
Debugging Concurrent Software:
A Study Using Multithreaded Sequence Diagrams∗

Scott D. Fleming1,4, Eileen Kraemer2, R. E. K. Stirewalt3,4, Laura K. Dillon4

1Oregon State University
sdf@eecs.oregonstate.edu

2Univ. of Georgia
eileen@cs.uga.edu

3LogicBlox, Inc.
kurt.stirewalt

@logicblox.com

4Michigan State Univ.
ldillon@cse.msu.edu

Abstract

Concurrent software is notoriously difficult to debug. We
investigate the use of UML sequence diagrams to help de-
velopers correctly reason about the potential behaviors of
buggy concurrent software. We conducted a controlled ex-
periment that compared internal (i.e., “in the head”) and
external representations for reasoning about multithreaded
software. For external representations, participants created
multithreaded sequence diagrams. The results of the exper-
iment demonstrate a strong positive effect associated with
using external representations. Participants who drew dia-
grams were significantly more successful at reasoning about
the potential behavior of concurrent software. Moreover,
participants who produced diagrams with higher levels of
detail and with fewer errors tended to achieve greater lev-
els of success. Additionally, this paper contributes an ex-
tension to the UML sequence diagram notation for showing
behavior of multithreaded software and formal metrics for
assessing the complexity of thread interactions.

1. Introduction
Concurrency can provide important performance bene-

fits to software systems; however, it also substantially in-

creases the complexity of software. This complexity makes

debugging particularly difficult. Programmers commonly

debug programs by replaying a failure repeatedly to un-

derstand how it occurs [6] and by tracing data and con-

trol dependences backward through the code to find the

source of an error [17]. Unfortunately, concurrency ren-

ders these techniques ineffective: failures may be difficult

to reproduce, and multiple data and control flows make de-

pendences difficult to understand. To make matters worse,

∗This material is based in part upon work supported by the Na-

tional Science Foundation under Grant Numbers CCF-0702667 and IIS-

0308063. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

developers lack specialized debugging tools in practice [8],

and the literature is largely silent on what techniques are ef-

fective for debugging concurrent software. Our work seeks

to understand the strategies that successful programmers

use when debugging concurrent software and to develop

tools and techniques to support those strategies.

A recent study [4] found that successful programmers

modeled the potential behaviors of concurrent programs to

explain how errors occurred. Such models described thread
interactions, scenarios of multithreaded program behavior,

such that the instructions executed by the threads form a se-

quence and are interleaved in accordance with some thread

schedule.

Although modeling was associated with success on de-

bugging tasks, the study also found limitations. Some pro-

grammers who engaged in modeling were unable to pro-

duce a model that explained the failure, thus limiting their

success on task. Model complexity may have been an im-

portant factor in such cases. Programmers in the study

created models predominantly internally—that is, “in their

heads.” Modeling in this manner may have strained the

programmers’ cognitive resources, such as working mem-
ory [1], and thus hampered their ability to reason about how

the execution of program instructions affects the system’s

state throughout the interaction.

Research in distributed cognition and external cogni-

tion offers insight into how external representations can

help with such information processing tasks. When work-

ing on such tasks, representing relevant information exter-
nally—that is, using the external environment—can provide

cognitive benefits, such as reducing cognitive load [15].

For example, information visualization can help a human

offload information processing to the visual representa-

tion [5]. However, the form that an external representa-

tion takes can influence how helpful the representation is

in problem solving [21]. Even different isomorphic rep-
resentations—that is, representations that encode the same

information—can cause very different cognitive behaviors.

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI

33

2010 IEEE Symposium on Visual Languages and Human-Centric Computing

978-0-7695-4206-5/10 $26.00 © 2010 IEEE

DOI 10.1109/VLHCC.2010.14

33

Thus, when proposing a new diagram notation, we must an-

swer questions about the benefits of diagram construction

for this task, and must consider the effect of time on task. Is

this notation useful for this task? Might the time required to

construct the diagram be better spent in just thinking about

the problem?

In this paper, we investigate how creating external rep-

resentations in the form of UML sequence diagrams [14]

influences a programmer’s ability to reason about the po-

tential behaviors of a concurrent program. In particular, we

seek to address one primary and two subsidiary research

questions:

RQ1: To what extent does creating sequence diagrams im-

prove a programmer’s ability to reason about the po-

tential behaviors of a buggy multithreaded program?

RQ2: Does a relationship exist between the complexity of

thread interactions and the effect of externalizing on

reasoning ability?

