The 16th IEEE International Conference on Program Comprehension

Refining Existing Theories of Program Comprehension
During Maintenance for Concurrent Software*

Scott D. Fleming', Eileen Kraemer'#, R. E. K. Stirewalt!, Laura K. Dillon, and Shaohua Xie!

"Dept. of Computer Science and Engineering
Michigan State University
East Lansing, Michigan, USA 48824
{sdfstire,ldillon} @cse.msu.edu

Abstract

While the sources of complexity in the initial design and
verification of multi-threaded software systems are well-
documented, less is known of the issues specific to the main-
tenance of these systems. The literature contains a number
of observational studies of programmers performing main-
tenance, conducted in the context of sequential software
and designed to investigate the factors and behaviors that
lead to success. To help fill the gap in knowledge in the
area of concurrent software maintenance, we conducted a
study that refines the findings of two prior studies, those of
Littman et al. and of Vessey, to address issues and obsta-
cles that arise in the understanding of concurrent software.
We validated these refinements by observing programmers
performing corrective maintenance on a small but complex
multi-threaded server program.

1. Introduction

The design complexities inherent in multi-threaded soft-
ware systems are well-documented (e.g., [2, 11]). However,
much less is known of issues specific to the maintenance
of these systems. Previously, we performed a think-aloud
study [16] of programmers engaged in the corrective main-
tenance of a concurrent program [7]. This study strove to
understand what behaviors correlate with success on task.
In addition to the think-aloud data we collected and used
for this prior study, the participants took a posttest to assess
the extent to which they understood the program. However,

*This material is based in part upon work supported by LogicBlox Inc
and the National Science Foundation under Grant Numbers CCF-0702667
and IIS-0308063. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not nec-
essarily reflect the views of LogicBlox Inc or the National Science Foun-
dation. Licenses for Camtasia provided by TechSmith Inc.

978-0-7695-3176-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICPC.2008.40

23

*Department of Computer Science
University of Georgia
Athens, Georgia, USA 30602-7404
{eileen,shachua}@cs.uga.edu

at the time of publication [7], we had yet to analyze these
data. This paper reports the results of the posttest analysis
and attempts to reconcile these results with the predictions
of two well-known studies [10, 17].

Our previous study collected data to uncover the activ-
ities programmers perform when diagnosing and correct-
ing synchronization-related faults in multi-threaded pro-
grams [7]. The raw data from this previous study com-
prise video and transcripts collected using the think-aloud
method [6, 16]. We observed students in a graduate
course on formal methods engaged in the corrective mainte-
nance of a faulty system with a realistically complex multi-
threaded architecture. The think-aloud protocols collected
during these observations reveal each participant’s “inner
dialogue” while he is working on the problem. In addition,
each participant completed a posttest, designed to assess
various aspects of program comprehension.

This paper attempts to reconcile the phenomena unique
to concurrent software with concepts and predictions from
two comprehension theories—[10] and [17]—that were
originally developed in the context of sequential software.
The phenomena unique to concurrency include the potential
for data races, subtle control and data flows that arise from
thread synchronization, and the heavy presence of delocal-
ized plans to implement synchronization goals. We first in-
vestigated whether a systematic approach to comprehension
correlates with success, as predicted in the classic paper by
Littman et al. [10]. We found a correlation between sys-
tematic comprehension and success under some measures;
however, the strategy is not a strong predictor of success.
For instance, under one measure, only half of the partici-
pants who applied the strategy were successful.

Systematic comprehension aims to develop a strong
mental model of the program. To understand where partici-
pants may have had difficulty achieving success with the ap-
proach, our study included a posttest to assess the strength
of participants’ mental models in terms of two kinds of

IEEE
computer
psouety

knowledge—static and causal. Participants were generally
able to acquire the forms of static knowledge that are spe-
cific to concurrent software. For instance, they were largely
able to understand key data and thread roles involved in
synchronization and to articulate the lifecycles of objects
and threads. Moreover, successful participants scored sig-
nificantly higher on questions regarding these issues than
did the unsuccessful participants. Far fewer were able to
answer questions involving causal knowledge—for exam-
ple, to identify when a thread executing in a method might
block, to predict what could happen to shared data in be-
tween when a thread invokes a wait statement and when
that invocation returns, and to reason about interaction with
other agents. This weakness of the mental model in terms of
causal knowledge may explain why the systematic strategy
is not a strong predictor of success in concurrent software.
Finally, we sought to reconcile phenomena specific to
concurrency with the concepts and predictions of Vessey’s
theory of fault diagnosis [17]. She claims that experts apply
breadth-first problem solving, which involves pursuing mul-
tiple lines of reasoning and deliberately investing intellec-
tual resources into competing hypotheses to avoid jumping
to conclusions. Because experts should be more successful
than novices, breadth-first solving should at least correlate
with success. It stands to reason that the strategy would
be especially important in the context of concurrent soft-
ware, because failures can be difficult to reproduce reliably
using testing, and the intellectual effort required to reason
about thread interleavings is substantial. Using formal fault-
tree analysis [4, 9] to enumerate a space of potentially rele-
vant and competing hypotheses for the fault under study, we
sought to understand how and how effectively the strategy
was applied in the concurrency context. Participants ap-
plied the strategy to analyze hypotheses that require reason-
ing about sequential behavior, but they seemed to abandon
it when analyzing hypotheses that require reasoning about
thread interleavings. Consequently, many potential causes
were never explored and perhaps never even considered.

