests arrive, the system will deadlock.

(e) None of the above.

164

14. Which of the following general categories of synchronization flaw best describes the
design fault in the eBizSim server?

(a) Two (or more) threads simultaneously write to a shared data structure, i.e., a
data race results in corrupted data.

(b) The wait/signal protocol is flawed in that the calls to signal do not match the
calls to wait in the sense that a thread may wait on a condition that will never
be signaled.

(c) The wait/signal protocol is flawed in that the waiting threads incorrectly assume
a condition is true when they awake, but the underlying wait/signal mechanisms
do not guarantee this assumption.

(d) Two or more threads are deadlocked, meaning each holds locks needed by the
others in a cycle of dependency.

(e) None of the above.

15. In your own words, please describe in detail the design fault that leads to the intermit-
tent failure in the eBizSim server. For example, you should be able to give a concrete
scenario that demonstrates the fault.

16. What was the significance of the stress tester speed in causing the server to crash
(esp. in relation to the state of the request queue)?

17. In your own words, please describe how you fixed (or would fix) the design flaw that
leads to the intermittent failure in the eBizSim server.

165

A.4 Solutions to the Questionnaires

In this section, we provide answer keys for the prestudy and poststudy questionnaires.

A.4.1 Prestudy Questionnaire

1. e

2. c

3. b

4. c

5. c

6. c

7. c

8. c

9. d

10. d

11. d

12. d

13. c

14. b

15. d

16. a

17. d

166

A.4.2 Poststudy Questionnaire

1.1. 1

1.2. 20

1.3. 1

2. We refer to the two roles as listener and handler. Listener threads are responsible for

accepting client connections and adding open connections, in the form of Request

objects, to the request queue. Handler threads are responsible for processing requests.

They do so by getting a Request Handler object from the pool, getting a Request

object from the queue, and using the request handler to process the request.

3. There is 1 listener thread and 20 handler threads.

4. c

5.1. The request handler pool stores Request Handler objects that are used to process

requests. The request queue stores incoming requests that need to be processed.

5.2. The request handler pool may be concurrently accessed by handler threads. The

request queue may be concurrently accessed by listener and handler threads.

6. Request Handler objects are created when the system initializes. They are used to

process requests throughout a run of the program. Finally, they are destroyed when

the system terminates.

7. An “normal” invocation of dispatch request performs the following activities:

(1) Retrieves a request handler from the pool.

(2) Retrieves a request from the queue.

(3) The request handler is used to process the request, which is subsequently de-

stroyed.

167

(4) The request handler is returned to the pool.

8. The actor might block during retrieving the request handler from the pool, during

retrieving the request from the queue, or during returning the request handler to the

pool. In the first case, it blocks if the pool is empty or being accessed by another

actor. The mutex lock will cause the thread to block if another thread already holds

it, and the thread will block on the nonempty pool cond condition variable if the

pool is empty. The second case is the same as the first, except it involves the queue

and its associated nonempty-condition variable. In the third case, the thread will only

block trying to acquire the lock (i.e., when another thread already holds the lock).

9.I. a, b, e, f

9.II. c, d, e, f

9.III. c, d, e, f

10.I. a, d, e

10.II. b, c, d, e, f, g

11. d

12. a

13. e (because handlers are added and retrieved from the back of the pool)

14. c

15. The defect is that the first if-statement in the retrieve-request method should be a

while-loop. The failure occurs when a handler thread H1 is waiting on the nonempty-

queue condition variable. The listener thread adds a request to the queue and H1 is

signaled and transitions from the blocking state to the ready state; however, H1 has

not acquired the lock yet. Before H1 can be scheduled, another handler thread H2

168

acquires the lock and empties the queue. Finally, when H1 is scheduled, it acquires

the lock, returns from wait, and enters the second if-statement (because the queue is

empty), which causes the program to fail. If H1 had waited in a while-loop, it would

have waited again when it found the queue empty.

16. The significance of the speed is that it causes the request queue to rapidly alternate

between being empty and nonempty. The failure only occurs when the queue goes

from empty to nonempty and one handler thread is signaled and at least one handler

thread is in the ready state. If the stress tester is too fast, the queue will never go

empty. If the stress tester is too slow, all the threads will be waiting, and there will

be no active thread to empty the queue.

17. Change the first if-statement in the retrieve-request method to a while-loop.

169

APPENDIX B

CONTROLLED EXPERIMENT MATERIALS

This appendix presents the materials used in our controlled experiment. Section B.1 con-

tains a reproduction of the preexperiment questionnaire. Sections B.2 and B.3 contain

reproductions of the internal-group and external-group versions of the experiment ques-

tionnaire, respectively.

170

B.1 Preexperiment Questionnaire

Questions 1–8 reference seven different scenarios of interaction among concurrent actors
that access a shared database object. The actors in this example perform transactions that
invoke a series of methods on the database object, and we distinguish two different types
of actors—readers and writers. To illustrate, suppose the database stores bank-account
information and provides methods for depositing funds, withdrawing funds, and checking
the balance of accounts given their account numbers. A typical reader might be interested
in computing the total balance of a list of accounts and thus might execute the sequence of
operations:

unsigned sum = 0;

for (unsigned i = 0; i < 10; ++i) {
sum += db.get_balance(accounts[i]);

}

On the other hand, a writer will perform a transaction that modifies the contents of the
database. For example, a writer client might perform a transaction that transfers $50.00
between accounts acct 1 and acct 2 by executing the sequence of operations:

db.withdraw(acct_1, 50);
db.deposit(acct_2, 50);

It should be safe for multiple reader transactions to execute concurrently because reader
clients do not modify the contents of the database object. However, a writer transac-
tion should never execute concurrently with any reader or any other writer transaction.
Class Database supports this readers-writer style of synchronization by providing four
methods—start read, stop read, start write, and stop write—which reader and
writer threads use to signal the start and finish of one of these transactions.
Figures B.1–B.4 depict the C++ code for class Database as well as functions that im-
plement the reader and writer actors. Notice that the “business logic” has been largely
elided—for example, the account-management operations for class Database are absent.
Class Database:

• defines two counting variables, n readers and n writers, which record the number
of concurrently executing reader and writer transactions respectively;

• defines a private variable lock, which is used to enforce mutually exclusive access
to n readers and n writers; and

• defines two condition variables, ok to read and ok to write, which are used to
synchronize reader and writer threads as they begin and end their transactions.

Please take a moment to familiarize yourself with this code.

171

Scenario 1: A scenario involving the main thread. Assume that the main thread is in
the running state and has just executed the calls to spawn n on lines 83 and 84.

1. Which of the following may happen next? (circle one of the following)

(a) A context switch occurs such that the main thread transitions to the ready state
and one of the reader threads starts running at line 34.

(b) A context switch occurs such that the main thread transitions to the ready state
and one of the writer threads starts running at line 73.

(c) The main thread remains in the running state and executes the call to wait on
line 85, which causes it to transition to the ready state.

(d) A context switch occurs such that the main thread transitions to the blocked
state and both reader threads transition to the running state.

(e) The main thread remains in the running state and all the newly spawned threads
transition to the blocked state.

Scenario 2: An interaction involving one reader R and one writer W . Assume W is
in the running state within an invocation of start write and R is in the ready state. A
context switch occurs just after W increments n writers by one. W transitions to the
ready state, and R transitions to the running state. R invokes start read and quickly
transitions to the blocked state.

2. Why does R enter the blocked state? (circle one of the following)

(a) R enters the blocked state via the call to wait on line 50 because n writers is
non-zero at the time.

(b) Deadlock occurs. Because W holds the lock, R can’t possibly acquire the lock.

(c) R enters the blocked state via the call to wait on line 36 because n writers is
non-zero at the time.

(d) R enters the blocked state via the call to acquire on line 35.

(e) R enters the blocked state due to the occurrence of a context switch.

172

Scenario 3: An interaction involving one reader thread R and one writer thread W .
Assume R is in the running state, and W is in the blocked state while inside the call to
wait on line 50. R invokes stop read and acquires the lock. It sets the n readers to 0
and issues the call to signal on line 44.

3. As a result of the signal: (circle one of the following)

(a) W remains in the blocked state.

(b) W transitions to the ready state and acquires the lock.

(c) W transitions to the ready state but does not yet acquire the lock.

(d) W transitions to the running state and acquires the lock.

(e) W transitions to the running state and does not acquire the lock.

4. Upon completing the invocation of signal on line 44, R: (circle one of the follow-
ing)

(a) Must transition to the ready state and release the lock.

(b) Must transition to the ready state and retain the lock.

(c) May remain in the running state and must retain the lock.

(d) Must remain in the running state and may release the lock.

(e) Must transition to the blocked state and release the lock.

173

Scenario 4: An interaction involving one reader thread R and one writer thread W .
Assume that after R is in the running state and has just returned from an invocation of
start read. A context switch occurs such that R transitions to the ready state, and W
transitions to the running state. W invokes start write.