RQ3: Does a relationship exist between the quality of a

diagram and the effect of externalizing on reasoning

ability?

We focus on the UML sequence diagram notation because

it is well known and widely used.

This paper makes the following contributions: (1) a con-

trolled experiment investigating the use of extended UML

sequence diagrams for reasoning about concurrent soft-

ware; (2) a multithreaded extension to the UML sequence

diagram notation; and (3) formal metrics for assessing the

complexity of thread interactions.

The remainder of the paper is organized as follows. Sec-

tion 2 provides background on external representations of

thread interactions and presents our multithreaded sequence

diagrams. Section 3 presents formal definitions for our

complexity metrics. Section 4 describes our experimental

method. Section 5 presents the results of our experiment.

Section 6 discusses threats to validity. Finally, Section 7

closes the paper with discussion and conclusions.

2. Representing Thread Interactions
Although UML sequence diagrams are widely used for

representing object interactions, we found the notation in-

adequate for expressing some intricacies of thread interac-

tions. In this section, we describe the UML sequence di-

agram notation and our extension to address the inadequa-

cies. Finally, we contrast our notation with other relevant

notations and visualizations from the literature.

UML sequence diagrams. Sequence diagrams are a pop-

ular notation in the Unified Modeling Language [14] for

representing scenarios of execution by displaying the se-

quence of messages exchanged between objects. Fig. 1 de-

picts a sequence diagram. The vertical dimension repre-

sents time, which proceeds down the page. Each object is

activation

return message
object state

lifeline

passive object

obj1 : Type1 obj2 : Type2

sd Example

operation1(arg1, arg2)

rval1

active object

call message

var1 = 0

var1 = 100

Figure 1. Example of a UML sequence diagram.
The labels around the perimeter are for exposition
and are not part of the diagram.

drawn in a vertical column that contains a head symbol and

a vertical lifeline. Fig. 1 depicts an interaction between two

objects: obj1 and obj2. The notation defines two kinds of

objects: active objects, such as obj1, which have an asso-

ciated thread of control, and passive objects, such as obj2,

which do not. An active object is distinguished by a double

line on each side of its head symbol. An object’s lifeline

may be adorned with object states to denote changes in the

state of the object. An object state appears as a rounded

rectangle that contains a description of the new state (typ-

ically in the form of a predicate). For example, the obj2
attribute var1 initially has the value 0.

A message is shown as an arrow from the lifeline of one

object to that of another. An arrow with a solid line de-

picts a call to an operation and may be adorned with the

operation name and arguments. For example, obj1 calls the

operation operation1 on obj2, passing arg1 and arg2 as ar-

guments. Activations represent the execution of methods

and are depicted as bars that overlap the lifelines. For ex-

ample, during the activation of operation1, var1 becomes

100. An active object, such as obj1, executes continuously

throughout its lifetime, so an activation bar always covers

its lifeline. A message arrow with a dashed line depicts a

return and may be adorned with a return value. In the ex-

ample, rval1 is returned upon the completion of operation1.

The sequence diagram notation lacks convenient features

for expressing properties of multithreaded systems, such

as when each thread runs and blocks, and when context

switches occur. To address the lack of support for multi-

threading in standard UML, we designed a multithreaded

extension to the sequence diagram notation.

Multithreaded extension to UML sequence diagrams.
Our extension has several new notations to represent thread

state. Fig. 2 depicts an example that uses our extension.

A hatched activation bar denotes that the thread associated

with the activation is in the blocked state. A non-hatched

activation bar denotes that the thread is in the ready or run-

ning state. A thread name (L, H1, or H2) along the left side

of the diagram denotes the thread that is running. A hori-

3434

H1 H2

sd scenario 1

L

L

H2

L

H2

H1

submit(r)

retrieve()

r

retrieve()

initial state

ready or
running

blocked

signal
condition

mutex acquire

mutex release

concurrent
activation

end

concurrent
begin

activation

condition wait

context switch

running thread

mutex state

condition state

rqueue

lock = (0, { })

nonempty = { }

waiters = 0

queue = ()

lock = (0, { })

lock = (H2, { })

queue = (r)

waiters = 1

nonempty = { H1 }

lock = (0, { })
nonempty = { }

queue = ()
waiters = 0

lock = (H1, { })

lock = (L, { })

lock = (L, { H2 })

Figure 2. Multithreaded sequence diagram.

zontal line that crosscuts the entire diagram denotes a con-

text switch, a point when the running thread changes. A

branch of an object’s lifeline denotes a concurrent activa-

tion (e.g., see rqueue’s lifeline following the first context

switch in Fig. 2). When a concurrent activation ends, the

branch merges back into the lifeline.

