
CodeDeviant: Helping Programmers Detect Edits
That Accidentally Alter Program Behavior

Austin Z. Henley
Department of Electrical Engineering & Computer Science

University of Tennessee
Knoxville, Tennessee 37996-2250

azh@utk.edu

Scott D. Fleming
Department of Computer Science

University of Memphis
Memphis, Tennessee 38152-3240

Scott.Fleming@memphis.edu

Abstract—In this paper, we present CodeDeviant, a novel
tool for visual dataflow programming environments that as-
sists programmers by helping them ensure that their code-
restructuring changes did not accidentally alter the behavior of
the application. CodeDeviant aims to integrate seamlessly into a
programmer’s workflow, requiring little or no additional effort
or planning. Key features of CodeDeviant include transparently
recording program execution data, enabling programmers to
efficiently compare program outputs, and allowing only apt com-
parisons between executions. We report a formative qualitative-
shadowing study of LabVIEW programmers, which motivated
CodeDeviant’s design, revealing that the programmers had con-
siderable difficulty determining whether code changes they made
resulted in unintended program behavior. To evaluate Code-
Deviant, we implemented a prototype CodeDeviant extension for
LabVIEW and used it to conduct a laboratory user study. Key
results included that programmers using CodeDeviant discovered
behavior-altering changes more accurately and in less time than
programmers using standard LabVIEW.

I. INTRODUCTION

A particularly difficult activity for programmers is under-
standing how their changes to code affect other parts of
the program. Because software is made up of many inter-
related code modules, a small change in one module can
have cascading effects throughout the rest of the program.
Moreover, code is often missing explicit information about
the relationships between code modules (known as hidden
dependencies [15]). To understand the full impact of a code
change, programmers must possess a correct mental model of
the source code. In fact, researchers have generally found that
people require a rich mental model before they can organize
information on an even less complex task, such as choosing
the best camera to purchase [20]. However, forming such
mental models about programs is a notoriously error-prone and
time-consuming task due to the sheer size and complexity of
modern software [33]. This is further complicated by the fact
that programmers’ information needs are rapidly changing as
they work through programming tasks [34], [35].

In this paper, we focus on a large class of code changes,
known as refactorings, specifically in the context of visual
programming environments. Refactoring aims to improve the
design of a program by changing the structure of its code with-
out altering its behavior [12], [31]. It has become a ubiquitous
practice in software development [19], [28]. Surveys of pro-

grammers have indicated that programmers find refactoring to
be an important part of the development process [7], and they
believe it provides a variety of benefits, including improving
readability and extensibility [19]. Studies of both textual and
visual programming languages have provided some support for
these views, empirically demonstrating the benefits refactoring
can provide. In particular, studies of textual languages have
shown that refactoring improved maintainability [21] and
reusability [27] of code. Although little work has been done
to study refactoring in visual languages, one study did find
that programmers preferred code that had been refactored to
remove code smells [43].

Despite refactoring’s popularity and benefits, it is often
difficult for programmers, both of textual and visual lan-
guages, to perform. Most programming environments for
textual languages provide features for automated refactorings,
but programmers rarely use them [13], [19], [28], [30], [44].
Several reasons have been cited for the underutilization of such
features. The tools are not trusted by programmers [44]; they
provide unhelpful error messages [28]; and they have even
been found to introduce bugs [4], [10], [39], [41], [44], [46].
However, refactoring manually is a tedious process that has
also been found to be error prone in textual languages [13] as
well as in visual languages [17].

A particularly difficult aspect of refactoring observed among
textual-language programmers is ensuring that code changes
did not alter the behavior of the program. Best practices
suggest the use of test suites, which allow programmers to
define correct program behavior and to be alerted whenever
a code change causes a test to fail. Creating such software
tests is a common approach to ensuring software quality in
contemporary software development. However, refactorings
may break the code that tests the software [24], [36], [39].
Moreover, software tests have also been found to be inad-
equate at finding refactoring errors [37], and having tests
available during refactoring did not improve the quality of the
refactorings produced by programmers [45]. To address these
shortcomings of software testing, researchers have recently
proposed tools to detect manual refactorings, automatically
complete them, and validate their correctness (e.g., BeneFac-
tor [13], GhostFactor [14], and WitchDoctor [11]). However,
these tools do not support all types of refactorings.