5. Shortly after W issues the call to start write: (circle one of the following)

(a) W remains running until the invocation completes.

(b) W transitions to the blocked state within the call to acquire on the lock.

(c) W obtains the lock but shortly thereafter releases the lock and transitions to the
blocked state.

(d) R transitions to the blocked state.

(e) Deadlock occurs.

Scenario 5: An interaction involving two reader threads R1 and R2. Assume the R1
is in the running state and has just completed the invocation of start read, and R2 is in
the ready state. A context switch occurs such that R1 transitions to the ready state and R2
transitions to the running state. R2 issues a call to start read.

6. What will happen as a result of this invocation of start read? (circle one of the
following)

(a) R2 acquires the lock and increases n Readers to two.

(b) R2 acquires the lock but transitions to the blocked state via the call to wait on
line 36 because n readers is non-zero at the time.

(c) R2 acquires the lock but transitions to the blocked state via the call to wait on
line 36 because n writers is non-zero at the time.

(d) R2 transitions to the blocked state via the call to acquire on line 35.

(e) Deadlock occurs.

174

Scenario 6: An interaction involving two reader threads R1 and R2. Assume R1 is
in the running state within an invocation of start read, and R2 is in the ready state. A
context switch occurs just after R1 increments n readers by one. R1 transitions to the
ready state, and R2 transitions to the running state. R2 then invokes start read.

7. Shortly thereafter: (circle one of the following)

(a) R2 acquires the lock but transitions to the blocked state via the call to wait on
line 36 because n readers is non-zero.

(b) R2 acquires the lock but transitions to the blocked state via the call to wait on
line 36 because n writers is non-zero.

(c) R2 acquires the lock and increases n readers to two.

(d) R2 transitions to the blocked state via the call to acquire on line 35.

(e) Deadlock occurs.

Scenario 7: An interaction involving two writer threads W1 and W2. Assume W1 is
in the running state and has just completed its invocation of start write, and W2 is in the
ready state. A context switch occurs. W1 transitions to the ready state, and W2 transitions
to the running state. W2 issues a call to start write.

8. As a result of this invocation of start write: (circle one of the following)

(a) W2 acquires the lock and transitions to the blocked state via the call to wait on
line 50, retaining the lock.

(b) W2 acquires the lock and transitions to the blocked state via the call to wait on
line 50, releasing the lock.

(c) W2 transitions to the blocked state via the call to acquire on line 49.

(d) W2 acquires the lock and increases n writers to two.

(e) Deadlock occurs.

175

1 #include <ace/Thread_Mutex.h>
2 #include <ace/Condition_Thread_Mutex.h>

3 class Database
4 {
5 public:
6 Database();
7
8 void start_read() const;
9 void stop_read() const;

10
11 void start_write() const;
12 void stop_write() const;
13
14 // ... functions for reading/writing database entries ...
15
16 private:
17 // The number of readers currently reading
18 mutable unsigned n_readers;
19
20 // The number of writers currently writing
21 mutable unsigned n_writers;
22
23 mutable ACE_Thread_Mutex lock;
24 mutable ACE_Condition_Thread_Mutex ok_to_read;
25 mutable ACE_Condition_Thread_Mutex ok_to_write;
26
27 // ... data structure for storing entries ...
28 };

Figure B.1: Class definition for a database that allows concurrent readers. The database
is implemented using the ACE library. For the sake of simplicity, we elided the “business
logic” (e.g., functions for reading and writing database entries).

176

29 Database::Database()
30 : n_readers(0), n_writers(0),
31 ok_to_read(lock), ok_to_write(lock)
32 {}

33 void Database::start_read() const
34 {
35 lock.acquire();
36 while (n_writers > 0) ok_to_read.wait();
37 ++n_readers;
38 lock.release();
39 }

40 void Database::stop_read() const
41 {
42 lock.acquire();
43 --n_readers;
44 if (n_readers == 0) ok_to_write.signal();
45 lock.release();
46 }

47 void Database::start_write() const
48 {
49 lock.acquire();
50 while (n_writers > 0 || n_readers > 0) ok_to_write.wait();
51 ++n_writers;
52 lock.release();
53 }

54 void Database::stop_write() const
55 {
56 lock.acquire();
57 --n_writers;
58 ok_to_write.signal();
59 ok_to_read.broadcast();
60 lock.release();
61 }

Figure B.2: Member-function definitions for class Database.

177

62 // Global database object
63 Database db;

64 void* reader(void*)
65 {
66 for (;;) {
67 db.start_read();
68 // ... perform some read operations on db ...
69 db.stop_read();
70 }
71 }

72 void* writer(void*)
73 {
74 for (;;) {
75 db.start_write();
76 // ... perform some read/write operations on db ...
77 db.stop_write();
78 }
79 }

Figure B.3: Primary control loops for the reader and writer threads. For the sake of
simplicity, we elided the invocations of operations that read/write the database.

80 #include <ace/Thread_Manager.h>

81 int main(int, char*[])
82 {
83 ACE_Thread_Manager::instance()->spawn_n(2, writer , 0);
84 ACE_Thread_Manager::instance()->spawn_n(2, reader , 0);
85 ACE_Thread_Manager::instance()->wait();
86
87 return 0;
88 }

Figure B.4: The definition of the main function, which spawns two writer threads and two
reader threads.

178

B.2 Experiment Questionnaire: External-Group Version

About the Test

This test involves answering questions about some hypothetical scenarios of behavior of
a concurrent program. We organize the test as follows. First, we describe the concurrent
program in question (the source code for which is also provided). Then, we present a series
of scenarios. For each scenario, you must first draw a sequence diagram that represents
the scenario and then tell whether:

• The scenario is consistent with the code—that is, nothing happens in the scenario
that would be impossible with respect to the source code.

• The scenario results in the program entering a clear error state—that is, the scenario
causes the program to enter a state that would clearly violate the program’s specifi-
cation.

IMPORTANT: Before answering the questions about each scenario, you should draw a
sequence diagram that represents the scenario on one of the provided sheets of paper. You
may use the diagram to help you answer the questions. Also:

• Don’t forget to turn your diagrams in with your test.

• Be sure to label each diagram with appropriate scenario number.

You will be scored based on the quality of your diagrams.

179

About the Program

The following questions refer to the server program depicted in Figs. B.5–B.6. The server
simulates an e-business server that accepts and processes requests from remote clients. The
server comprises multiple threads, each of which plays one of two distinct roles—that of a
listener or that of a handler. A single listener thread monitors the network—listening for
client requests and placing them on a request queue as they arrive. Two handler threads
take requests from the request queue and simulate the processing of the requests.

The implementation of the server mainly comprises two functions and one class. One
function, listener, implements the listener-thread behavior (lines 42–49). The other
function, handler, implements the handler-thread behavior (lines 50–57). The class,
Request Queue, represents the shared request queue that the listener thread uses to pass
requests to the handler threads (lines 1–39). Since the request queue is accessed by con-
currently executing threads, it is implemented using the monitor-object pattern to prevent
the threads from interfering with one another. Consistent with the pattern, the request
queue has a monitor lock, lock (line 9). In addition to mutual-exclusion synchronization
provided by the monitor lock, the request queue uses a condition variable, nonempty, to
provide condition synchronization (line 10). Specifically, handler threads must condition-
ally wait when attempting to pull a request off an empty queue; they must wait until there
is a request to process.

To keep the size of the source code manageable, we elided a number of implemen-
tation details that are not salient to this study. In particular, we elided the definitions of
the Request class and the accept request and process request functions. Instances
of class Request represent requests that were received over the client connections. The
function accept request (line 46) retrieves an incoming client request over the network,
packages information about this request into an instance of class Request, and returns a
pointer to this instance. A thread that invokes this function when there are no pending
client requests on the network will block indefinitely until a request arrives. The function
process request (line 55) simulates the servicing of a client request. The function takes
a (non-null) pointer to a Request as an argument. Once serviced, the function deletes the
Request object. For the remainder of the test, you should assume that the elided class and
functions were implemented correctly and that they behave as described.

Regarding the deque: The instance of deque (declared on line 8) represents a double-
ended queue; however, for our purposes, you may think of this as a regular queue. The
class deque has the following operations:

push back: Adds an item to the back of the deque.

pop front: Removes the item at the front of the deque (returns void).

front: Returns the item at the front of the deque (does not modify the deque).

empty: Returns true if the deque is empty; otherwise, false.

180

About the Scenarios

The scenarios represent sequences of internal program behavior that the e-business server
may exhibit during a hypothetical run. The description of a scenario provides just enough
information for you to reason about the represented behavior. Specifically, the description
includes

• the state of the system when the scenario begins,

• all the calls to and returns from operations of Request Queue during the scenario,
and

• some additional information needed to make the scenario unambiguous.