We leverage object states to denote the effects of opera-

tions on mutexes and condition variables. The pair (h,W)
denotes the state of a mutex where h is the holder of the mu-

tex (0 indicates that the mutex is not held), and W is the set

of threads waiting on the mutex. For example, in Fig. 2 the

first object state after L calls submit (i.e., lock = (L,{})) indi-

cates that L has acquired the mutex lock and no threads are

waiting for the lock. The object state immediately before

L returns from submit indicates that L has released the lock

and H2 has acquired it. The state of a condition variable is

denoted by a set of waiting threads. For example, the object

state immediately before the first context switch indicates

that H1 begins waiting on the condition variable nonempty.

This object state also depicts the release of lock by H1.

Other visualizations. Approaches to the visualization of

thread interactions can be classified as either static or dy-

namic. Static visualizations involve fixed images, whereas

dynamic visualizations involve animations. Our current

work focuses on static visualizations.

Schader and Korthaus [16] described features of UML

that support the representation of concurrency, with an em-

phasis on Java thread behavior. They describe how the style

of arrow used in sequence diagrams can convey informa-

tion about the type of communication between objects, the

use of staggered activations to represent a series of itera-

tive calls, and the use of labeling, such as “∗||[i := 1..n],”
to denote n methods executing in parallel. They state that

conditional branches [14] may also denote concurrency if

the guard conditions are not mutually exclusive. In contrast

to our extension, they offer no conventions for explicitly

denoting thread states, such as blocking, or the state of syn-

chronization mechanisms, such as mutexes.

Others have extended sequence diagrams to better sup-

port concurrent software. Mehner and Wagner [11, 12]

added shading conventions on activations to indicate when,

and within which activation, threads are ready or run-

ning. In contrast to our extension, their extension omits

some thread information, such as which thread is run-

ning and when context switches occur. Their extension is

geared toward Java and includes calls to a distinguished

synchronize operation. It depicts when threads block on

entry into methods, which makes deadlocks easier to recog-

nize. However, unlike our extension, theirs abstracts away

details, such as when locks are released during condition

synchronization.

Xie et al. [19, 20] developed a concurrent extension to

sequence diagrams that focuses on the depiction of monitor

objects. In their extension, the color (green, yellow, red) of

activation bars indicates thread status (running, ready, sus-

pended); object states indicate monitor status (locked, un-

locked); and comments indicate the state of variables within

a monitor. Thread interleavings and context switches can

be easily viewed by following the trace of green activation

bars. However, their use of color makes the diagram incon-

venient to draw by hand with a pen or pencil, and precludes

the use of colors to distinguish the activations of different

threads—a feature that our extension supports. Further-

more, their extension does not explicitly represent mutexes

or condition variables, nor the threads waiting on locks and

condition variables, as we do in our extension.

Newman et al. [13] proposed two diagramming notations

to statically visualize concurrency-related design decisions.

Their regional state hierarchy diagram extends the UML

class diagram to depict the structure of lock-state associ-

ations. Their method concurrency diagram extends a call

graph to provide details on calls to and data protected by

3535

mutexes and condition variables. Although the Newman

diagrams do not model thread interactions explicitly, they

provide supporting information that could be useful in con-

junction with, for instance, a sequence diagram.

The literature contains numerous dynamic visualiza-

tions of thread interactions. Traditional parallel debuggers

(e.g., [10]) provide a rudimentary visualization by display-

ing a debugger window for each thread. Other visualiza-

tion tools show the status of various properties as a multi-

threaded program executes. Leroux et al. [7] developed a

tool that dynamically elaborates a standard UML sequence

diagram, and as the diagram grows, the tool also displays

the current state of each thread. Although static visualiza-

tions are our current focus, we plan to investigate dynamic

visualizations in future work.

3. Assessing Thread-Interaction Complexity
RQ2 explores the relationship between the complexity

of thread interactions and the effect of externalizing; how-

ever, the literature offers no metrics for assessing interac-

tion complexity. We have identified three properties that we

suspect contribute to the complexity of a thread interaction:

(1) the number of threads involved in the interaction, (2) the

number of times threads block or unblock, and (3) the num-

ber of context switches. In this section, we define rigorous

metrics for these properties in terms of labeled transition

system (LTS) models of multithreaded programs.