978-1-5386-4235-1/18/$31.00 c©2018 IEEE

Scott Fleming
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.�

To better understand the challenges of refactoring in visual
languages, we conducted formative investigations of program-
mers of the visual dataflow language, LabVIEW, engaged
in refactoring, and found that, similar to textual-language
programmers, they also have considerable difficulties in at-
tempting to validate their code changes. In particular, the
programmers reported that they often introduce bugs unin-
tentionally while refactoring. To cope with this issue, these
programmers followed tedious strategies to detect behavior-
altering changes, such as writing down program output on
a piece of paper prior to the code change. An analysis
of the programmers’ refactorings found that not only were
buggy refactorings common, but that they did indeed alter the
program output unintentionally.

To address these issues of detecting behavior-altering
changes, we propose CodeDeviant, a novel tool concept for
visual programming language environments. The CodeDeviant
tool compares the program output with a previous execution to
determine whether the behavior has been altered. CodeDeviant
aims to integrate seamlessly into programmers’ workflows by
not requiring any upfront effort (unlike creating software tests).
Key features of CodeDeviant include transparently recording
program execution data, enabling the programmer to efficiently
compare program outputs, and allowing only apt comparisons
between executions.

To evaluate the success of our CodeDeviant design, we
implemented a prototype CodeDeviant extension for Lab-
VIEW and conducted a laboratory study involving 12 profes-
sional LabVIEW programmers. The evaluation compared our
CodeDeviant-extended LabVIEW with standard LabVIEW for
two key criteria: how accurately the programmers could spot
code changes that changed a program’s execution behavior and
how quickly the programmers could make such decisions.

This work makes the following contributions:
• The findings of formative investigations of programmers

refactoring in LabVIEW showing, among other things, the
difficulty that programmers had in verifying that their code
edits did not alter program behavior.

• A novel tool design based on our formative findings, Code-
Deviant, for efficiently detecting behavior-altering changes
while integrating seamlessly into programmer workflows.

• A prototype of CodeDeviant implemented as an extension
to the LabVIEW visual dataflow programming environment.

• The results of a lab evaluation of CodeDeviant showing that
programmers more accurately and more quickly identified
behavior-altering code changes with CodeDeviant-extended
LabVIEW than with standard LabVIEW.

II. BACKGROUND: VISUAL DATAFLOW LANGUAGES

In this paper, we focus on programmers refactoring visual
dataflow code. Unlike textual programming languages (e.g.,
Java), visual dataflow code consists of boxes (functions) and
wires (values). For example, Fig. 1 depicts a small visual
dataflow program. Even though visual dataflow languages have
a drastically different syntax than textual languages, they have
many of the same features, such as modularity.

Fig. 1. LabVIEW block-diagram editor. Editors have (A) a palette, along
with (B) debugging and other controls. The pictured editor has open a code
module with (C) multiple inputs and (D) one output.

In particular, we focus on LabVIEW, a commercially avail-
able visual dataflow programming environment that is one
of the most widely used visual programming languages [48].
LabVIEW programs are composed of code modules called
Virtual Instruments (VIs). Fig. 1 illustrates the LabVIEW
editor with a particular code module open. This VI has several
inputs (e.g., Fig. 1-C) and an output (Fig. 1-D). This example
consists of a series of operations performing some logical
comparisons (yellow triangles) and calling two other VIs (gray
boxes). An important characteristic of VIs is that they can
run continuously, allowing multiple rounds of executions to
be performed—that is, taking in different inputs and returning
different outputs repeatedly before the execution is terminated.

III. FORMATIVE INVESTIGATIONS

To understand the problems that programmers have while
refactoring, we performed two formative investigations. In
the first, we qualitatively shadowed programmers as they
performed refactorings for their jobs, and interviewed them
based on our observations. Based on these findings, we began
to explore possible solutions, and conducted a second investi-
gation to test the feasibility of one of our candidate solutions.

A. Qualitative Shadowing Study

To better understand how LabVIEW programmers refac-
tor code and the problems they encounter, we performed
qualitative shadowing [23]. Following this method, a session
involved sitting behind a programmer for at least one hour
while they worked in their own environment. Our participants
were 9 professionals that program every day using LabVIEW.
Their job titles consisted of 4 systems engineers, 2 software
engineers, 2 application engineers, and 1 hardware engineer.
To initiate these shadowing sessions, we emailed the program-
mers, asking them to arrange a time for us to come to their
desk to observe them whenever they planned on “refactoring or
cleaning up” code. We observed them while refactoring code,
and finished by having a semi-structured interview based on
our observations. To elicit feedback on our observations and
address follow-up questions, we presented our findings to the
same programmers in a group setting.