2. Background and Related Work

The think-aloud method is a rigorous empirical tech-
nique used to obtain a model of the cognitive processes
that take place during an activity or to test the validity
of a proposed model [6, 16]. A think-aloud protocol is
a transcript of the utterances of the participants as they
are engaged in some activity. An associated action proto-
col describes what participants do as they engage in this
same activity. Because the time and effort required from
both participants and researchers for such intensive user
studies is substantial, the number of participants is typ-
ically fewer than 20 (e.g., 5 for [19], 13 for [8], and
20 for [15]).

24

The literature contains a number of observational stud-
ies designed to investigate the factors and behaviors that
lead to success when programmers perform maintenance
on sequential systems. Littman et al. argue that a system-
atic approach to comprehension is more effective than an
as-needed strategy [10]. The systematic strategy involves
starting at the beginning of the program and tracing the flow
of the entire program, using various forms of simulation.’
The as-needed strategy involves studying only those por-
tions of the code that are believed to be useful for the task
at hand. Moreover, two distinct kinds of knowledge—static
and causal—must be gained during systematic comprehen-
sion [10]. Static knowledge refers to an understanding of
a program’s functional components (e.g., roles, classes and
methods), and causal knowledge is an understanding of how
the functional components interact at run time.

Vessey conducted a well-known study that focused
specifically on corrective maintenance tasks. She argues
that experts tend to solve a debugging problem using a de-
liberate and precautionary strategy of hypothesis generation
and validation [17]. This breadth-first approach involves
first gaining a high level of understanding of the problem—
in the process making hypotheses about the cause of the
failure—and then attempting to verify or refute the hypothe-
ses. By contrast, the depth-first approach involves attempt-
ing to verify hypotheses as they are formed—prior to gain-
ing a high-level understanding of the problem. She found
that expert participants used the breadth-first approach in
conjunction with what she calls “system thinking,” and
novice participants used both breadth-first without system
thinking and depth-first approaches.

Von Mayrhauser and Vans developed a model of program
comprehension that combines the elements of several prior
cognition models [18]. Their integrated cognition model
explains how programmers comprehend programs during
maintenance; however, to our knowledge, it does not pre-
scribe which strategies and behaviors lead to success on
task. Sillito, Murphy, and De Volder studied the informa-
tion needs of programmers during maintenance to better in-
form tool design [14]. They created a catalog of questions
programmers ask during maintenance. Because we are in-
terested in how the presence of concurrency impacts suc-
cess, we chose to focus on theories of comprehension which
make specific predictions relating strategies and behaviors
to success.

3. Method

Fifteen students in a graduate-level formal methods
course participated in the study. All participants happened
to be male.

IRobillard, Coelho, and Murphy refined these ideas for systems too
large to be understood in their entirety [12].

3.1. The Program

Participants were asked to perform corrective main-
tenance of a small but representatively complex multi-
threaded program into which we had seeded a fault. The
program simulates an e-business server. The server accepts
network connections from remote clients, receives requests
from the clients over these connections, and simulates pro-
cessing of the requests. The server uses multiple threads. A
lone listener thread accepts client connections and places
the requests received over these connections on a shared
queue. Meanwhile, multiple handler threads contend for
requests by synchronizing on the shared queue.

We seeded the server with a fault in the synchronization
logic responsible for scheduling handler threads to dispatch
requests when they arrive. This fault is representative of the
class of synchronization-related faults that are difficult to
reliably reproduce by running the program. It manifests in
a failure only under certain timing and load constraints. To
facilitate reproduction of the failure, we provided the partic-
ipants a separate stress tester program, which issues client
requests to the server at a user-adjustable speed, thereby al-
lowing testing under various loads.

The seeded fault stems from the way the listener and han-
dler threads synchronize their access to a shared queue of
connection requests. This request queue is managed by an
object called the pool, which encapsulates and synchronizes
access to both the request queue and a buffer of handler ob-
jects, which are used to host the handler threads.> The pool
defines a mutex lock for each resource that it manages and
a host of queue/buffer-specific operations, each of which
is implemented so as to acquire (and release) the appro-
priate mutex at the beginning (and the end) of the opera-
tion.

The request queue is accessed through operations
submit_request and retrieve_request (Fig. 1). Notice that
both methods are bracketed by calls to acquire and release
on a mutex lock called queue_lock_. These invocations are
necessary to guarantee the methods execute under mutual
exclusion—that is, to ensure that multiple threads do not
concurrently access the queue.

The condition synchronization logic in lines 17-20 of
retrieve_request and lines 69 of submit_request blocks a
thread that invokes retrieve_request until such time as the
request queue contains a request to retrieve. The condition
synchronization is orchestrated using the condition variable
nonempty_queue_cond_. The listener thread signals this
condition variable when it adds a request to an empty re-
quest queue if any handler threads are blocked waiting to re-
trieve requests from the queue. The variable queue_waiters_

2The pool object is so named because multiple handler threads pool
up around it waiting for work to be dispatched to them. This design is
sometimes described as an instantiation of the reactor pattern [13].

25

void Pool: :submit_request (Requestx request)
{
queue_lock_.acquire();
request_queue_.push_back (request);

if (queue_waiters_) {
nonempty_queue_cond_.signal();
—--queue_waiters_;

}

queue_lock_.release();

Requestx Pool::retrieve_request ()

{
queue_lock_.acquire();

if (request_queue_.empty()) {
++queue_waiters_;
nonempty_ queue_cond_.wait();

}

if (request_queue_.empty()) {
queue_lock_.release();
return O;

}

Request* request request_queue_.front();
request_queue_.pop_front ();

queue_lock_.release();
return request;

int Pool::dispatch_request ()

{
// First, retrieve a handler from the pool.
Request_Handler* hdlr retrieve_handler();

if (hdlr == 0) return -1;

// Second, retrieve a request from the queue.
Request* request retrieve_request();

if (request == 0) return -1;

// Third, use handler to process request.
if (hdlr->process (request) -1) return -1;

// Fourth, return the handler to the pool.
add_handler (hdlr) ;

return 1;

Figure 1. Relevant eBizSim source code.

records a count of the number of handler threads currently
waiting for a request to be placed in the queue. The listener
thread uses it to optimize the number of signals it sends—
specifically to keep from signaling threads when none are
waiting and to issue a sufficient number of signals when
multiple threads are waiting.