You must infer the details of each thread’s behavior during the scenario based on the de-
scriptions given.

181

Scenario 1

Assume there is a listener thread, L, and two handler threads, H1 and H2, and that

• queue is empty,

• waiters is zero, and

• all the threads are at the beginning of their respective control loops.

Consider the scenario where:

(1) H1 calls retrieve and blocks inside the operation.

(2) L calls submit (with argument r) and is preempted at line 17.

(3) H2 calls retrieve and blocks inside the operation.

(4) L returns from submit and is preempted at the top of its control loop. In the process,
H1 transitions to the ready state.

(5) H2 returns from retrieve and is preempted at the top of its control loop.

Questions

IMPORTANT: DRAW A SEQUENCE DIAGRAM OF THE ABOVE
SCENARIO BEFORE ANSWERING THESE QUESTIONS.

1. Is the scenario consistent with the code? If so, does the scenario result in the program
entering an error state? (Circle one of the following.)

(a) Consistent & No Error: The scenario is consistent with the code and does not
result in the program entering an error state.

(b) Consistent & Error: The scenario is consistent with the code and does result
in the program entering an error state.

(c) Inconsistent: The scenario is not consistent with the code.

182

Scenario 2

Assume there is a listener thread, L, and two handler threads, H1 and H2, and that

• queue is empty,

• waiters is zero, and

• all the threads are at the beginning of their respective control loops.

Consider the scenario where:

(1) H1 calls retrieve and is preempted at line 29.

(2) H2 calls retrieve and blocks inside the operation.

(3) L calls submit (with argument r) and blocks inside the operation.

(4) H1 transitions to the running state and subsequently blocks (never having returned
from retrieve). In the process, H2 transitions to the ready state.

Questions

IMPORTANT: DRAW A SEQUENCE DIAGRAM OF THE ABOVE
SCENARIO BEFORE ANSWERING THESE QUESTIONS.

2. Is the scenario consistent with the code? If so, does the scenario result in the program
entering an error state? (Circle one of the following.)

(a) Consistent & No Error: The scenario is consistent with the code and does not
result in the program entering an error state.

(b) Consistent & Error: The scenario is consistent with the code and does result
in the program entering an error state.

(c) Inconsistent: The scenario is not consistent with the code.

183

Scenario 3

Assume there is a listener thread, L, and two handler threads, H1 and H2, and that

• queue is empty,

• waiters is one,

• L and H2 are at the beginning of their respective control loops, and

• H1 is blocking inside the call to wait on line 32.

Consider the scenario where:

(1) L calls and returns from submit (having passed in argument r), and is preempted at
the top of its control loop. In the process, H1 transitions to the ready state.

(2) H2 calls and returns from retrieve, and is preempted at the top of its control loop.

(3) H1 returns from retrieve, and is preempted at the top of its control loop.

Questions

IMPORTANT: DRAW A SEQUENCE DIAGRAM OF THE ABOVE
SCENARIO BEFORE ANSWERING THESE QUESTIONS.

3. Is the scenario consistent with the code? If so, does the scenario result in the program
entering an error state? (Circle one of the following.)

(a) Consistent & No Error: The scenario is consistent with the code and does not
result in the program entering an error state.

(b) Consistent & Error: The scenario is consistent with the code and does result
in the program entering an error state.

(c) Inconsistent: The scenario is not consistent with the code.

184

Scenario 4

Assume there is a listener thread, L, and two handler threads, H1 and H2, and that

• queue is empty,

• waiters is two,

• L is at the beginning of its control loop, and

• H1 and H2 are both blocking inside the call to wait on line 32.

Consider the scenario where:

(1) L calls and returns from submit (having passed in argument r), and is preempted at
the top of its control loop.

(2) H1 returns from retrieve and is preempted at the top of its control loop.

(3) H2 transitions to the running state and subsequently blocks (never having returned
from retrieve).

Questions

IMPORTANT: DRAW A SEQUENCE DIAGRAM OF THE ABOVE
SCENARIO BEFORE ANSWERING THESE QUESTIONS.

4. Is the scenario consistent with the code? If so, does the scenario result in the program
entering an error state? (Circle one of the following.)

(a) Consistent & No Error: The scenario is consistent with the code and does not
result in the program entering an error state.

(b) Consistent & Error: The scenario is consistent with the code and does result
in the program entering an error state.

(c) Inconsistent: The scenario is not consistent with the code.

185

1 class Request_Queue
2 {
3 public:
4 Request_Queue() : nonempty(lock), waiters(0) {}
5 void submit(Request* request);
6 Request* retrieve();
7 private:
8 deque <Request*> queue;
9 ACE_Thread_Mutex lock;

10 ACE_Condition_Thread_Mutex nonempty;
11 unsigned waiters;
12 };

13 void Request_Queue::submit(Request* request)
14 {
15 lock.acquire();
16 queue.push_back(request);
17
18 if (waiters > 0) {
19 nonempty.signal();
20 --waiters;
21 }
22
23 lock.release();
24 }

25 Request* Request_Queue::retrieve()
26 {
27 Request* request;
28 lock.acquire();
29
30 if (queue.empty()) {
31 ++waiters;
32 nonempty.wait();
33 }
34
35 request = queue.front();
36 queue.pop_front();
37 lock.release();
38 return request;
39 }

Figure B.5: The request-queue interface and implementation. For the sake of simplicity,
we elide the definition of the class, Request.

186

40 // Global request queue
41 Request_Queue rqueue;

42 void listener()
43 {
44 // Listener-thread control loop
45 for (;;) {
46 Request* request = accept_request();
47 rqueue.submit(request);
48 }
49 }

50 void* handler(void*)
51 {
52 // Handler-thread control loop
53 for (;;) {
54 Request* request = rqueue.retrieve();
55 process_request(request);
56 }
57 }

58 int main(int, char*[])
59 {
60 ACE_Thread_Manager::instance()->spawn_n(2, handler , 0);
61 listener();
62 return 0;
63 }

Figure B.6: The listener and handler implementations, and the definition of the function,
main. For the sake of simplicity, we elide the definition the class, Request, and the defini-
tions of the functions, accept request and process request.

187

B.3 Experiment Questionnaire: Internal-Group Version

The only differences between the internal-group version of the questionnaire and the

external-group version were in the instructions and the wording of the questions. In this

section, we reproduce the internal-group version of the instructions and questions.

About the Test

This test involves answering questions about some hypothetical scenarios of behavior of
a concurrent program. We organize the test as follows. First, we describe the concurrent
program in question (the source code for which is also provided). Then, we present a series
of scenarios. For each scenario, you must tell whether:

• The scenario is consistent with the code—that is, nothing happens in the scenario
that would be impossible with respect to the source code.

• The scenario results in the program entering a clear error state—that is, the scenario
causes the program to enter a state that would clearly violate the program’s specifi-
cation.

IMPORTANT: Answer the questions “in your head” without making notes or drawing
pictures.

Questions

Is the scenario consistent with the code? If so, does the scenario result in the program
entering an error state? (Circle one of the following.)

(a) Consistent & No Error: The scenario is consistent with the code and does not result
in the program entering an error state.

(b) Consistent & Error: The scenario is consistent with the code and does result in the
program entering an error state.

(c) Inconsistent: The scenario is not consistent with the code.

188

B.4 Solutions to the Questionnaires

In this section, we provide answer keys for the preexperiment and experiment question-

naires.

B.4.1 Preexperiment Questionnaire Solutions

1. b

2. d

3. c

4. c

5. c

6. a

7. d

8. b

B.4.2 Experiment Questionnaire Solutions

1. a

2. a

3. b

4. c

Figures B.7–B.10 depict sequence diagrams that represent the scenarios from the ques-

tionnaire.

189

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

rqueue

lock = (0, { })

submit(r)

retrieve()

retrieve()

lock = (L, { H2 })

nonempty = { }

waiters = 0

queue = ()

lock = (0, { })
r

sd scenario 1

L H1 H2

L

H2

L

H2

H1

lock = (H2, { })

queue = (r)

waiters = 1

nonempty = { H1 }

lock = (0, { })

nonempty = { }

queue = ()

waiters = 0

lock = (H1, { })

lock = (L, { })

Figure B.7: Sequence diagram for Scenario 1.

190

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

rqueue

lock = (H1, { })

lock = (H1, { H2 })

waiters = 1

retrieve()

L H1 H2

H1
lock = (0, { })

nonempty = { }

queue = ()

waiters = 0

sd scenario 2

H2 retrieve()

submit(r)

lock = (H1, { H2, L })

L

H1

lock = (H2, { L })

nonempty = { H1 }

Figure B.8: Sequence diagram for Scenario 2.

191

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

rqueue

lock = (L, { })

queue = (r)

nonempty = { }

waiters = 0

lock = (0, { })

lock = (H2, { })

queue = ()

lock = (0, { })

lock = (H1, { })

lock = (0, { })

L H1 H2

lock = (0, { })

queue = ()

sd scenario 3

waiters = 1

submit(r)

retrieve()

r

???

queue = ???