Modeling multithreaded programs as LTSs. LTSs have

been widely used to model concurrent programs [9]. In such

models, states encode limited history and actions represent

atomic program instructions. For example, Fig. 3 depicts an

LTS model, which we refer to as 2ThreadMutex, of a multi-

threaded program that comprises two threads, t1 and t2, and

one mutex. Starting from the initial state, s0, each thread

infinitely acquires and releases a shared lock. Given an LTS

model of a multithreaded program, a thread interaction can

be modeled as a trace, which comprises a sequence of states

and actions produced by executing the model. For example,

the following trace, 2TMTrace, represents one possible ex-

ecution of the 2ThreadMutex model:

s0
t1.acquire−−−−−−−−−−−−−→ s1

t2.tryAcquireBlock−−−−−−−−−−−−−→ s3

t1.releaseUnblockT2−−−−−−−−−−−−−→ s2
t2.release−−−−−−−−−−−−−→ s0

Methods for producing a faithful LTS model from a mul-

tithreaded program are well-documented (e.g., [9]). To de-

fine our metrics, we require a faithful LTS model with two

additional properties. First, each transition in the model

must represent execution of one and only one thread. Sec-

ond, blocking and unblocking actions by threads must be

modeled explicitly. The 2ThreadMutex model possesses

these properties. Each action models the execution of ei-

ther thread t1 or t2. Also, the actions t1.tryAcquireBlock and

t2.acquiret1.tryAcquireBlock t1.acquire t2.tryAcquireBlock

t2.releaseUnblockT1 t1.releaseUnblockT2

t2.release t1.release

unlock
S1:

t1 holds
t1 holds,
t2 blocks

S3:S4:

t1 blocks
t2 holds, S2:

t2 holds
S0:

Figure 3. LTS model of a program in which two
threads acquire and release a shared lock.

t2.releaseUnblockT2 explicitly model t1 entering and exit-

ing the blocking state, respectively. Thread t2 executes sim-

ilar blocking/unblocking actions.

Formal definitions. Let States be the universal set of

states, Threads be the universal set of threads, and Actions
be the universal set of actions. A finite multithreaded LTS P
is a 6-tuple 〈S,q,T,A,Θ,Δ〉 where S ⊆ States is a finite set

of states; q ∈ S indicates the initial state of P; T ⊆ Threads
is a finite set of threads; A ⊆ Actions is a finite set of ac-

tions; Θ⊆ A×T is a total function that maps each action to

the thread that executes the action; and Δ ⊆ S×A× S is a

transition relation that maps a source state and action pair to

a target state. For example, the following 6-tuple represents

the 2ThreadMutex LTS:

S = { s0,s1,s2,s3,s4,s5 } q = s0 T = { t1, t2 }
A = { t1.acquire, t2.acquire, . . .}
Θ = { (t1.acquire, t1), (t1.tryAcquireBlock, t1), . . . }
Δ = { (s0, t1.acquire, s1), (s0, t2.acquire, s2), . . . }

We define a trace R of an LTS P to be a tuple

〈RS,RA〉 where RS is a sequence over S; RA is a sequence

over A such that |RA| = |RS| − 1; RS(1) = q; and ∀i ∈
{1 . . . |RA|},(RS(i),RA(i),RS(i + 1)) ∈ Δ. For instance, the

following represents 2TMTrace:

RS = 〈 s0,s1,s3,s2,s0 〉
RA = 〈 t1.acquire, t2.tryAcquireBlock,

t1.releaseUnblockT2, t2.release 〉

Given a trace R of P and a set of interesting actions

B ⊆ A, we define the following sets: (1) The set of threads

involved in R, threadSet(R) =
S

i Θ(RA(i)); (2) the set of

indices of R at which an action in B occurs, occursB(R) =
{i|RA(i) ∈ B}; and (3) the set of indices of R at which

a context switch occurs threadSwitch(R) = {i|Θ(RA(i)) 	=
Θ(RA(i−1))}.

Using these sets, we define three metrics for a given trace

R of an LTS P: (1) The number of threads involved in R is

|threadSet(R)|; (2) the number of times threads block or

unblock in R is |occursBlock(R)∪ occursUnblock(R)|, where

Block⊆ A and Unblock⊆ A denote the sets of block actions

and unblock actions, respectively; and (3) the number of

3636

context switches that occur in R is |threadSwitch(R)|. For

example, in 2TMTrace the number of threads is 2, the num-

ber of blocks and unblocks is 2, and the number of context

switches is 3. Given a multithreaded LTS model, these met-

rics are trivial to compute for any trace R.