The seeded fault appears on line 17. The line should be-
gin a while loop, but we replaced the while keyword with
an 1f. To see how this fault may manifest in a failure re-
quires reasoning about possible interactions between two or
more handler threads and the listener thread when the re-
quest queue is empty. We should expect condition synchro-
nization to be difficult to comprehend for several reasons.
First, the logic required to implement it necessarily man-
ifests as a delocalized plan [15]. Second, the wait/signal
primitives have side effects on unseen OS-level resources
(such as thread wait queues and mutex locks) and these in-
teractions are difficult to reason about [20]. Finally, because
unoptimized condition synchronization may incur an unac-
ceptably large cost in terms of context switching, the logic is
often highly optimized. Each of these characteristics bodes
poorly for program comprehension.

3.2. Procedure

The study began with group instruction, in the form of a
50-minute lecture, on concurrency constructs and their im-
plementation using the ACE wrappers toolkit [13]. The goal
of this lecture was to ensure that participants were well-
prepared to undertake the assigned maintenance task and
to mitigate the effects of differences in prior knowledge on
their performance. The participants then took a pretest on
concurrency terminology and concepts. Only two of the
participants scored below 50% on the pretest, and a major-
ity (8) scored above 75%.

Individual 3-hour sessions were then conducted in a pri-
vate office. Participants were provided with a workstation
equipped with standard desktop and development software,
and access to the eBizSim source code. We outfitted the
workstation with a microphone headset and the Camtasia
video capture software, which we used to capture the screen
interactions and speech of the participants in the form of
a video of the computer screen, with voice-over from the
participant. During the first 15 minutes, participants were
introduced to the equipment and environment, audio collec-
tion was calibrated, and participants engaged in think-aloud
on a warm-up task. Participants were then given a brief
tour of the directories containing the eBizSim software, pro-
vided with a bug report, and asked to perform corrective
maintenance on the software.

Prompters trained in the think-aloud method accompa-
nied the participants as they engaged in the maintenance
task and, as needed, asked the participants to “please, keep
talking.” Fig. 2 depicts the bug report. It describes the out-
put associated with the failure as well as some tips on how
to reproduce the failure. Scratch paper, a brief guide to con-
currency constructs in ACE, and a C++ manual were also
provided. Participants were permitted to browse the Inter-
net as they deemed necessary. They were allotted up to 150

26

We are experiencing a problem with the eBizSim server program, wherein
it intermittently exits with the error message:

error: Pool::dispatch_request () failed

This error has been fairly difficult to reproduce. So far, the most reliable
way we have found to reproduce it is to run the stress tester with a setting
of 4.27. Even with this setting, the program may take several minutes to
exhibit the error. Occasionally, the program will run at the above setting
for a long time (on the order of 5 minutes) without failing. In these cases,
restarting the server and the stress tester seems to help in drawing out the
error.

Figure 2. Bug report provided to participants.

minutes to complete the task. Following the sessions, par-
ticipants took a posttest designed to evaluate program com-
prehension.

4. Systematic Comprehension Strategy

We examined our think-aloud data to find evidence of
participants applying a systematic approach to comprehen-
sion. By definition, the approach involves the programmer
performing “extensive [global] symbolic execution of the
data flow paths between subroutines” [10]. Global sym-
bolic execution refers to starting at the main routine and fol-
lowing the control and calling structure of the subroutines.
By virtue of this symbolic execution, the programmer must
“actually imagine the behavior of the program as if it were
running in time,” thereby providing her with “causal knowl-
edge about the order of actions in the program” [10]. Causal
knowledge is needed to recognize and fix the fault in the
eBizSim program, where faulty synchronization logic leads
to an unintended ordering of the program actions under cer-
tain thread schedules. Other prior work extols the effective-
ness of the systematic strategy for understanding programs
with delocalized plans [15]. Synchronization logic typically
manifests as a delocalized plan. Finally, as in the Littman
study, the eBizSim program is small enough to be read in its
entirety within the time frame of the participant sessions.

We analyzed our think-aloud data to learn (1) whether
the systematic approach is applied and how frequently, and
(2) whether its application correlates with success. We
coded participants as using the systematic strategy if they
made it a goal to first understand the entire unmodified pro-
gram, before attempting to diagnose and correct the fault.
Such participants investigated the code by starting from
the main function and tracing the control-flow and calling
paths, by reading the contents of each file from top to bot-
tom, or by some combination of the two. We coded partic-
ipants as using the as-needed strategy if they were clearly
not concerned with understanding the entire program, but
rather only wanted to understand enough to complete the
task. Such participants investigated the program by start-

01 02

Strategy A A A A A
Fixed + - - - -
NoNew + - - - -
Explained -

S
o

07
S S S S S
+ o+ - - -

+ + + &
+++ g
+ + + »n

o+ + 3
P+ g

+

+ - - - -

Table 1. Strategies and success.

ing at the point in the code where the failure manifested (as
indicated by the bug report) and, using local information,
examined only the parts of the code they felt they needed
to understand. Based on this encoding, we determined that
ten of the fifteen participants applied the systematic strat-
egy. Table 1 depicts the results of our encoding in the row
Strategy.