L

H2

H1

nonempty = { H1 }

Figure B.9: Sequence diagram for Scenario 3.

192

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

rqueue

lock = (L, { })

queue = (r)

lock = (0, { })

lock = (H1, { })

lock = (0, { })

L H1 H2

lock = (0, { })

queue = ()

submit(r)

L

sd scenario 4

waiters = 2

nonempty = { H1, H2 }

nonempty = { H2 }

queue = ()

H1

r

Inconsistent: H2 cannot be scheduled because it is blocking

waiters = 1

Figure B.10: Sequence diagram for Scenario 4.

193

B.5 Diagram-Evaluation Rubric

During our analysis, we evaluated each sequence diagram that a participant produced and

assigned it a score in the range [0,10]. We checked for the presence and correctness of

ten features. For each of the feature, if the feature is completely absent, the score for that

feature is 0 by default. Detailed scoring criteria for each feature follow. Deductions for a

single feature that amount to more than one point are reduced to -1 (i.e., no more than one

point may be deducted per feature).

Feature: Objects. Scoring criteria:

• Missing/conflated objects: -1 deduction

• No active-object bars: no deduction

• Oddly named request queue: no deduction

Feature: Initial State of rqueue. Scoring criteria:

• Unusual representation of states: no deduction

• Two or more missing field(s): -1 deduction

Feature: Calls/returns. Scoring criteria:

• Erroneous ordering: -1 deduction

• Missing calls/returns: -1 deduction

Exception: if return is implicitly specified by activation bars: no deduction

• Two or more missing labels: -1 deduction

• Calls/returns incorrectly given dashed/solid lines: no deduction

• Missing arrowheads: no deduction

194

• Missing call arguments or return values: no deduction

Feature: Activations. Scoring criteria:

• Missing/incorrect call activations: -1 deduction

• Passive objects always activated: no deduction

• Active objects not continuously activated: no deduction

• Activations indicated by bar-like notation other than bar: no deduction

Feature: Running thread. Scoring criteria:

• Missing labels as long as it’s clear who executes: no deductions

Feature: Lock state changes. Scoring criteria:

• Missing or incorrect changes in lock state: -1 deduction

Exception: signal places signaled thread in lock’s wait-set: no deduction

Exception: lock release does not move waiter to holder, instead when the next waiter

executes it becomes holder: no deduction

Feature: Condition state changes. Scoring criteria:

• Missing or incorrect changes of condition state: -1 deduction

• Split waiting state-change bubble: no deduction

Feature: Queue state changes. Scoring criteria:

• Missing or incorrect changes of queue state: -1 deduction

Feature: Waiters state changes. Scoring criteria:

• Missing or incorrect changes of waiters state: -1 deduction

195

Feature: Blocking. Scoring criteria:

• Incorrect blocking: -1 deduction

Exception: Innocuous gaps between wait/lock state changes and the beginning/end

of blocking: no deduction

• Blocking in the middle of a split waiting state-change bubble: no deduction

• Some activations not showing blocking while others show it: no deduction

• Use of alternate notation to show blocking: no deduction

Additional scoring criteria.

• If a state is given that does not reflect a change of state, then no deduction is taken

• If multiple state changes are captured in a single bubble, then no deduction is taken

• If there is no graphical bubble around state information, then no deduction is taken

• Some variation in state text is allowed as long as it is clear

• Some variations in notation are allowed as long as they capture all the information

• In the case of a conflated object, treat it as two objects in evaluating the other prop-

erties modeling the state of local variables does not result in a deduction

• State variables that are combined/conflated are OK as long as not information is lost

196

APPENDIX C

FAULT TREE FOR THE EBIZSIM FAILURE

To analyze how the participants in our exploratory study managed hypotheses regarding

the cause of the defect, we developed a fault tree [29, 70] for the failure in our study. This

appendix contains a fully-elaborated representation of that fault tree. The fault tree has

three main subtrees: the L subtree (Figure C.1), the M subtree (Figure C.2), and the R

subtree (Figure C.3). Section 4.2 provides a detailed explanation of the notation used in the

figures.

197

rval =−1

∃T0 : Handler

T0 exits call(server.cc:25)

root

M1.t < root .t

M1

rval = 0

L1

rval = 0
L1.t < root .t

R1

rval =−1
R1.t < root .t

T0 exits call(Pool.cc:35)T0 exits call(Pool.cc:30)T0 exits call(Pool.cc:25)

∃T1 : Handler | T1 6= T0

∃T3 : Handler | T3 6= T0

rval = 0

true

rval = 0

∃T2 : Listener

L2

L2.t < L1.t

L4

L4.t < L2.t

L5

L5.t < L2.t

L6

L5.t < L6.t < L2.t

L3

L3.t < L1.t

L7.t < L3.t

L8

L8.t < L3.t

L9

L8.t < L9.t < L3.t

T0 trav ifCond(Pool.cc:85)→ (Pool.cc:86)

T0 exits (Pool.cc:82)
pool.empty

T0 enters (Pool.cc:85)
¬pool.empty

T1 exits call(Pool.cc:91)
pool.empty

T0 exits call(Pool.cc:90)

T2 exits call(Pool.cc:17:new)

T0 enters (Pool.cc:90)
¬pool.empty

T3 exits call(Pool.cc:91)
pool.empty

L7

Figure C.1: L subtree of the fault tree for the eBizSim failure.

198

rval =−1

∃T0 : Handler

T0 exits call(server.cc:25)

root

M1.t < root .t

M1

rval = 0

L1

rval = 0
L1.t < root .t

R1

rval =−1
R1.t < root .t

T0 exits call(Pool.cc:35)T0 exits call(Pool.cc:30)T0 exits call(Pool.cc:25)

queue.empty
M5.t < M6.t < M2.t

M6

∃T1 : Handler | T1 6= T0M4.t < M2.t

queue.empty

M4

T0 exits (Pool.cc:107)

T1 exits call(Pool.cc:116)

∃T3 : Handler | T3 6= T0

M3

rval = 0
M3.t < M1.t

T0 exits call(Pool.cc:115)

M8.t < M9.t < M3.t
queue.empty

M9

T3 exits call(Pool.cc:116)

true
M2.t < M1.t

T0 trav ifCond(Pool.cc:110)→ (Pool.cc:111)
M2

¬queue.empty
M5.t < M2.t

T0 enters (Pool.cc:110)

M5

M7.t < M3.t
rval = 0

∃T2 : Listener

T2 exits call(Dispatcher.cc:19:accept request)

M7

¬queue.empty
M8.t < M3.t

T0 enters (Pool.cc:115)

M8

Figure C.2: M subtree of the fault tree for the eBizSim failure.

199

rval =−1

∃T0 : Handler

T0 exits call(server.cc:25)

root

R1

rval =−1
R1.t < root .t

T0 exits call(Pool.cc:35)

M1.t < root .t

M1

rval = 0

L1

rval = 0
L1.t < root .t

T0 exits call(Pool.cc:30)T0 exits call(Pool.cc:25)

rval =−1
T0 exits call(Request Handler.cc:22)

R2

R2.t < R1.t

Figure C.3: R subtree of the fault tree for the eBizSim failure.

200

APPENDIX D

INTERACTION COMPLEXITY ANALYSIS

In this section, we provide the artifacts that resulted from our complexity analysis of the

scenarios from the questionnaire. First, we list the FSP code that models the questionnaire

program as an LTS. Second, we list the traces of the model that are associated with each

scenario from the questionnaire.

D.1 LTS Model of Questionnaire Program

We modeled the program from the experiment questionnaire as an LTS. The FSP that rep-

resents the LTS follows.