4. Experimental Method
The primary goal of our experiment was to investigate

the extent to which creating UML sequence diagrams im-

proves programmers’ ability to reason about concurrent

program executions (RQ1). In this section, we provide the

details of our experimental method.

Participants. The participants comprised 44 undergrad-

uate CS students enrolled in a software design course at

Michigan State University. All participants had previously

completed at least one course that emphasized C++ pro-

gramming. The software design course that participants

were taking covered principles of good design, design pat-

terns, and object-oriented programming in C++. We did

not collect data on concurrent-programming experience, but

measured concurrent-programming ability instead with a

prequestionnaire (described next).

Materials. The study materials comprised a prequestion-

naire and an experiment questionnaire (full versions in [3]).

The prequestionnaire contained 8 questions that mea-

sured ability to reason about the potential behaviors of a

multithreaded program. To answer the questions correctly

required an understanding of the multithreaded program-

ming model.

The experiment questionnaire, like the prequestionnaire,

measured the ability to reason about the potential behav-

iors of a multithreaded program, but it involved more com-

plex thread interactions. The questions referred to a small

(56 SLOC) multithreaded server program, which we seeded

with a defect. The program simulates an e-business server

that accepts and processes requests from remote clients. It

comprises multiple threads, each of which plays one of two

distinct roles. A single listener thread monitors the network,

listening for client requests and placing them on a request

queue as they arrive. Two handler threads take requests

from the request queue and simulate the processing of the

requests. A race condition allows a handler to erroneously

invoke the pull operation on an empty request queue.

The questionnaire presented four different scenarios,

each followed by a question asking whether the scenario is

consistent with the code and whether the program would en-

ter an error state during the scenario. Fig. 4 reproduces one

of the scenarios from the questionnaire. (The multithreaded

sequence diagram in Fig. 2 represents this scenario.) The

scenario elides many details of the interaction; however, it

contains enough detail to be unambiguous.

Scenario: Assume there is a listener thread, L, and two handler
threads, H1 and H2, and that

• queue is empty,
• waiters is zero, and
• all the threads are at the beginning of their respective control

loops.

Consider the scenario where:

(1) H1 calls retrieve and blocks inside the operation.
(2) L calls submit (with argument r) and is preempted at line 17.
(3) H2 calls retrieve and blocks inside the operation.
(4) L returns from submit and is preempted at the top of its con-

trol loop. In the process, H1 transitions to the ready state.
(5) H2 returns from retrieve and is preempted at the top of its

control loop.

Question: Is the scenario consistent with the code? If so, does
the scenario result in the program entering an error state? (Select
one of the following.)

(a) Consistent & No Error: The scenario is consistent with the
code and does not result in the program entering an error
state.

(b) Consistent & Error: The scenario is consistent with the
code and does result in the program entering an error state.

(c) Inconsistent: The scenario is not consistent with the code.

Figure 4. A scenario from the experiment ques-
tionnaire.

Experiment design. Our experiment had one indepen-

dent variable—the use of external representations; two

treatments—the exclusive use of internal representations

(internal) and the use of external representations in the form

of sequence diagrams (external). These treatments were in-

spired by a prior study [4] which found that, despite a hav-

ing pencil and paper readily at hand, programmers seldom

represented thread interactions externally, instead prefer-

ring to reason about such interactions “in their heads.” Our

experiment also had one dependent variable—the ability to

reason correctly about thread interactions (C). We measured

C as the proportion of correct answers on the experiment

questionnaire (i.e., as a score of 0, 0.25, 0.5, 0.75, or 1.0).

Our null hypothesis (H0) was that externalizing has no effect

on ability to reason (C(external) = C(internal)). Our alter-

native hypothesis (Ha) was that externalizing yields better

scores on the questionnaire than using only internal repre-

sentations (C(external) > C(internal)). We did not antici-

pate the result C(external) < C(internal) because the exter-

nal group also had their internal facilities. If we observed

such a result, we would assume it was due to random chance

or a defect in the experiment. To test our hypotheses, we

used a between-subjects design (i.e., each participant re-

ceived one of the treatments).

Procedure. Our study comprised three 80-minute ses-

sions spread over two weeks. During the first two sessions,

participants received a two-part lecture on multithreaded

3737

Table 1. Questionnaire results.