We measured success on task using three categories. The
category Fixed records whether the participant found and
successfully fixed the seeded fault—that is, he replaced the
if with a while on line 17 in Fig. 1. Eight of the fif-
teen participants achieved this level of success (Table 1).
A stronger measure of success is encoded in the category
NoNew, which records whether, in addition to fixing the
fault, the participant did not introduce any new faults. Only
six of the participants achieved this level of success. Finally,
the category Explained records whether the participant was
able to successfully articulate the nature of the fault when
answering the following question on the posttest:

“Describe, in detail, the design fault that leads to
the intermittent failure in the eBizSim server. You
should be able to give a concrete scenario that
demonstrates the fault.”

This category is not necessarily either stronger or weaker
than either Fixed or NoNew. In our study, only five of the
fifteen participants achieved Explained.

Analysis of these data shows that participants who ap-
plied the systematic strategy were, on average, more suc-
cessful on task by all measures of success. However, this
result is statistically significant only in the case of Fixed
(p < 0.05). In contrast to the results of the Littman study,
our data show that use of the systematic strategy alone is
not a strong predictor of success.

5. Static and Causal Knowledge

We next examined our think-aloud and posttest data to
find evidence to evaluate the claim from Littman et al. of
a correlation between success on a maintenance task and a
strong mental model of the program, characterized by good
static and causal knowledge about the program. We found
significant differences between successful and unsuccessful
participants for some types of both static and causal knowl-
edge. Within the group who employed the systematic ap-
proach, we found similar trends, but these did not rise to

27

Qnum Overall Fixed NoNew Explained
1-S 82 88/76 89/78 100/73 **
2-S 80 88/71 83/78 100/70 *
3-S 77 84/68 96/64 * 95/68

4-S 83 100/64 * 100/72 * 90/80
5.1-S 85 100/68 * 100/75 * 100/78 *
5.2-C 55 53/58 58/53 70/47

6-S 88 97/77 * 100/80 ** 100/82 *
7-S 91 88/95 100/85 100/97
8-C 63 67/57 73/55 89/48 **
9.1-C 79 86/69 89/64 * 86/76
9.2-C 70 73/66 74/67 79/67
9.3-C 80 82/77 86/76 86/78
10.1-C 91 87/79 88/79 92/80
10.2-C 82 88/74 86/80 89/79
11-S 83 94/71 100/72 * 80/85
12-S 87 88/86 83/89 80/90
13-C 33 25/43 17/44 40/30
14-C 67 100/29 ** 100/44 ** 100/50 **
15-C 48 72/20 ** 75129 * 90/26 ***
16-C 34 55/71 * 57/19 68/18 *
17-C 60 94/71 *#*% 100/33 ** 100/40 **

Table 2. Performance on posttest questions.

the level of statistical significance within this small sam-
ple. Further, we found that participants overall had diffi-
culty with certain types of questions. In the paragraphs be-
low we present the types of static and causal knowledge we
evaluated, examine the concepts that proved difficult for the
participants, and discuss the elements of static and causal
knowledge for which a significant difference was found be-
tween successful and unsuccessful participants. For pur-
poses of analysis, we define success as in Section 4.

Static knowledge includes knowledge of the objects that
the program manipulates, the actions the program performs,
and the program’s functional components—that is, seg-
ments of code that, together, accomplish a task. For multi-
threaded programs, static knowledge includes knowledge
of threads and their roles, shared data, and synchroniza-
tion mechanisms. Knowledge of threads and thread roles
includes knowing what threads are spawned by the pro-
gram, what roles the threads play, and where in the code
the threads are spawned, begin executing, and terminate.
Knowledge of shared data includes knowing which data are
shared by multiple threads, the roles of the threads that ac-
cess the data, and the locations of critical sections involving
the data. Knowledge of synchronization mechanisms in-
cludes knowing the mutex locks, condition variables, and
abstract conditions that are used to synchronize accesses to
shared data.

Littman et al. define causal knowledge as that pertaining
to the interactions among functional components. The need
to take into account the multitude of potential thread inter-
leavings in a concurrent system makes understanding these
potential interactions difficult.

Table 2 summarizes performance on the posttest, listing
the overall average, and for each category of success, listing

the average for the successful group and the unsuccessful
group (S/U). Question numbers are annotated S (static) and
C (causal) to indicate the type of knowledge the question
is designed to evaluate. For each question, we performed
a heteroscedastic, two-tailed Student’s t-test to determine if
the difference in means between the groups is significant.
Significant differences are indicated in bold-face, with * =
(p < 0.05), xx = (p < 0.01), and * x x = (p < 0.001).

Participants performed well when evaluating static
knowledge of important objects in the implementation of
the eBizSim server (Q1). A significant difference was found
only on the Explained categorization.

Participants also performed well on questions that evalu-
ated knowledge of shared data, addressing shared objects
and data structures (Q4, Q5.1), scoring over 80% when
asked to identify server classes that might be concurrently
accessed by multiple threads (Q4) and when asked to de-
scribe the purposes of the main data structures (Q5.1). Sig-
nificant differences were found on all categorizations of
success for question 5.1 and for all but Explained for ques-
tion 4. However, when asked to identify the different types
of threads (i.e., thread roles) that might be involved in con-
current access to those data structures (Q5.2) performance
dropped to 55%. This drop was seen across both the suc-
cessful and unsuccessful groups.