1 const MAX_THREADS = 3
2 set ALL_THREADS = { h1, h2, l }
3 set HANDLER_THREADS = { h1, h2 }
4 set LISTENER_THREADS = { l }
5 set THE_LOCK_THREADS = { h1, h2, l }
6 set NONEMPTY_THREADS = { h1, h2, l }
7 set QUEUE_THREADS = { h1, h2, l }
8 set WAITERS_THREADS = { h1, h2, l }
9

10 LOCK = FREE_LOCK ,
11 FREE_LOCK = (acquire -> HELD_LOCK[0]) ,
12 HELD_LOCK[i:0.. MAX_THREADS] =
13 (when (i == 0) release -> FREE_LOCK
14 | when (i == 0) try_acquire_block -> HELD_LOCK[1]
15 | when (i > 0 && i <= MAX_THREADS)
16 release -> unblock_acquire -> HELD_LOCK[i-1]

201

17 | when (i > 0 && i < MAX_THREADS)
18 try_acquire_block -> HELD_LOCK[i+1]
19) .
20
21 COND = COND_WAITERS[0] ,
22 COND_WAITERS[i:0.. MAX_THREADS] =
23 (when (i == 0) {signal , broadcast} -> COND_WAITERS[0]
24 | when (i < MAX_THREADS) wait -> COND_WAITERS[i+1]
25 | when (i > 0 && i <= MAX_THREADS)
26 signal -> end_wait -> COND_WAITERS[i-1]
27 | when (i > 0 && i <= MAX_THREADS)
28 broadcast -> COND_WAKE_ALL[i]
29) ,
30 COND_WAKE_ALL[j:1.. MAX_THREADS] =
31 (when (j == 1) end_wait -> COND_WAITERS[0]
32 | when (j > 1 && j <= MAX_THREADS)
33 end_wait -> COND_WAKE_ALL[j-1]
34) .
35
36 const MAXCTR = 3
37
38 COUNTER(MAX=MAXCTR) = CTR[0],
39 CTR[i:0..MAX] = (read[i] -> CTR[i]
40 | when (i<MAX) inc -> CTR[i+1]
41 | when (i>0) dec -> CTR[i-1]) .
42
43 set LOCK_OPS = { acquire , try_acquire_block ,
44 unblock_acquire , release }
45 set LOCKS = { the_lock }
46 set CONDITION_VAR_OPS = { wait , signal , broadcast , end_wait }
47 set CONDITION_VARS = { nonempty }
48 set COUNTER_OPS = { read[0..MAXCTR], inc, dec }
49 set COUNTERS = { queue , waiters }
50 set DATA_MEMBER_CALLS =
51 { LOCKS.LOCK_OPS ,
52 CONDITION_VARS.CONDITION_VAR_OPS ,
53 COUNTERS.COUNTER_OPS
54 }
55 const MAX_QUEUE = 2
56 range QUEUE_RANGE = 0..MAX_QUEUE
57 const MAX_WAITERS = 2
58 range WAITERS_RANGE = 0..MAX_WAITERS
59
60 ||THE_LOCK = the_lock:LOCK .
61 ||NONEMPTY = nonempty:COND .
62 ||QUEUE = queue:COUNTER(MAX_QUEUE) .
63 ||WAITERS = waiters:COUNTER(MAX_WAITERS) .

202

64
65 NONEMPTY_WAIT = (nonempty.wait -> the_lock.release ->
66 nonempty.end_wait -> END)
67 + {nonempty.signal , nonempty.broadcast} .
68 NONEMPTY_SIGNAL = (nonempty.signal -> END)
69 + {nonempty.wait , nonempty.end_wait ,
70 nonempty.broadcast} .
71 NONEMPTY_BROADCAST = (nonempty.broadcast -> END)
72 + {nonempty.wait , nonempty.end_wait ,
73 nonempty.signal} .
74
75 QUEUE_DEC = (queue.dec -> END)
76 + { queue.inc, queue.read[QUEUE_RANGE] } .
77 QUEUE_INC = (queue.inc -> END)
78 + { queue.dec, queue.read[QUEUE_RANGE] } .
79
80 THE_LOCK_ACQUIRE = (the_lock.acquire -> END
81 | the_lock.try_acquire_block ->
82 the_lock.unblock_acquire -> END) .
83 THE_LOCK_RELEASE = (the_lock.release -> END) .
84
85 WAITERS_DEC = (waiters.dec -> END)
86 + { waiters.inc, waiters.read[WAITERS_RANGE] }.
87 WAITERS_INC = (waiters.inc -> END)
88 + { waiters.dec, waiters.read[WAITERS_RANGE] }.
89
90 IF_1_1 =
91 (waiters.read[n1:WAITERS_RANGE] ->
92 if (n1 >0)
93 then NONEMPTY_SIGNAL;
94 WAITERS_DEC;
95 END
96 else END
97) .
98
99 IF_2_1 =

100 (queue.read[n2:QUEUE_RANGE] ->
101 if (n2==0)
102 then WAITERS_INC;
103 NONEMPTY_WAIT;
104 THE_LOCK_ACQUIRE;
105 END
106 else END
107) .
108
109 RETRIEVE_CALL = (call_retrieve -> END) .
110 RETRIEVE_RETURN = (return_from_retrieve -> END) .

203

111 RETRIEVE_METHOD = RETRIEVE_CALL
112 ; THE_LOCK_ACQUIRE
113 ; IF_2_1
114 ; QUEUE_DEC
115 ; THE_LOCK_RELEASE
116 ; RETRIEVE_RETURN
117 ; END
118 .
119
120 SUBMIT_CALL = (call_submit -> END) .
121 SUBMIT_RETURN = (return_from_submit -> END) .
122 SUBMIT_METHOD = SUBMIT_CALL
123 ; THE_LOCK_ACQUIRE
124 ; QUEUE_INC
125 ; IF_1_1
126 ; THE_LOCK_RELEASE
127 ; SUBMIT_RETURN
128 ; END
129 .
130
131 ||REQUESTQUEUE_AS_A_SHARED_RESOURCE =
132 (THE_LOCK_THREADS::THE_LOCK
133 || NONEMPTY_THREADS::NONEMPTY
134 || QUEUE_THREADS::QUEUE
135 || WAITERS_THREADS::WAITERS
136) .
137
138 HANDLER = RETRIEVE_METHOD
139 ; END
140 .
141
142 LISTENER = SUBMIT_METHOD
143 ; SUBMIT_METHOD
144 ; END
145 .
146
147 ||PROG =
148 (HANDLER_THREADS:HANDLER
149 || LISTENER_THREADS:LISTENER
150 || REQUESTQUEUE_AS_A_SHARED_RESOURCE
151) .

204

D.2 Scenario Traces

To analyze the complexity of the interactions represented by the scenarios, we produced

a trace of the LTS for each scenario. Tables D.1–D.4 depict these traces. Each table lists

the sequence of actions, the thread that executed each action, and the actions that represent

block/unblock actions. Note that traces #3 and #4 do not begin in the initial state of the

program.

205

Table D.1: Scenario #1 trace.
Number Action Actor Block or Unblock

1 h1.call retrieve H1
2 h1.the lock.acquire H1
3 h1.queue.read.0 H1
4 h1.waiters.inc H1
5 h1.nonempty.wait H1 Block
6 h1.the lock.release H1
7 l.call submit L
8 l.the lock.acquire L
9 l.queue.inc L

10 h2.call retrieve H2
11 h2.the lock.try acquire block H2 Block
12 l.waiters.read.1 L
13 l.nonempty.signal L
14 h1.nonempty.end wait L Unblock
15 l.waiters.dec L
16 l.the lock.release L
17 h2.the lock.unblock acquire L Unblock
18 l.return from submit L
19 h2.queue.read.1 H2
20 h2.queue.dec H2
21 h2.the lock.release H2
22 h2.return from retrieve H2

Table D.2: Scenario #2 trace.
Number Action Actor Block or Unblock

1 h1.call retrieve H1
2 h1.the lock.acquire H1
3 h2.call retrieve H2
4 h2.the lock.try acquire block H2 Block
5 l.call submit L
6 l.the lock.try acquire block L Block
7 h1.queue.read.0 H1
8 h1.waiters.inc H1
9 h1.nonempty.wait H1 Block

10 h1.the lock.release H1
11 h2.the lock.unblock acquire H1 Unblock

206

Table D.3: Scenario #3 trace.
Number Action Actor Block or Unblock

1 l.call submit L
2 l.the lock.acquire L
3 l.queue.inc L
4 l.waiters.read.1 L
5 l.nonempty.signal L
6 h1.nonempty.end wait L Unblock
7 l.waiters.dec L
8 l.the lock.release L
9 l.return from submit L

10 h2.call retrieve H2
11 h2.queue.read.1 H2
12 h2.queue.dec H2
13 h2.the lock.release H2
14 h2.return from retrieve H2
15 h1.the lock.acquire H1

Table D.4: Scenario #4 trace.
Number Action Actor Block or Unblock

1 l.call submit L
2 l.the lock.acquire L
3 l.queue.inc L
4 l.waiters.read.2 L
5 l.nonempty.signal L
6 h1.nonempty.end wait L Unblock
7 l.waiters.dec L
8 l.the lock.release L
9 l.return from submit L

10 h1.the lock.acquire H1
11 h1.queue.dec H1
12 h1.the lock.release H1
13 h1.return from retrieve H1

207

BIBLIOGRAPHY

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison, 1988.

[2] A. Aiken and D. Gay. Barrier inference. In Proc. 25th ACM SIGPLAN-SIGACT
Symp. Principles of Programming Languages (POPL 1998), pages 342–354, 1998.

[3] American Psychological Association. Ethical Principles of Psychologists and Code
of Conduct. APA, 2002.

[4] G. R. Andrews. Concurrent Programming: Principles and Practice. Benjamin,
1991.

[5] K. Araki, Z. Furukawa, and J. Cheng. A general framework for debugging. IEEE
Softw., 8(3):14–20, 1991.