While working, all nine of the programmers indicated that
they have difficulties while refactoring. Based on their verbal
remarks while working and their interview responses, a signifi-
cant issue was that they often introduce bugs while refactoring.
One programmer demonstrated an example of this issue: while
dragging a few elements around, he accidentally detached a
wire from a VI, which changed the program’s behavior (but did
not produce a compiler error). Another example we observed
was when a programmer performed a refactoring, he mixed
up two of the outputs, accidentally causing a behavior-altering
change (again, without producing a compiler error).

These types of bugs could have potentially been caught by
unit tests; however, none of these programmers typically write
such tests. In fact, only 3 of the 9 programmers had ever
used unit tests in LabVIEW before, and 4 others had only
used them in other languages. They indicated that it is too
much work to create the unit tests, especially when they do
not intend on making changes to the code in the future. One
programmer mentioned that if the project uses unit tests, he has
to continuously keep the unit tests up to date, which requires
too much time for his workflow.

To cope with the difficulties of validating their refactorings,
the programmers utilized a variety of strategies. For instance,
we observed a programmer using a piece of paper to write
down the output of test cases of a VI before he rewrote it.
Three other programmers made copies of their entire project
prior to making their changes, such that they could run the
original version and the modified version simultaneously, to
test the behavior. Other times, programmers ran the application
to see if the behavior changed, but relied on their recollection
of how the program behaved. However, these strategies are
error-prone and tedious for the programmer to perform.

B. Feasibility Study

To explore possible solutions for detecting behavior-altering
bugs, we analyzed six videos of LabVIEW programmers refac-
toring code from a prior study [17]. Our goal was to see how
often programmers performed refactorings that unintentionally
altered the behavior of the program and if that behavior change
could be identified by observing the program’s output. In
the original study, programmers were tasked with refactoring
various portions of an existing calculator application.

Each session lasted approximately 90 minutes. First, partic-
ipants received an introduction to the code base they would
be working on. Then, they were instructed that for the next 60
minutes they would be refactoring the code. To help the pro-
grammers get started, they were provided with three specific
refactorings to perform. Afterwards, they were tasked with
continuing to refactor the code however they saw fit. If they got
stuck, they were given suggestions of other refactorings. The
last 30 minutes of the session involved playing back portions
of the video to the participant, and asking questions about each
refactoring that they performed.

To analyze whether refactorings altered the program output,
we looked at each refactoring episode using the screen-
recording video and the participants’ talk-aloud data. We

TABLE I
THE REFACTORING EPISODES WE ANALYZED TO SEE IF PROGRAMMERS
INTRODUCED BUGS AND IF THE OUTPUT WAS CHANGED. ALTHOUGH P5
DID INTRODUCE ONE BUG, HE DID NOT COMPLETE THE TASK SO IT WAS

EXCLUDED FROM OUR ANALYSIS.

Participant
Total

refactorings

Buggy

refactorings

Behavior-

altering

P1 4 2 100%

P2 7 4 100%

P3 5 2 100%

P4 10 2 100%

P5 5 0 --

P6 5 1 100%

considered the refactoring to be buggy if it resulted in behavior
that was different than before the change. We inspected the
output values to see if the program output could be used
to identify the behavior-altering change. For this analysis,
we assumed that the programmer would have executed the
program before and after the change using the same input.

As shown in Table I, participants often introduced bugs
while refactoring. In fact, all but one participant performed
buggy refactorings, and on average, 31% of their refactorings
were buggy. Furthermore, every bug they introduced caused
the output of the program to change. A particularly common
bug was wiring code elements incorrectly (e.g., swapping two
wires). Other bugs included not handling corner cases for
rewritten code (e.g., if the input is zero), changing a value in
some locations but not all the locations, incorrectly initializing
variables that were moved out of a loop or inner VI, and
extracting a method but not calling it correctly. Understanding
these behavior-altering changes were an initial step towards
designing a tool that could detect these changes.

IV. TOOL DESIGN

To address the problems programmers have in detecting
behavior changes after refactoring, we designed the Code-
Deviant tool for visual dataflow programming environments.
CodeDeviant enables programmers to compare the program
output of a previous execution to the current execution so
they can determine if their refactoring had unintended side
effects on program behavior. By providing this information
to programmers, CodeDeviant aims to enable programmers to
test their changes more quickly and more accurately.