Questions 2, 3, 11, and 12 evaluated static knowledge
of threads and thread roles. Participants were generally
able to propose names for the two roles that threads could
play and to describe the responsibilities assumed by threads
playing each role (Q2), to state how many threads might
play each role (Q3), and to answer questions about thread
creation (Q11,Q12). Performance on these questions cor-
related with some categorizations of success and not with
others, but with no clear pattern.

Participants were successful when asked to describe the
“life cycle” of the Request_Handler objects in the system
(Q6). These objects are created when the system initializes,
used to process requests during their lifetime, and then de-
stroyed when the system terminates. Differences between
successful and unsuccessful participants were significant in
all three categories.

Questions 7 and 8 addressed the behavior of the
dispatch_request method, asking participants to list the ma-
jor activities performed during this method (Q7) and to
identify those activities in which the actor might block and
explain the conditions and synchronization objects and op-
erations involved (Q8). Participants were able to list the
major activities, but no significant difference existed across
the groups. However, they struggled to identify all of the
conditions under which an actor might block, with many
participants either stating that an actor could block trying
to acquire the mutex lock, or that an actor could block on
a condition variable, but failing to state both. The ability

28

to identify these conditions was significant only for the Ex-
plained categorization.

Questions addressing causal knowledge proved chal-
lenging. Two of these causal questions (Q9 and Q10) were
scenario based. Such questions posit some state of the sys-
tem (e.g., “... a thread, call it T, after beginning execution
of dispatch_request, successfully retrieves a request handler
from the pool”), and then ask what may occur next if, for
example, the queue is empty, or has 1 request, or has 10
requests. A list of six activities was provided, and the par-
ticipants were asked to select those activities that could oc-
cur next. Two participants misunderstood the questions and
were removed from consideration in evaluating the effects
of these questions. Of those remaining, a statistically signif-
icant difference was found only for the NoNew categoriza-
tion, and only for Q9.1. Although participants performed
well on these questions overall, a sub-group of scenarios
proved problematic (average score 46%). All of the prob-
lematic scenarios involved reasoning about how the state of
the system may change between the time a thread invokes
a wait statement and when that invocation returns. Condi-
tion synchronization is generally difficult to reason about
because so much may transpire between when a thread in-
vokes and returns from a wait. Many of the incorrect an-
swers we observed in questions related to condition syn-
chronization indicate that participants made incorrect in-
ferences about causal relationships between the values of
counting variables (such as queue_waiters_) and the num-
ber of threads currently blocked on the queue.

Questions 14 and 15 honed in on the actual fault, ask-
ing participants to identify the nature of the synchronization
fault that was seeded into the program. Q14 was a multiple-
choice question, in which the correct description of the fault
was selected by 67% of the participants. Q15 asked partic-
ipants to describe in detail and in their own words “ the de-
sign fault that leads to the intermittent failure in the eBizSim
server.” Only four participants received full credit for this
question, despite greater numbers of participants who were
able to find and fix the flaw, or to select the correct descrip-
tion from a multiple-choice question. Clearly, this causal
knowledge and the ability to articulate it is more difficult
than identifying the fault from a series of choices or than
actually fixing the fault in the implementation. Note: A
correct answer to Q15 served as the basis for inclusion in
the successful group for Explained.

Participants struggled when asked (Q16) to consider in-
teractions of the eBizSim server with an outside agent, the
stress tester, and to discuss the effect of stress-test speed in
causing the server to crash. Significant differences between
the successful and unsuccessful groups were found under
both the Fixed and Explained categorization.

Finally, participants were asked to describe how they
fixed or would fix the design flaw that leads to the intermit-

tent failure in the eBizSim server (Q17). Interestingly, par-
ticipants performed better (60%) at describing the fix than
at describing the fault. A significant difference between the
successful and unsuccessful groups was found under all cat-
egorizations.

In summary, participants were generally able to ac-
quire static knowledge relevant to a multi-threaded pro-
gram, performing well at understanding key data structures
and thread roles involved in synchronization and describing
the lifecycles of objects and threads. They began to strug-
gle when asked to list all of the conditions under which
an actor might block, often recalling only some of those
conditions (mutex locks or condition variables). Further,
they had greater difficulty with questions related to causal
knowledge, particularly with certain scenario-based ques-
tions, and with free-form explanations of the nature of the
fault itself and of interactions with other agents.

Littman ef al.’s claim of a correlation between strong
mental models and success on a maintenance task appears
to hold here. Types of knowledge that appear to be re-
lated to success, under one definition or another, included
static knowledge of shared objects and data, and detailed
knowledge of the life cycles of threads and objects. Certain
types of causal knowledge were seen to have a significant
effect on success, including, not unexpectedly, the ability to
describe concrete scenarios under which a fault might oc-
cur. Of further interest is the nature of the scenario-based
questions that proved most difficult to participants. How
these difficulties might be remediated through tools or edu-
cational approaches is an open question.

6. Breadth-First Fault Diagnosis

Because errors in a concurrent program are not pre-
dictable, analysts should consider multiple competing hy-
potheses when diagnosing a fault. However, reasoning
about thread interleaving is complex. Thus, analysts should
invest effort in such activities sparingly and deliberately.
Vessey refers to such behavior as breadth-first problem
solving and suggests that experts apply it during correc-
tive maintenance [17]. We investigated the application of
this strategy in our study. Specifically, we studied how
well participants generated hypotheses and whether they
appeared to be considering multiple competing hypotheses
rather than jumping to conclusions. To support this anal-
ysis, we developed a fault tree [4, 9] for the failure in our
study (Section 6.1). By associating verbalizations/actions
in the protocols to events and patterns of elaboration in the
fault tree, we observed: (1) a subset of participants seem to
have been applying breadth-first solving, (2) membership
in this group correlates with success on task, and (3) key
hypotheses went unexplored. (Section 6.2).