[6] D. F. Bacon and S. C. Goldstein. Hardware-assisted replay of multiprocessor pro-
grams. In Proc. 1991 ACM/ONR Workshop Parallel and Distributed Debugging
(PADD 1991), pages 194–206, 1991.

[7] A. D. Baddeley. Human Memory: Theory and Practice. Erlbaum, 1990.

[8] V. R. Basili. The role of experimentation in software engineering: Past, current, and
future. In Proc. 18th Int. Conf. Software Eng. (ICSE 1996), pages 442–449, 1996.

[9] V. R. Basili, D. Cruzes, J. C. Carver, L. M. Hochstein, J. K. Hollingsworth, M. V.
Zelkowitz, and F. Shull. Understanding the high-performance-computing commu-
nity: A software engineer’s perspective. IEEE Softw., 25(4):29–36, 2008.

[10] M. Ben-Ari. Principles of Concurrent and Distributed Programming. Prentice,
1990.

[11] Y. Ben-David Kolikant. Learning concurrency: Evolution of students’ understanding
of synchronization. Int. J. Hum.-Comput. Stud., 60(2):243–268, 2004.

[12] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The concept assignment problem
in program understanding. In Proc. 15th Int. Conf. Software Eng. (ICSE 1993), pages
482–498, 1993.

[13] B. S. Bloom. Taxonomy of Educational Objectives, Handbook 1: Cognitive Domain.
Addison, 1956.

[14] L. C. Briand, C. Bunse, and J. W. Daly. A controlled experiment for evaluating
quality guidelines on the maintainability of object-oriented designs. IEEE Trans.
Softw. Eng., 27(6):513–530, 2001.

208

[15] L. C. Briand, Y. Labiche, and J. Leduc. Towards the reverse engineering of UML
sequence diagrams for distributed, multithreaded Java software. Technical Report
SCE-04-04, Carleton Univ., 2004.

[16] L. C. Briand, Y. Labiche, and J. Leduc. Toward the reverse engineering of UML se-
quence diagrams for distributed Java software. IEEE Trans. Softw. Eng., 32(9):642–
663, 2006.

[17] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proc. 5th Annu. Symp. Logic in Comput.
Sci. (LICS 1990), pages 428–439, 1990.

[18] D. R. Butenhof. Programming with POSIX Threads. Addison, 1997.

[19] R. H. Carver and K. C. Tai. Reproducible testing of concurrent programs based
on shared variables. In Proc. 6th Int. Conf. Distributed Computing Systems
(ICDCS 1986), pages 428–433, 1986.

[20] R. H. Carver and K.-C. Tai. Replay and testing for concurrent programs. IEEE
Softw., 8(2):66–74, 1991.

[21] Z. Chen, B. Xu, and J. Zhao. An overview of methods for dependence analysis of
concurrent programs. SIGPLAN Not., 37(8):45–52, 2002.

[22] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting
data races in Cilk programs that use locks. In Proc. 10th Annu. ACM Symp. Parallel
Algorithms and Architectures (SPAA 1998), pages 298–309, 1998.

[23] J. Cheng. Slicing concurrent programs: A graph-theoretical approach. In Proc.
1st Int. Workshop Automated and Algorithmic Debugging (AADEBUG 1993), pages
223–240, 1993.

[24] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Effi-
cient and precise datarace detection for multithreaded object-oriented programs. In
Proc. ACM SIGPLAN 2002 Conf. Programming Language Design and Implementa-
tion (PLDI 2002), pages 258–269, 2002.

[25] J.-D. Choi and H. Srinivasan. Deterministic replay of Java multithreaded applica-
tions. In Proc. SIGMETRICS Symp. Parallel and Distributed Tools (SPDT 1998),
pages 48–59, 1998.

[26] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71,
1981.

[27] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst., 8(2):244–263, 1986.

209

[28] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT P., 1999.

[29] S. J. Clarke and J. A. McDermid. Software fault trees and weakest preconditions: A
comparison and analysis. Software Eng. J., 8(4):225–236, 1993.

[30] M. P. Consens, M. Z. Hasan, and A. O. Mendelzon. Using Hy+ for network manage-
ment and distributed debugging. In Proc. 1993 Conf. Centre for Advanced Studies
on Collaborative Research (CASCON 1993), pages 450–471, 1993.

[31] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In Proc.
22nd Int. Conf. Software Eng. (ICSE 2000), pages 439–448, 2000.

[32] J. Corbin and A. Strauss. Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory. Sage Publications, 3rd edition, 2008.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT P., 2nd edition, 2001.

[34] R. Curtis and L. Wittie. BugNet: A debugging system for parallel programming
environments. In Proc. 3rd Int. Conf. Distributed Computing Systems (ICDCS 1982),
pages 394–399, 1982.

[35] E. Duesterwald, R. Gupta, and M. L. Soffa. Distributed slicing and partial re-
execution for distributed programs. In Proc. 5th Int. Workshop Languages and Com-
pilers for Parallel Computing (LCPC 1992), pages 497–511, 1992.

[36] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Naumovich. Flow analysis
for verifying properties of concurrent software systems. ACM Trans. Softw. Eng.
Methodol., 13(4):359–430, 2004.

[37] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical methods
for software engineering research. In F. Shull, J. Singer, and D. I. K. Sjøberg, editors,
Guide to Advanced Empirical Software Engineering, chapter 11, pages 285–311.
Springer, 2008.

[38] K. A. Ericsson. Valid and non-reactive verbalization of thoughts during performance
of tasks. J. Consciousness Stud., 10(9–10):1–19, 2003.

[39] K. A. Ericsson and H. A. Simon. Protocol Analysis: Verbal Reports as Data. MIT
P., 1993.

[40] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Ap-
proach. PWS, 2nd edition, 1998.

[41] C. Flanagan and S. N. Freund. Type-based race detection for Java. In Proc.
ACM SIGPLAN 2000 Conf. Programming Language Design and Implementation
(PLDI 2000), pages 219–232, 2000.

210

[42] S. D. Fleming, E. Kraemer, R. E. K. Stirewalt, L. K. Dillon, and S. Xie. Refining
existing theories of program comprehension during maintenance for concurrent soft-
ware. In Proc. 16th IEEE Int. Conf. Program Comprehension (ICPC 2008), pages
23–32, 2008.

[43] S. D. Fleming, E. Kraemer, R. E. K. Stirewalt, S. Xie, and L. K. Dillon. A study
of student strategies for the corrective maintenance of concurrent software. In Proc.
30th Int. Conf. Software Eng. (ICSE 2008), pages 759–768, 2008.

[44] J. Gait. A probe effect in concurrent programs. Softw. Pract. Exper., 16(3):225–233,
1986.

[45] A. Georges, M. Christiaens, M. Ronsse, and K. D. Bosschere. JaRec: A portable
record/replay environment for multi-threaded Java applications. Softw. Pract. Exper.,
34(6):523–547, 2004.

[46] J. D. Gould. Some psychological evidence on how people debug computer programs.
Int. J. Man-Mach. Stud., 7(2):151–182, 1975.

[47] J. D. Gould and P. Drongowski. An exploratory study of computer program debug-
ging. Hum. Factors, 16(3):258–277, 1974.

[48] J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and H. Zheng. A formal
study of slicing for multi-threaded programs with JVM concurrency primitives. In
Proc. 6th Int. Symp. Static Anal. (SAS 1999), pages 1–18, 1999.

[49] M. Hibberd, M. Lawley, and K. Raymond. Forensic debugging of model transfor-
mations. In Proc. ACM/IEEE 10th Int. Conf. Model Driven Eng. Languages and
Syst. (MoDELS 2007), pages 589–604, 2007.

[50] C. A. R. Hoare. Monitors: An operating system structuring concept. Commun.
ACM, 17(10):549–557, 1974.

[51] L. Hochstein and V. R. Basili. An empirical study to compare two parallel pro-
gramming models. In Proc. 18th Annu. ACM Symp. Parallelism in Algorithms and
Architectures (SPAA 2006), pages 114–114, 2006.

[52] L. Hochstein and V. R. Basili. The ASC-Alliance projects: A case study of large-
scale parallel scientific code development. Computer, 41(3):50–58, 2008.

[53] L. Hochstein, V. R. Basili, U. Vishkin, and J. Gilbert. A pilot study to compare pro-
gramming effort for two parallel programming models. J. Syst. Softw., 81(11):1920–
1930, 2008.

[54] L. Hochstein, V. R. Basili, M. V. Zelkowitz, J. K. Hollingsworth, and J. Carver.
Combining self-reported and automatic data to improve programming effort mea-
surement. In Proc. 10th European Software Eng. Conf. Held Jointly with 13th ACM
SIGSOFT Int. Symp. Foundations of Software Eng. (ESEC/FSE 2005), pages 356–
365, 2005.

211

[55] G. J. Holzmann. The model checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–295,
1997.