Question
External (N = 22) Internal (N = 22)

Diff in M
M SD M SD

1 0.59 0.50 0.32 0.48 0.27

2 0.64 0.49 0.14 0.35 0.50

3 0.55 0.51 0.45 0.51 0.09

4 0.41 0.50 0.32 0.48 0.09

Overall 0.55 0.31 0.31 0.27 0.24

programming in C++. Part of the lecture covered our mul-

tithreaded sequence-diagram extension. During the last 30

minutes of the second session, participants filled out the pre-

questionnaire. We collected and graded 50 completed pre-

questionnaires. Throughout the study, we anonymized all

materials, replacing participant names with ID numbers.

Between the second and third sessions, we used the pre-

questionnaire scores to partition the participants into two

balanced treatment groups: the external group and the in-
ternal group. Six of the original 50 participants dropped out

of the study, but the attrition did not unbalance the groups:

the final groups were of equal size (22) and had equal pre-

questionnaire means (0.494). The standard deviation varied

only slightly between the groups (external = 0.260; internal

= 0.236).

For the final session, the treatment groups met in sepa-

rate rooms and filled out the experiment questionnaire. We

asked the external group to draw a sequence diagram of

each scenario before answering questions about that sce-

nario. In contrast, we asked the internal group to answer

the questions “in their heads”—that is, without drawing pic-

tures or writing notes. We collected 44 completed question-

naires along with all drawings and notes made by partici-

pants. An inspection of the internal group’s materials re-

vealed no evidence of externalizing.

5. Results
In this section, we present results of our experiment.

First, we assess the extent to which externalizing models of

thread interactions with multithreaded sequence diagrams

improves ability to reason correctly about the potential be-

havior of a buggy multithreaded program (RQ1). Next, we

analyze the complexity of the interactions to see if there

is a relationship with the differences in scores of the two

treatment groups (RQ2). Last, we analyze the quality of di-

agrams produced by the external group to see if there is a

relationship with performance on the questionnaire (RQ3).

Effects of externalizing (RQ1). Table 1 and Fig. 5 depict

the descriptive statistics for the experiment questionnaire.

Table 1 summarizes the results for the questions individu-

ally as well as in the aggregate.

To test our hypothesis Ha, we used a two-sample t test

F
re

qu
en

cy

 6

 4

 2

 0

 8

 10

 12

0.00 0.25 0.50 0.75 1.00

Experiment Questionnaire Score

Internal Group
External Group

Figure 5. Frequency distribution of overall scores.

Figure 6. Box plot of scores. For the inter-
nal group, the median equaled the lower-quartile
boundary. The internal group also contained one
outlier with a score of 1.0.

(α = 0.05) that compared overall questionnaire scores in

external and internal conditions. We used a one-tailed t test

because (1) we predicted that the external group would have

a higher mean prior to executing the study, and (2) if the in-

ternal group produced a higher score, we would attribute the

difference to random chance. The external group scored sig-

nificantly higher than the internal group (t(40.89) = 2.71,

p = 0.005).1 Fig. 6 depicts the difference as a box plot.

Based on these results, we accepted our alternative hypoth-

esis Ha that creating multithreaded sequence diagrams im-

proves ability to reason about thread interactions.

Interaction complexity (RQ2). Looking at the individual

questions, the external group scored higher than the internal

group on every question; however, the effect of externaliz-

ing appeared to be stronger on some questions (1 and 2)

than others (3 and 4). We conducted a post-hoc analysis

to check for a relationship between this effect and interac-

tion complexity. In particular, we applied the three met-

rics from Section 3 to the four scenarios of interaction from

the questionnaire. We first modeled the program from the

questionnaire as an LTS in the FSP language [9]. The re-

sulting model had 1097 states and 2416 transitions (details

in [3]). Next, we computed a trace that represented each

1As a validity check, we also computed the (nonparametric) Wilcoxon

rank-sum test (Z = 2.5741, p = 0.005), which confirmed the t-test results.

3838

Table 2. Complexity measurements over the ques-
tionnaire scenarios. (All involved 3 threads.)

Scenario Transitions Context Switches (Un)Blocks

1 22 4 4

2 11 3 4

3 15 2 1

4 13 2 1

interaction using the LTSA tool.2. For each trace, we com-

puted the number of threads involved, the number of context

switches, and the number of block/unblock actions. We also

computed the total number of transitions, which is relevant

to complexity but is not specific to concurrency.