29

6.1. Fault Tree

Fig. 3 depicts a portion of the fault tree for the failure
under study. Each box represents an event, which is an ob-
servation at some moment in time. Observations refer to
properties of system objects and are made at distinct con-
trol points in the program. We distinguish three kinds of
control points, formalized in terms of control flow graphs
(CFG).> Namely, for a thread T and CFG nodes N and
N’, an observation may be made (1) when T enters N, de-
noted T enters N; (2) when T exits IV, denoted T exits V;
or (3) when T traverses the CFG edge from N to N’, de-
noted T trav N — N’. By convention, T" enters N occurs
prior to when T actually executes the instruction at node
N, which means another thread could execute between the
observation and 7"’s execution; whereas T exits N is coin-
cident with termination of the instruction at V.

We designate CFG nodes informally using the con-
crete syntax of a program statement or expression (e.g.,
J[accept_request ()]) or the line number upon which
it appears. Where necessary, we prefix an informal desig-
nator with a qualifier to indicate the type of instruction in
the CFG node being designated. For instance, call(41) des-
ignates the node containing the actual call instruction as
distinct from the other CFG nodes a compiler might gen-
erate for this assignment statement whose right-hand side
includes a method invocation. Qualification allows an ob-
servation to refer to the value returned from the call. Like-
wise, ifCond designates the node containing the i f-goto
instruction that branches to the CFG node designated by the
target of a trav specifier.

In addition to designating a control point, each event as-
serts a state predicate and an optional timing constraint. A
timing constraint specifies when the event occurred relative
to other events. For expressing timing constraints, we use
M .t to denote the time event M occurred.

The root event in Fig. 3 represents an error state that
manifests in the failure described in Fig. 2. The error occurs
at time root.t when a thread T observes an invocation of
the dispatch_request method returning -1. The state predi-
cate, which appears below the control point designator, uses
the keyword rval to refer to the value returned from the des-
ignated call instruction.

The children of an event represent events that enable
(or contribute to enabling of) the event. Or-gates indi-
cate alternative enabling events; whereas and-gates indi-
cate a conjunction of multiple events, all of which must
occur to enable the parent. For example, the code for
dispatch_request can return -1 in any one of three state-
ments. Nodes L;, Mj, and R; represent events that will

3Here, we assume CFG nodes are labeled with instructions in three-
address code [1]. A statement in the program may therefore engender many
nodes and edges in the CFG.

3Ty : Handler

root

T exits call[handler_pool.dispatch _request()]

rval = —1
I | |
L1 My Ry
To exits call(36) To exits call(41) Ty exits call(46)
rval =0 rval =0 rval = —1
Ly.t < root.t M.t < root.t Ri.t < root.t
I |
M2 M3
T trav ifCond(22) — (23) T exits call(27)
true rval =0
M.t < M.t Ms.t < M.t
3T : Listener ‘ %
M4 M7
To exits (19) T exits call[accept_request()]
queue.empty rval =0
Myt < Ma.t 3T : Handler | T1 # To | M7.t < M3.t 3 T3 : Handler | T3 # To
I | I |
Ms Me Msg My

To enters (22)
—queue.empty

Ms.t < M.t

T exits call(28)
queue.empty
Ms.t < Mg.t < Ma.t

To enters (27)

—queue.empty

Mg.t < M3.t

T3 exits call(28)
queue.empty

Mg.t < Mg.t < Ms.t

Figure 3. Fault tree.

cause one of these statements to be executed. Evaluation
of retrieve_handler at line 36 could return O (L), thereby
causing dispatch_request to return O at line 38. Nodes M;
and R; can be understood similarly. Due to space limita-
tions, we show only part of the M; subtree, which is the
alternative that actually caused the seeded fault. A triangle
indicates that a subtree has been elided.

The M; tree explains how an invocation of
retrieve_request could have returned 0. Either evalua-
tion of the if condition on line 22 succeeded (event Ms), or
the method invocation on line 27 returned 0 (M3). Like-
wise, the Ms tree explains how the if condition on line 22
could have succeeded. Either T exits the body of the first
conditional block with the queue being empty (My); or
Ty reaches line 22 believing the queue is non-empty, but
another thread empties the queue before T, can execute
the if statement on line 22. The remaining events in Fig. 3
model how Tj could have retrieved a O that was inserted
into the queue by the listener thread (represented by 7%) or
how Ty could have tried to pop an empty queue.

6.2. Fault-Tree Coverage
We used the fault tree to help identify those participants

who applied breadth-first solving and also to identify rele-
vant hypotheses that were overlooked, perhaps due to the

30

complexity of reasoning about concurrent phenomena. We
say that a participant discovers an event if he somehow ver-
balizes the control point, state predicate, and/or time con-
straint associated with the event; whereas he analyzes the
event if he attempts to determine how it is enabled. In
some cases, event discovery and analysis are clearly ar-
ticulated in the protocols. For instance, par06 was ana-
lyzing the root event when he uttered, “under what con-
ditions can we end up returning an error from dispatch
request?” While trying to answer this question, he dis-
covered and succinctly verbalized the enabling events Ly,
My, and R;. In other cases, we had to infer event dis-
covery and/or analysis from clues in the protocols. For
instance, we coded par09 as having discovered event My
when, while analyzing event M, he verbalized a scenario
in which a waiting thread awakes to find the request queue
empty. Because it was discovered during the analysis of Ma,
we say par09 discovered M, as an enabler while analyzing
M.