[56] S. D. Huston, J. C. E. Johnson, and U. Syyid. The ACE Programmer’s Guide:
Practical Design Patterns for Network and Systems Programming. Addison, 2003.

[57] M. Kamkar and P. Krajina. Dynamic slicing of distributed programs. In Proc. Int.
Conf. Software Maintenance (ICSM 1995), pages 222–229, 1995.

[58] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory study of
how developers seek, relate, and collect relevant information during software main-
tenance tasks. IEEE Trans. Softw. Eng., 32(12):971–987, 2006.

[59] J. Koenemann and S. P. Robertson. Expert problem solving strategies for pro-
gram comprehension. In Proc. SIGCHI Conf. Human Factors in Comput. Syst.
(CHI 1991), pages 125–130, 1991.

[60] B. Korel and R. Ferguson. Dynamic slicing of distributed programs. Appl. Math.
and Comput. Sci., 2(2):199–215, 1992.

[61] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–163,
1988.

[62] J. Krinke. Static slicing of threaded programs. In Proc. 1998 ACM SIGPLAN-
SIGSOFT Workshop Program Anal. for Software Tools and Eng. (PASTE 1998),
pages 35–42, 1998.

[63] J. Krinke. Context-sensitive slicing of concurrent programs. In Proc. 9th European
Software Eng. Conf. held jointly with 11th ACM SIGSOFT Int. Symp. Foundations
of Software Eng. (ESEC/FSE 2003), pages 178–187, 2003.

[64] L. Lamport. Concurrent reading and writing. Commun. ACM, 20(11):806–811,
1977.

[65] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers. Program comprehension
as fact finding. In Proc. 6th Joint Meeting European Software Eng. Conf. and ACM
SIGSOFT Symp. Foundations of Software Eng. (ESEC/FSE 2007), 2007.

[66] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with instant
replay. IEEE Trans. Comput., 36(4):471–482, 1987.

[67] C. H. LeDoux and D. S. Parker, Jr. Saving traces for Ada debugging. In Proc. 1985
Annu. ACM SIGAda Int. Conf. Ada (SIGAda 1985), pages 97–108, 1985.

[68] H. Leroux, A. Réquilé-Romanczuk, and C. Mingins. JACOT: A tool to dynamically
visualise the execution of concurrent Java programs. In Proc. 2nd Int. Conf. Princi-
ples and Practice of Programming in Java (PPPJ 2003), pages 201–206, 2003.

[69] S. Letovsky. Cognitive processes in program comprehension. J. Syst. Softw.,
7(4):325–339, 1987.

212

[70] N. G. Leveson, S. S. Cha, and T. J. Shimeall. Safety verification of Ada programs
using software fault trees. IEEE Softw., 8(4):48–59, 1991.

[71] N. G. Leveson and C. S. Turner. An investigation of the Therac-25 accidents. Com-
puter, 26(7):18–41, 1993.

[72] L. J. Levrouw, K. M. R. Audenaert, and J. M. V. Campenhout. A new trace and
replay system for shared memory programs based on lamport clocks. In Proc. 2nd
Euromicro Workshop Parallel and Distributed Processing, pages 471–478, 1994.

[73] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental models and software
maintenance. J. Syst. Software, 7(4):341–355, 1987.

[74] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A comprehensive study
on real world concurrency bug characteristics. In Proc. 13th Int. Conf. Architectural
Support for Programming Languages and Operating Syst. (ASPLOS 2008), pages
329–339, 2008.

[75] A. D. Lucia, A. R. Fasolino, and M. Munro. Understanding function behaviors
through program slicing. In Proc. 4th Int. Workshop Program Comprehension
(WPC 1996), pages 9–18, 1996.

[76] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley,
2nd edition, 2006.

[77] C. E. McDowell and D. P. Helmbold. Debugging concurrent programs. ACM Com-
put. Surv., 21(4):593–622, 1989.

[78] K. Mehner. JaVis: A UML-based visualization and debugging environment for
concurrent Java programs. In S. Diehl, editor, Software Visualization, volume 2269
of LNCS, pages 163–175. Springer, 2002.

[79] K. Mehner and A. Wagner. Visualizing the synchronization of Java-Threads with
UML. In Proc. 2000 IEEE Int. Symp. Visual Languages (VL 2000), pages 199–206,
2000.

[80] J. M. Mellor-Crummey and T. J. LeBlanc. A software instruction counter. SIGARCH
Comput. Archit. News, 17(2):78–86, 1989.

[81] B. P. Miller and J.-D. Choi. A mechanism for efficient debugging of parallel pro-
grams. In Proc. ACM SIGPLAN 1988 Conf. Programming Language Design and
Implementation (PLDI 1988), pages 135–144, 1988.

[82] G. J. Myers. The Art of Software Testing. Wiley, 1979.

[83] M. G. Nanda and S. Ramesh. Slicing concurrent programs. In Proc. 2000 ACM SIG-
SOFT Int. Symp. Software Testing and Anal. (ISSTA 2000), pages 180–190, 2000.

213

[84] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Continuously recording
program execution for deterministic replay debugging. SIGARCH Comput. Archit.
News, 33(2):284–295, 2005.

[85] R. H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallel
programs. In Proc. 1993 ACM/ONR Workshop Parallel and Distributed Debugging
(PADD 1993), pages 1–11, 1993.

[86] R. H. B. Netzer and B. P. Miller. Optimal tracing and replay for debugging message-
passing parallel programs. In Proc. 1992 ACM/IEEE Conf. Supercomputing (Super-
computing 1992), pages 502–511, 1992.

[87] R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and
formalizations. ACM Lett. Program. Lang. Syst., 1(1):74–88, 1992.

[88] R. H. B. Netzer and J. Xu. Adaptive message logging for incremental replay of
message-passing programs. In Proc. 1993 ACM/IEEE Conf. Supercomputing (Su-
percomputing 1993), pages 840–849, 1993.

[89] A. Newell and H. A. Simon. Human Problem Solving. Prentice, 1972.

[90] E. Newman, A. Greenhouse, and W. L. Scherlis. Annotation-based diagrams for
shared-data concurrency. In Proc. Workshop Concurrency Issues in UML, 2001.

[91] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In Proc. ACM
SIGPLAN Symp. Principles and Practice of Parallel Programming (PPoPP 2003),
pages 167–178, 2003.

[92] W. J. Orlikowski and J. J. Baroudi. Studying information technology in organiza-
tions: Research approaches and assumptions. Inform. Syst. Res., 2(1):1–28, 1991.

[93] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph in a software
development environment. In Proc. 1st ACM SIGSOFT/SIGPLAN Software Eng.
Symp. Practical Software Development Environments (SDE 1984), pages 177–184,
1984.

[94] S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–285, 1976.

[95] D. Z. Pan and M. A. Linton. Supporting reverse execution for parallel programs. In
Proc. 1988 ACM SIGPLAN and SIGOPS Workshop Parallel and Distributed Debug-
ging (PADD 1988), pages 124–129, 1988.

[96] N. Pennington. Stimulus structures and mental representations in expert comprehen-
sion of computer programs. Cognitive Psychol., 19(3):295–341, 1987.

[97] A. Podgurski and L. A. Clarke. A formal model of program dependences and its
implications for software testing, debugging, and maintenance. IEEE Trans. Softw.
Eng., 16(9):965–979, 1990.

214

[98] G. Pothier, Éric Tanter, and J. Piquer. Scalable omniscient debugging. In Proc. 22nd
Annual ACM SIGPLAN Conf. Object-Oriented Programming, Syst., Languages, and
Applicat. (OOPSLA 2007), pages 535–552, 2007.

[99] V. P. Ranganath and J. Hatcliff. Pruning interference and ready dependence for
slicing concurrent Java programs. In Proc. 13th Int. Conf. Compiler Construction
(CC 2004), pages 39–56, 2004.

[100] M. P. Robillard, W. Coelho, and G. C. Murphy. How effective developers investigate
source code: An exploratory study. IEEE Trans. Softw. Eng., 30(12):889–903, 2004.

[101] M. Ronsse and K. D. Bosschere. RecPlay: A fully integrated practical record/replay
system. ACM Trans. Comput. Syst., 17(2):133–152, 1999.

[102] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Addison, 2nd edition, 2004.

[103] M. Russinovich and B. Cogswell. Replay for concurrent non-deterministic shared-
memory applications. In Proc. ACM SIGPLAN 1996 Conf. Programming Language
Design and Implementation (PLDI 1996), pages 258–266, 1996.

[104] B. G. Ryder. Constructing the call graph of a program. IEEE Trans. Softw. Eng.,
5(3):216–226, 1979.

[105] B. Sandén. Coping with Java threads. Computer, 37(4):20–27, 2004.

[106] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

[107] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, volume 2. Wiley,
2000.