Our sample was too small for statistical analysis; how-

ever, Table 2 shows that the number of context switches and

block/unblock actions were noticeably higher for questions

1 and 2 than for questions 3 and 4. It is possible that these

differences could account for the differences in the effect

of externalizing because a few context switches or block-

/unblock actions can dramatically increase the amount of

program state that a person must keep track of to reason

correctly about an interaction. We could not observe a re-

lationship between the number of threads and the effect of

externalizing because the number did not vary (each ques-

tion involved 3). Although the number of transitions var-

ied between scenarios, there was no apparent relationship

between the metric and the effect of externalizing. These

results suggest a relationship between interaction complex-

ity and the effect of externalizing. In particular, the effect of

externalizing appears to increase with the number of context

switches and block/unblock actions.

Diagram quality (RQ3). To address RQ3, we checked

for a correlation between diagram quality and questionnaire

score. One researcher evaluated the diagrams using a de-

tailed rubric (given in [3]), which emphasized not only the

correctness of a diagram, but also the level of detail. For

example, diagrams that did not explicitly represent state

changes to the mutex objects received a lower score than

those that did. The rater assigned 1 point for each fea-

ture present and correct in a diagram (9 or 10 max de-

pending on the question). He did not require participants

to use our sequence-diagram extension, and did not deduct

points for incorrect or non-standard syntax. Furthermore,

he did not know the participants’ questionnaire scores or

who each participant was; only numeric IDs appeared on

the diagrams. Each participant received an overall diagram

quality score that was the mean of the percentage scores on

the individual diagrams.

Our analysis revealed a significant correlation between

diagram quality and questionnaire score (Pearson: r(20) =

2By design, one such trace existed for each question

Figure 7. Plot of the relationship between diagram
quality and questionnaire score.

0.692, p = 0.0004). In particular, as diagram quality in-

creased, the ability to reason about models also increased.

Fig. 7 depicts this relationship graphically.

6. Threats to Validity
Internal validity is the degree to which conclusions can

be drawn about the causal effect of independent variables on

the dependent variable. One threat to internal validity was

that participants may have improved their mastery of con-

current programming between the time that they completed

the prequestionnaire and the experiment questionnaire—

in fact, simply completing the prequestionnaire may have

caused them to learn. We minimized this threat by keep-

ing the time between the prequestionnaire and experiment

questionnaire short (i.e., less than a week). Another threat

to internal validity could have arisen if one group or the

other resented either the lack of diagrams or the additional

work of creating them, and underperformed. We addressed

this threat by administering the experiment questionnaire to

the groups simultaneously in separate rooms.

Construct validity is the degree to which the independent

and dependent variables accurately measure the concepts

they purport to measure. A threat to construct validity arose

because the theoretical construct of reasoning ability is dif-

ficult to operationalize. Our questions measured aspects of

reasoning ability that we found interesting; however, there

may be aspects we did not measure.

External validity is the degree to which the results of the

research can be generalized to the population under study

and other research settings. Threats to external validity

arose because our participants were students and the pro-

grams and scenarios were kept small to meet the time con-

straints of our study. In future work, we will address the

threats to external validity by conducting additional studies

that involve a wider range of subjects and contexts. Obtain-

ing professional participation is difficult and costly. To ad-

dress this, we will use different types of studies (e.g., case

studies) that allow for small samples and large-scale arti-

facts in exchange for reduced control of variables. This ap-

3939

proach is based on the idea that the weaknesses of one em-

pirical study can be addressed by the strengths of another

study [18]. If subsequent studies confirm our results, then

we can have confidence that our findings generalize.

7. Discussion and Conclusions
In conclusion, our experimental results demonstrated

that creating external representations in the form of mul-

tithreaded sequence diagrams substantially improved pro-

grammers’ ability to reason correctly about a buggy mul-

tithreaded program (RQ1). Participants who created se-

quence diagrams scored nearly a full standard deviation

higher than those who used only internal representations.

The difference was statistically significant, and we were

able to reject the null hypothesis (p = 0.005).

Our results also suggest a relationship between interac-

tion complexity and the benefit of creating sequence dia-

grams (RQ2). We observed that the effect of externaliz-

ing was noticeably greater for the interactions with greater

numbers of context switches and block/unblock operations.

This observation supports the idea that creating sequence di-

agrams alleviates the cognitive load associated with reason-

ing about complex thread interactions. It is an open question

whether there is a threshold of complexity beyond which

programmers tend to encounter cognitive overload.

Lastly, our results show a strong relationship between

diagram quality and reasoning ability (RQ3). Specifically,

we found a significant positive correlation between diagram

quality and questionnaire scores (p = 0.0004). This finding

suggests that one way to improve reasoning ability would

be to encourage better diagram quality.