Table 3 depicts the events from the root and M subtree
that each participant attempted to analyze. We omitted the
L and R subtrees from the table to save space and because
their data are consistent with those of the M subtree. The
far right column indicates the percentage of events in the
M subtree that participants discovered. The bottom row
provides the sum of each column.

root M1 M2 M3 M4 M5 M6 M7 M8 M9 M-Pct

1 + + + + + - - - - - 44%
02 + + -+ - - - -+ o+ 44%
3 + + + - - - - - - - 22%
4 + + + + + + + - - - 67%
5 + + - - - - - - - - 11%
6 + + + - + - - - - - 33%
07 + + + + - - - - - 33%
8 + + + - + - - - - - 33%
9 + + + - + - - - - - 33%
0w + + + - 4+ - - - - - 33%
nm + + + - + - - - - 33%
2 + + + - + - - - - - 33%
3 + + + - + - - - - - 33%
4 + + + - + 4+ + - - - 5%
15 + + + + - - - - - 33%
Total 15 15 13 3 12 2 2 0 1 1
Table 3. Fault tree coverage.

These data show that participants generally analyzed cer-
tain events (e.g., My, Ms, and M,), and generally ignored
or failed to discover others. Every participant analyzed root
and M;. Within M, 13 participants analyzed M,, and only
3 analyzed Ms. Within M, 12 analyzed My, and only 2
analyzed the Ms5/Mg subtree. Within M3, no one analyzed
My, and only 1 participant analyzed the Mg/My subtree. No
participant analyzed every event in the M subtree, and only
2 participants analyzed at least half of the M events.

We identify participants who are likely to have been ap-
plying breadth-first solving using transcript data and verify-
ing that the participants analyzed a sufficiently large number
of the events in the fault tree down to depth 2. This collec-
tion of events comprises root, L1—Ls (not shown in figure),
M;—Ms3, and R1—Ro (not shown in figure). This group con-
tains ten participants if we exclude events L3 and M; as
outliers.* Only par01 analyzed all events down to depth 2
in the fault tree. Seven participants within this group were
successful in diagnosing the fault and 3 were not. Only one
successful participant was not in this group.

Focusing on the group we coded as having applied
breadth-first solving, nine of the ten analyzed events L, and
M. No one in the group considered events Ls—Lg and M7—
My, and only 1 considered the M5/Mg subtree. These omis-
sions are noteworthy. Perhaps the participants ran out of
time. Although it seems unlikely that they all ran out of
time at nearly the same points, they may have grown weary
after working for over two hours and begun to make errors
of omission. Alternatively, given the rate of success in this
group, they may have decided that they had found and fixed
all of the faults in the system. However, if they drew this
conclusion without having analyzed a large swath of poten-
tial causes of failure, then either: (1) we wrongly included
them in the group applying a breadth-first solving strategy,
(2) at some point during the study they abandoned this strat-

“4only one participant in this group analyzed L3, and only three ana-
lyZCd M3.

31

egy, or (3) something about the problem made the omitted
hypotheses difficult to formulate. Assuming our grouping is
correct, we interpret these omissions as a breakdown of the
breadth-first solving strategy, which should otherwise have
led to the discovery of these events.

To see whether concurrency was a factor in this break-
down of strategy, we looked at which nodes require reason-
ing about sequential behavior only and which also require
reasoning about concurrent behavior. For example, deter-
mining that M; enables root involves reasoning only about
the sequential control flow in the dispatch_request method.
In contrast, determining that M7 enables M3 requires rea-
soning about the concurrent behavior of two threads (7Tj
and T in Fig. 3). The nodes in Table 3 that require rea-
soning only about sequential behavior are root, My, Mo,
and Ms. The rest also require reasoning about concurrent
behavior.

In our data, hypotheses that require reasoning about con-
current behavior are less likely to be analyzed than those
involving sequential reasoning. In the concurrent category,
5 of the 6 events were analyzed by 2 or fewer participants,
and only 1 (M,) was widely analyzed. In the sequential cat-
egory, 3 of the 4 nodes were analyzed by 13 or more partic-
ipants, and only 1 (M3) was largely unanalyzed. Moreover,
the code that gives rise to this lone unanalyzed event (M3)
follows (in the source code) from the code associated with
M5, which contains synchronization primitives. When con-
current reasoning is required, participants seem largely to
pursue a small number of hypotheses and fail to consider
the competitors. This suggests concurrency may be a factor
in the breakdown of the breadth-first solving strategy.

7. Conclusions and Open Questions

Participants in our study overwhelmingly applied a sys-
tematic approach to comprehension to diagnose the fault.
Unfortunately, even though use of the strategy correlated
with success on task, it was not a strong predictor. In terms
of developing strong mental models of a program, we iden-
tified several types of knowledge that are specific to con-
current software and that appear to be related to success.
Most notably, static knowledge pertaining to the where in
the code threads and objects are created and destroyed and
certain forms of causal knowledge have a significant effect
on success. That static knowledge would have an effect was
somewhat surprising but is encouraging because it might be
relatively easy to develop tools and/or reading techniques
that improve facility in its development.