[108] D. C. Schmidt and S. D. Huston. C++ Network Programming: Resolving Complex-
ity Using ACE and Patterns, volume 1. Addison, 2002.

[109] C. B. Seaman. Qualitative methods. In F. Shull, J. Singer, and D. I. K. Sjøberg,
editors, Guide to Advanced Empirical Software Engineering, chapter 2, pages 35–
62. Springer, 2008.

[110] S. Siegel. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill,
1956.

[111] J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers ask during
software evolution tasks. In Proc. 14th ACM SIGSOFT Int. Symp. Foundations of
Software Eng. (FSE 2006), pages 23–34, 2006.

[112] J. Sillito, G. C. Murphy, and K. De Volder. Asking and answering questions during
a programming change task. IEEE Trans. Softw. Eng., 34(4):434–451, 2008.

215

[113] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete
Reference, volume 1. MIT P., 2nd edition, 1998.

[114] R. Snodgrass. Monitoring in a software development environment: A relational
approach. In Proc. 1st ACM SIGSOFT/SIGPLAN Software Eng. Symp. Practical
Software Development Environments (SDE 1984), pages 124–131, 1984.

[115] E. Soloway, B. Adelson, and K. Ehrlich. Knowledge and processes in the compre-
hension of computer programs. In M. T. Chi, R. Glaser, and M. J. Farr, editors, The
Nature of Expertise, pages 129–152. Erlbaum, 1988.

[116] E. Soloway, J. Pinto, S. Letovsky, D. Littman, and R. Lampert. Designing docu-
mentation to compensate for delocalized plans. Commun. ACM, 31(11):1259–1267,
1988.

[117] M.-A. D. Storey, K. Wong, and H. A. Müller. How do program understanding
tools affect how programmers understand programs? Sci. Comput. Program., 36(2-
3):183–207, 2000.

[118] B. Stroustrup. The C++ Programming Language. Addison, 3rd edition, 2000.

[119] K. C. Tai and S. Ahuja. Reproducible testing of communication software. In Proc.
11th Annu. Int. Computer Software and Applications Conf. (COMPSAC 1987), pages
331–337, 1987.

[120] K. C. Tai, R. H. Carver, and E. E. Obaid. Deterministic execution debugging of con-
current Ada programs. In Proc. 13th Annu. Int. Computer Software and Applications
Conf. (COMPSAC 1989), pages 102–109, 1989.

[121] F. Tip. A survey of program slicing techniques. J. Program. Lang., 3(3):121–189,
1995.

[122] M. W. van Someren, Y. F. Barnard, and J. A. Sandberg. The Think Aloud Method: A
Practical Guide to Modelling Cognitive Processes. Academic P., 1994.

[123] I. Vessey. Expertise in debugging computer programs: A process analysis. Int. J.
Man-Mach. Stud., 23(5):459–494, 1985.

[124] A. von Mayrhauser and A. M. Vans. From program comprehension to tool require-
ments for an industrial environment. In Proc. IEEE 2nd Workshop Program Com-
prehension (WPC 1993), pages 78–86, 1993.

[125] A. von Mayrhauser and A. M. Vans. Comprehension processes during large scale
maintenance. In Proc. 16th Int. Conf. Software Eng. (ICSE 1994), 1994.

[126] A. von Mayrhauser and A. M. Vans. Identification of dynamic comprehension pro-
cesses during large scale maintenance. IEEE Trans. Softw. Eng., 22(6):424–437,
1996.

216

[127] A. von Mayrhauser and A. M. Vans. Hypothesis-driven understanding processes
during corrective maintenance of large scale software. In Proc. Int. Conf. Software
Maintenance (ICSM 1997), pages 12–20, 1997.

[128] C. von Praun and T. R. Gross. Object race detection. In Proc. 16th ACM SIG-
PLAN Conf. Object-Oriented Programming, Syst., Languages, and Applicat. (OOP-
SLA 2001), pages 70–82, 2001.

[129] M. Weiser. Program slicing. In Proc. 5th Int. Conf. Software Eng. (ICSE 1981),
pages 439–449, 1981.

[130] M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–
452, 1982.

[131] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Ex-
perimentation in Software Engineering: An Introduction. Kluwer, 2000.

[132] S. Xie. Evaluating and Refining Diagrams that Support the Comprehension of Con-
currency and Synchronization. PhD thesis, Univ. Georgia, Athens, GA, 2008.

[133] S. Xie, E. Kraemer, and R. E. K. Stirewalt. Design and evaluation of a diagrammatic
notation to aid in the understanding of concurrency concepts. In Proc. 29th Int. Conf.
Software Eng. (ICSE 2007), 2007.

[134] S. Xie, E. Kraemer, and R. E. K. Stirewalt. Empirical evaluation of a UML sequence
diagram with adornments to support understanding of thread interactions. In Proc.
15th IEEE Int. Conf. Program Comprehension (ICPC 2007), 2007.

[135] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes, 30(2):1–36, 2005.

[136] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for enabling full-system
multiprocessor deterministic replay. In Proc. 30th Annu. Int. Symp. Computer Ar-
chitecture (ISCA 2003), pages 122–135, 2003.

[137] B. Yoon and O. N. Garcia. A cognitive framework of debugging. In Proc. 7th Int.
Conf. Software Eng. and Knowledge Eng. (SEKE 1995), pages 304–311, 1995.

[138] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Morgan, 2006.

[139] J. Zhang and D. A. Norman. Representations in distributed cognitive tasks. Cogni-
tive Sci., 18:87–122, 1994.

[140] J. Zhao. Slicing concurrent Java programs. In Proc. 7th Int. Workshop Program
Comprehension (IWPC 1999), pages 126–133, 1999.

[141] J. Zhao, J. Cheng, and K. Ushijim. Static slicing of concurrent object-oriented pro-
grams. In Proc. 20th Conf. Comput. Software and Applicat. (COMPSAC 1996),
pages 312–320, 1996.

217

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND
	Debugging Concurrent Software
	Debugging Sequential Software
	Challenges of Concurrency
	Attempts to Address the Challenges

	Empirical Methods
	Qualitative Methods
	Quantitative Methods

	Related Empirical Studies
	Notations and Visualizations for Thread Interactions
	UML Sequence Diagrams
	Multithreaded Extension to UML Sequence Diagrams
	Other Visualizations

	Thread-Interaction Complexity Metrics
	Modeling Multithreaded Programs as LTSs
	Formal Definitions

	EXPLORATORY STUDY: PLANNING AND EXECUTION
	Study Planning
	Participants
	Study Materials

	Execution
	Preparation
	Execution of Study Procedure

	EXPLORATORY STUDY: STRATEGIES AND CODING SCHEMES
	Failure-Trace Modeling
	Example
	Feasibility Analysis
	Strength of Articulation
	Coding Scheme

	Breadth-First Approach to Diagnosis
	Modeling Hypothesis Elaboration and Refinement
	Coding Scheme

	Systematic Comprehension
	Coding Scheme

	Cyclic Debugging
	Coding Scheme

	Pattern Matching
	Coding Scheme

	Tweaking the Code
	Coding Scheme

	EXPLORATORY STUDY: ANALYSIS AND DISCUSSION
	Analysis
	Levels of Success
	Failure-Trace Modeling
	Breadth-First Approach to Diagnosis
	Systematic Comprehension
	Cyclic Debugging
	Pattern Matching
	Tweaking the Code

	Discussion
	Limitations

	CONTROLLED EXPERIMENT: PLANNING AND EXECUTION
	Experiment Planning
	Participants
	Experimental Materials
	Hypotheses, Parameters, and Variables
	Experiment Design

	Execution
	Preparation
	Execution of Experiment Procedure
	Data Validation

	CONTROLLED EXPERIMENT: ANALYSIS AND DISCUSSION
	Analysis
	Descriptive Statistics
	Hypothesis Testing
	Supplementary Analyses

	Discussion
	Evaluation of Results and Implications
	Threats to Validity

	DISCUSSION
	Research Findings
	Lessons Learned
	Sharing Think-Aloud Data
	Transcribing Think-Aloud Sessions

	Future Work

	CONCLUSIONS
	EXPLORATORY STUDY MATERIALS
	eBizSim Source Code
	Prestudy Questionnaire
	Poststudy Questionnaire
	Solutions to the Questionnaires
	Prestudy Questionnaire
	Poststudy Questionnaire

	CONTROLLED EXPERIMENT MATERIALS
	Preexperiment Questionnaire
	Experiment Questionnaire: External-Group Version
	Experiment Questionnaire: Internal-Group Version
	Solutions to the Questionnaires
	Preexperiment Questionnaire Solutions
	Experiment Questionnaire Solutions

	Diagram-Evaluation Rubric

	FAULT TREE FOR THE EBIZSIM FAILURE
	INTERACTION COMPLEXITY ANALYSIS
	LTS Model of Questionnaire Program
	Scenario Traces

	BIBLIOGRAPHY