The findings of our study suggest that a tool for model-

ing interactions could aid debugging. Such a tool could pro-

vide several important features to help users create highly-

detailed and correct sequence diagrams. It could track the

synchronization state of the threads and objects to both aid

comprehension and detect errors in the diagram. It could

enable the user to specify synchronization actions (e.g., ac-

quiring a mutex), and automatically adjust the synchroniza-

tion state accordingly. By statically analyzing the source

code, the tool could automatically check for consistency

with the model. We believe this tool could benefit not only

novices learning concurrent programming, a subject known

to be difficult [2], but also expert software developers.

Our study points to several promising directions for fu-

ture work: experimentally comparing our sequence diagram

notation with other notations, developing a modeling tool to

support debugging, empirically validating and refining our

interaction-complexity metrics, and generalizing our find-

ings by studying professional software engineers working

on large-scale software. Ultimately we aim to design a suite

of highly-usable debugging tools for real-world developers

of concurrent software.

References
[1] A. D. Baddeley. Human Memory: Theory and Practice. Erl-

baum, 1990.
[2] Y. Ben-David Kolikant. Learning concurrency: Evolution

of students’ understanding of synchronization. Int. J. Hum.-
Comput. Stud., 60(2):243–268, 2004.

[3] S. D. Fleming. Successful Strategies for Debugging Con-
current Software: An Empirical Investigation. PhD thesis,

Michigan State Univ., East Lansing, MI, 2009.
[4] S. D. Fleming, E. Kraemer, R. E. K. Stirewalt, S. Xie, and

L. K. Dillon. A study of student strategies for the corrective

maintenance of concurrent software. In Proc. ICSE, pages

759–768, 2008.
[5] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes)

worth ten thousand words. Cognitive Sci., 11:65–100, 1987.
[6] T. LeBlanc and J. Mellor-Crummey. Debugging parallel pro-

grams with instant replay. IEEE Trans. Comput., 36:471–

482, 1987.
[7] H. Leroux, A. Réquilé-Romanczuk, and C. Mingins. JA-

COT: A tool to dynamically visualise the execution of con-

current Java programs. In Proc. PPPJ, 2003.
[8] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:

A comprehensive study on real world concurrency bug char-

acteristics. In Proc. ASPLOS, pages 329–339, 2008.
[9] J. Magee and J. Kramer. Concurrency: State Models and

Java Programs. Wiley, 2nd edition, 2006.
[10] C. E. McDowell and D. P. Helmbold. Debugging concurrent

programs. ACM Comput. Surv., 21(4):593–622, 1989.
[11] K. Mehner. JaVis: A UML-based visualization and debug-

ging environment for concurrent Java programs. In Software
Visualization, pages 163–175. 2002.

[12] K. Mehner and A. Wagner. Visualizing the synchronization

of Java-Threads with UML. In Proc. VL, pages 199–206,

2000.
[13] E. Newman, A. Greenhouse, and W. L. Scherlis.

Annotation-based diagrams for shared-data concurrency. In

Proc. Workshop Concurrency Issues in UML, 2001.
[14] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-

eling Language Reference Manual. Addison, 2004.
[15] M. Scaife and Y. Rogers. External cognition: How do graph-

ical representations work? Int. J. Human-Computer Studies,

45(2):185–213, 1996.
[16] M. Schader and A. Korthaus. Modeling Java Threads in

UML. In The Unified Modeling Language: Technical As-
pects and Applications, pages 122–143. Physica, 1998.

[17] M. Weiser. Programmers use slices when debugging. Com-
mun. ACM, 25(7):446–452, 1982.

[18] M. Wood, J. Daly, J. Miller, and M. Roper. Multi-method

research: An empirical investigation of object-oriented tech-

nology. J. Syst. Softw., 48(1):13–26, 1999.
[19] S. Xie, E. Kraemer, and R. E. K. Stirewalt. Design and eval-

uation of a diagrammatic notation to aid in the understand-

ing of concurrency concepts. In Proc. ICSE, pages 727–731,

2007.
[20] S. Xie, E. Kraemer, and R. E. K. Stirewalt. Empirical evalu-

ation of a UML sequence diagram with adornments to sup-

port understanding of thread interactions. In Proc. ICPC,

pages 123–134, 2007.
[21] J. Zhang and D. A. Norman. Representations in distributed

cognitive tasks. Cognitive Sci., 18:87–122, 1994.

4040