Based on our qualitative shadowing observations and feed-
back provided by programmers, we conceived of three key
design principles for CodeDeviant:

• Transparently record program execution data as executions
are performed by the programmer. In particular, Code-
Deviant records the input values, output values, and meta-
data (e.g., timestamp) for each execution.

• Enable the programmer to efficiently compare selected
program executions from the recorded history to see if the

Fig. 2. CodeDeviant-extended LabVIEW IDE. The standard LabVIEW IDE
features include (A) a project explorer, (B, see also Fig. 1) the code editor,
and (C) contextual help and properties. CodeDeviant extends the IDE with (D)
an additional pane that provides (F) a history of executions and that indicates
(E) whether the behavior has changed.

program outputs changed while integrating seamlessly into
their workflow.

• Only allow apt comparisons between executions and notify
the user if there is not a suitable comparison. For example,
if an input parameter is removed, it is not clear how
CodeDeviant would compare the values.

To evaluate our design, we implemented CodeDeviant as an
extension to the LabVIEW development environment. The
remainder of this section explains the specific features of our
CodeDeviant extension that satisfy these principles.

A. Transparently Record Program Executions

In our LabVIEW implementation, whenever a programmer
executes a code module (i.e., a VI), CodeDeviant automatically
records the sets of input and corresponding output values
as well as metadata (e.g., timestamp and information about
the VI). Recording is done transparently, not requiring any
explicit user action. To implement this feature, we leveraged
LabVIEW’s compiler framework to walk the abstract syntax
tree of the VI to identify the input and output nodes (recall
Fig. 1-C,D). We then utilized LabVIEW’s existing runtime
framework, which already has highly optimized features for
asynchronously logging high volumes of streaming data to
a file. Being able to handle streaming data is an important
criteria since LabVIEW is often used to stream vast amounts
of data from instruments (e.g., an oscilloscope).

B. Efficiently Compare Program Executions

The main goal of CodeDeviant is to efficiently compare pro-
gram executions to detect whether the behavior has changed.
After an execution is finished, an entry is added to the history
pane, depicted in Fig. 2-F, which displays the VI name and
timestamp of when it was executed. To perform a comparison,

the user selects which prior execution to use as a point of
comparison by clicking the associated row in the history
listing. Then, the next time the application is executed, the
current execution will be compared to the selected execution.

To compare the executions, CodeDeviant inspects the
logged input and output values. It first performs an intersection
of the input values from both executions (and ignores any
values that were not present in both executions). This step is
needed because unlike functions in most textual languages,
a VI can execute continuously, either streaming data from
hardware or acting as a long-running interactive system. For
this reason, VIs can be continuously fed inputs and continu-
ously provide outputs—unlike in Java, for example, where a
function call takes in one set of arguments and returns one
value. CodeDeviant then compares whether the outputs are
equivalent between executions, given the same inputs. For
example, if execution A has two input/output pairs ((2,8),
(5,20)) and execution B has three pairs ((3,12), (5,11), (8,8)),
CodeDeviant would do an intersection on the inputs values of
A and B, which in this case contains only the input value 5.
The next step is to compare the corresponding outputs given
5 as input, which in this case, do not match (20 6= 11).

Once CodeDeviant compares the executions, it will notify
the programmer whether the behavior matches between the
selected execution and the most recent execution (Fig. 2-E).
Once the programmer gets feedback from the tool, he or she
can then manually inspect the code if necessary to find the
cause of the behavior change.

To better fit into programmers’ workflows, CodeDeviant
allows for comparisons without any explicit interactions to
do so. If the programmer does not choose an execution in
the history pane, it will default to the oldest execution in the
current development session. This execution was chosen as
the default to ensure that it came before the code change.
Additionally, CodeDeviant allows for repeated comparisons
without any additional actions. That is, the programmer can
execute the application over and over, using either the same
selected execution to compare with, or by selecting another
execution in the history.

C. Allow Only Apt Comparisons

As the programmer is performing changes and executing
the application, CodeDeviant allows for only apt comparisons
since it is possible that there may not be a reasonable way
to compare the current execution with the selected previous
execution. For example, if the programmer modifies the inputs
(e.g., adds an additional parameter), it is not clear how
CodeDeviant should compare the executions, and CodeDeviant
will provide an error message. Similarly, if the executions do
not share any input values, CodeDeviant cannot determine if
the behavior is the same and will notify the user.

