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In general, new modularization techniques require a sig-
nificant intellectual investment from practitioners in order
to adopt them. Before practitioners are willing to make
such an investment, they want a careful scientific assess-
ment of the technique for a number of properties (e.g., ef-
fects on reusability, reliability, and maintainability). Un-
fortunately, many promising modularization techniques lan-
guish too long in the “academic ghetto,” because their vali-
dation comes only in the form of simple proof-of-concept
examples. To properly assess these techniques, rigorous
empirical investigation is needed. Our work is concerned
with conducting such empirical investigations for assess-
ing how modularization techniques affect maintainability;
in particular, this paper presents an approach to conducting
formal experiments for assessing a technique’s impact on
perfective maintenance. We refer to such experiments as
maintenance experiments in the sequel.

Fenton and Pfleeger discuss three main types of empiri-
cal investigation: surveys, case studies, and formal experi-
ments, which they refer to as research in the large, typical,
and small, respectively [4]. We feel that all these types of
investigation should be employed in order to properly as-
sess a modularization technique’s effects on maintainabil-
ity; however, when it comes to assessing a new technique,
surveys and case studies tend to suffer from the chicken/egg
problem. To assess a technique using a survey or case study,
practitioners must invest or have previously invested in the
technique; but, practitioners require strong evidence of a
technique’s benefits before they will invest in it (the very
reason for doing the study in the first place). It follows that
formal experiments are a logical starting point for gathering
the evidence needed to convince practitioners to invest in a
technique enough to do the other types of investigation.

A formal experiment is a rigorous, replicable investi-
gation of some behavior of interest. Since formal experi-
ments require a high level of control, they tend to be small
in scale. In software engineering, formal experiments are
commonly used to compare treatments under different con-
ditions. Here, a treatment is a tool or a technique [5] (e.g.,
a CASE tool such as ArgoUML or a method such as RUP).

More specifically, an investigator uses a formal experiment
to test a hypothesis, which is a tentative assumption regard-
ing the effects of the treatments. A formal experiment com-
prises a series of trials, each of which tests a single treat-
ment. In a trial, one or more experimental subjects (e.g.,
software engineering students or professional software de-
velopers) apply a treatment to one or more experimental
objects (e.g., software designs or implementations). Using
data gathered from the trials, the investigator analyzes the
dependent variables, which are the observable factors that
varied based on what treatment was applied, while taking
into account the independent variables, which are the fac-
tors that may have influenced how the treatments were ap-
plied, to see if the hypothesis was supported or contradicted.

Typically, each trial in a maintenance experiment con-
sists of one or more experimental subjects performing one
or more maintenance tasks on a program, called the base
program, to produce a new program, called the resultant
program [3, 7]. However, a number of challenges make it
difficult to perform trials that accurately simulate mainte-
nance, and are also analyzable and controllable. The first
challenge lies in economically obtaining realistically com-
plex base programs, such as multi-threaded base programs
with nontrivial synchronization behavior. Different base
programs may be needed for different treatments, or to re-
duce the risk that the selected base programs favor a particu-
lar treatment. Another challenge is producing programs that
are amenable to reflective comparison when using different
treatments. For example, concurrent programs written us-
ing different synchronization constructs (e.g., semaphores
and monitors) tend to be structured very differently, making
them difficult to compare. Comparisons are needed both for
interpreting the results of the experiment as well as ensur-
ing that neither program is biased towards a particular treat-
ment. Another challenge is to create base programs that
exhibit similar structures to those of “real” programs. The
structure of a real program, for example, might reflect the
cumulative effects of multiple small changes over time, the
effects of multiple maintainers working on the program, and
the order that maintenance tasks were applied. A final chal-
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lenge is in supporting replication. Because of the number of
variables typically involved with maintenance experiments,
extensive replication may be needed to build confidence in
the results. For example, Daly et al. performed an experi-
ment on the effects of object-oriented inheritance on main-
tenance [3], and an early replication by Cartwright found
contradictory results [2].

We are investigating an approach using Parnas’s program
families [6] that should address many of the above chal-
lenges. Our approach supports the creation of a regime of
maintenance experiments, which are designed to explore a
space of related programs. Such a regime compares two
or more treatments using a set of program families, one for
each treatment, and a set of maintenance tasks. Initially,
each family comprises a single program, which we refer to
as a root program. Our approach iterates over two steps: (1)
a maintenance experiment is conducted, which uses equiv-
alent programs from each of the families as base programs,
and (2) the resultant programs are added to their associated
families. We consider two programs from different families
equivalent if they result from the same sequence of main-
tenance tasks. A notable aspect of our approach is that the
program families are populated as experiments are run.

We are currently using our program families-based ap-
proach in maintenance experiments to assess a technique
we previously invented for modularizing synchronization
concerns, called Szumo [1]. For the experiments, we are us-
ing two program families: one whose treatment uses Szumo
and another whose treatment represents the status quo and
uses Pthreads. The root program of each family implements
a multi-threaded GUI browser, which reads and displays
text from a network server. While the browser is relatively
small, it is complex and interesting enough that we previ-
ously used it as a pedagogical aid for a software engineering
course. We are using three perfective maintenance tasks to
populate the program families: one that adds network error
handling, another that adds more settings and GUI controls,
and another that reads data from multiple servers. Initially,
we will conduct our experiments using undergraduate soft-
ware engineering students. We plan to conduct more exper-
iments using different treatments (e.g., concurrent design
patterns) and experts as experimental subjects.

We anticipate several benefits from our approach:

e Reduction in costs associated with creating base pro-
grams: Program families are populated with programs
resulting from previous experiments. The investigator
only needs to create small root programs and to design
a set of perfective maintenance tasks that may be ap-
plied in various permutations (i.e., to engender branch-
ing in the tree).

e Easier reflective comparison of base and resultant pro-
grams: Functionally equivalent root programs from

different families are easier to compare, because they
are small. Functionally equivalent non-root programs
from different trees that received the same series of ex-
tensions are easier to compare, because they are the
result of a series of semantically comparable modifica-
tions to their associated roots.

e More accurate simulation of maintenance: Each pro-
gram (except the root) is the result of some number of
maintenance modifications. The program family can
be populated such that each extension is made by a
different author, and the maintainers are not the same
developers that wrote the program. The program fam-
ily includes all feasible permutations of extensions.

e Supports replication: Program families are easily
reused. If the original investigators explore only a por-
tion of the family tree, replicators can continue to pop-
ulate the program family with new programs from the
unexplored parts of the tree. Similarly, a regime can be
incrementally populated by replicating the same main-
tenance experiments but with different treatments.

Our approach raises several interesting research ques-
tions. One question is how to select which resultant pro-
grams to reuse in subsequent experiments. For example,
should the investigator choose explicitly based on some cri-
teria, or should programs be chosen non-deterministically.
Another question is what is the best order in which to ex-
plore the family trees. For example, does some prescriptive
combination of depth and breadth produce better results?
A final question is can a cohesive set of program families
be conceived such that they form the standard programs for
doing maintenance experiments on a particular domain of
systems. For example, is our GUI browser program family
sufficient for exploring multi-threaded, interactive systems?
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