How to support acquisition of the more difficult forms
of causal knowledge is an open problem. One strategy
for coping with its complexity is to formulate invariant
properties which are satisfied by all action orderings in
a system [2]. For instance, many multi-threaded object-

oriented programs are designed so that shared objects ex-
ecute method invocations with monitor semantics [11].
Given such a program and a strong monitor invariant, the
programmer might be able to reason more effectively about
the scenario-based questions and the kinds of design faults
that we seeded in this study. Perhaps a programmer could
systematically identify the monitor objects in the system
and their monitor invariants. Such an approach could be
supported by prescriptive guidance in the form of a struc-
tured reading technique [3].

Our studies also showed a breakdown in what was
otherwise an orderly, breadth-first analysis of the fault.
Breakdown seemed to be triggered by hypotheses involv-
ing thread interleavings. In our previous study, we observed
participants proceeding with incomplete causal knowledge
and investing heavily in what we refer to as failure-trace
modeling [7]. Failure-trace modeling involves a heavy in-
vestment of mental energy and is definitely more of a depth-
first than a breadth-first strategy. Whether tools or prescrip-
tive guidelines can be developed to prevent breakdowns of
breadth-first solving in this context is an open question.
With respect to tools, we are investigating automated ap-
proaches to elaborating the fault events and producing trees
such as in Fig. 3. It is also conceivable that a lightweight
tool—for example, a tool for visualizing and recording the
fault-tree structures—could help to avert breakdown. It may
also be that the space of hypotheses one would need to gen-
erate to diagnose a fault in a concurrent program is so large
that a breadth-first approach may become intractable except
for very small programs. How to remediate this situation is
an open research question.

Finally, we recognize several threats to validity in this
work. The first concerns how well our seeded fault repre-
sents the kind of synchronization faults that arise in prac-
tice. Other concerns include the limited scale of both the
program and the change activities, and the absence of strong
incentives for participants to succeed. Such problems are
difficult to address given the nature of a think-aloud study,
as participants can be asked to participate for only a rela-
tively limited length of time. In the future, we will develop
other kinds of studies (e.g., case studies) to validate our re-
sults on programs and change activities of larger scale and
with a more realistic structure of incentives. Another poten-
tial threat to validity concerns composition of the student
pool, all of whom were male. The use of the think-aloud
method is a potential threat to validity because the cog-
nitive resources required for introspection may affect how
participants perform. However, numerous studies show that
participants who are asked merely to “verbalize their inner
dialogue”, as were the participants in this study, perform
comparably on measures of performance with participants
who were not asked to think aloud [5].

32

References

(1]
(2]
(3]
(4]

(5]

(6]
(7]

(8]

(9]

(10]
(11]

[12]

[13]

(14]

[15]

[16]
(17]

(18]

[19]

(20]

A. Aho et al. Compilers: Principles, Techniques, and Tools.
Addison—Wesley, second edition, 2007.

G. R. Andrews. Concurrent Programming: Principles and
Practice. Addison-Wesley, 1991.

V. Basili et al. Studies on reading techniques. In Proc. 21st
Annu. Software Eng. Workshop, 1996.

S. J. Clarke and J. A. McDermid. Software fault trees and
weakest preconditions: a comparison andanalysis. Software
Eng. J., 8(4):225-236, 1993.

K. A. Ericsson. Valid and non-reactive verbalization of
thoughts during performance of tasks. J. Consciousness
Stud., 10(9-10):1-19, 2003.

K. A. Ericsson and H. A. Simon. Protocol Analysis: Verbal
Reports as Data. MIT Press, 1993.

S. D. Fleming et al. A study of student strategies for the cor-
rective maintenance of concurrent software. In Proc. IEEE
Int. Conf. Software Eng., 2008.

T. D. LaToza et al. Program comprehension as fact finding.
In Proc. 6th ESEC/SIGSOFT Symp. Foundations Software
Eng., 2007.

N. G. Leveson, S. S. Cha, and T. J. Shimeall. Safety veri-
fication of Ada programs using software fault trees. IEEE
Software, 8(4):48-59, 1991.

D. C. Littman et al. Mental models and software mainte-
nance. J. Syst. Software, 7(4):341-355, 1987.

J. Magee and J. Kramer. Concurrency: State Models and
Java Programs. Wiley, second edition, 2007.

M. P. Robillard, W. Coelho, and G. C. Murphy. How ef-
fective developers investigate source code: An exploratory
study. IEEE Trans. Software Eng., 30(12), 2004.

D. Schmidt and S. D. Huston. C++ Network Programming:
Mastering Complexity with ACE and Patterns, volume 1.
Addison-Wesley, 2002.

J. Sillito, G. Murphy, and K. De Volder. Questions program-
mers ask during software evolution tasks. In Proc. ACM
SIGSOFT Symp. Foundations Software Eng., 2006.

E. Soloway, R. Lampert, S. Letovsky, D. Littman, and
J. Pinto. Designing documentation to compensate for de-
localized plans. Commun. ACM, 31(11), 1988.

M. W. van Someren, Y. F. Barnard, and J. A. C. Sandberg.
The Think Aloud Method. Academic Press, London, 2004.
1. Vessey. Expertise in debugging computer programs: a
process analysis. Int. J. Man-Mach. Stud., 23(5), 1985.

A. von Mayrhauser and A. M. Vans. Identification of dy-
namic comprehension processes during large scale mainte-
nance. IEEE Trans. Software Eng., 22(6), 1996.

C. Wallace et al. Assertions in end-user software engineer-
ing: a think-aloud study. In Proc. IEEE 2002 Symp. Human
Centric Comput. Lang. and Env., 2002.

S. Xie, E. T. Kraemer, and R. E. K. Stirewalt. Design and
evaluation of a diagrammatic notation to aid in the under-
standing of concurrency concepts. In Proc. IEEE Int. Conf.
Software Eng., 2007.