V. EVALUATION METHOD

To investigate how effectively CodeDeviant helps program-
mers in detecting behavior-altering refactorings, we ran a
within-subjects lab study of programmers refactoring and

validating their refactorings. Each participant received two
treatments, the control treatment, the standard LabVIEW envi-
ronment, and the CodeDeviant treatment, an extended version
of LabVIEW with CodeDeviant features enabled.

The research questions that we addressed with our empirical
evaluation of CodeDeviant were as follows:
• RQ1: Do programmers using CodeDeviant-extended Lab-

VIEW find behavior-altering bugs more accurately than
programmers using standard LabVIEW?

• RQ2: Do programmers using CodeDeviant-extended Lab-
VIEW find behavior-altering bugs more quickly than pro-
grammers using standard LabVIEW?

• RQ3: Do programmers consider CodeDeviant to be helpful?
Our participants consisted of 12 professional LabVIEW

programmers (11 male, 1 female) from National Instruments.
They reported, on average, 4.58 years of programming expe-
rience (SD = 1.73) and 2.23 years of LabVIEW experience
(SD = 1.93). All participants reported programming in Lab-
VIEW as part of their daily work.

As their primary tasks, the participants performed two
refactorings on an existing calculator application written in
LabVIEW. They were also asked to verify whether or not
the refactoring changed the behavior of the application (but
not to perform additional fixes). Each task was based on a
refactoring from Fowler’s catalog of refactorings [12]. The
first task involved replacing two blocks of code with a built-in
function (similar to Fowler’s Replace Algorithm refactoring).
The built-in function behaved differently than the blocks,
and thus, in validating the change, the correct answer was
that it does change the behavior. The second task involved
performing an Extract Method refactoring which should not
have changed the program’s behavior.

Each session lasted no more than 30 minutes. First, all par-
ticipants filled out a background questionnaire, and received
an introduction to the latest version of LabVIEW and the
calculator application. Next, the participants performed the
two refactoring tasks where they were free to modify and
test the code however they saw fit. Each participant received
one treatment for the first task and the other for the second
task. Half of the participants were randomly selected to use
CodeDeviant-extended LabVIEW first, and the other half used
standard LabVIEW first. We asked each participant to “think
aloud” as he/she worked. At the end of the session, participants
answered a questionnaire regarding the tool and took part in
a semi-structured interview. As data, we recorded audio and
screen-capture video of each session.

VI. EVALUATION RESULTS

A. RQ1 Results: Accuracy of Detecting Bugs

As Fig. 3 shows, when participants used CodeDeviant,
they correctly assessed whether their refactorings resulted
in changes to the program’s behavior far more often than
when they used only standard LabVIEW. In fact, when using
CodeDeviant, everyone provided the correct answer for the
task. In contrast, when using standard LabVIEW, only a third

0%

20%

40%

60%

80%

100%

Task 1 Task 2

P
e
rc

e
n
ta

g
e
 o

f
c
o
rr

e
c
tl
y

v
a
lid

a
te

d
 r

e
fa

c
to

ri
n

g
s Tool

Control

Fig. 3. CodeDeviant users were significantly more accurate in validating their
refactorings.

0

50

100

150

200

250

300

350

Task 1 Task 2

M
e
a
n
 t

a
s
k
 t
im

e
 (

s
e
c
o
n
d
s
) Tool

Control

Fig. 4. CodeDeviant users were significantly faster in performing and
validating the refactorings (smaller bars are better). Whiskers denote standard
error.

of the participants provided the correct answer for the first
task and only half for the second task. The differences were
significant for Task 1 (χ2(1, N = 12) = 6, p = 0.01) and
Task 2 (χ2(1, N = 12) = 4, p < 0.05).

B. RQ2 Results: Time on Task

As Fig. 4 shows, When participants used CodeDeviant,
they also completed the tasks considerably faster than when
they used only standard LabVIEW. For Task 1, participants
using CodeDeviant took roughly a third of the time taken by
those using standard LabVIEW. For Task 2, participants using
CodeDeviant completed Task 2 over 40% faster than those
using standard LabVIEW. A Mann–Whitney U test showed
significance for both Task 1 (U = 0, Z = 2.9, p = 0.003) and
Task 2 (U = 2, Z = 2.5, p = 0.01).

C. RQ3 Results: Opinions of the Participants

As Fig. 5 shows, the participants generally considered
CodeDeviant to be helpful and would use it for their everyday
work. Only one participant responded that the tool was not
helpful. Furthermore, only two participants said they would
not use CodeDeviant if they had it available to them. Details
of their concerns are described in the Discussion section.

VII. DISCUSSION

Overall, the results of our CodeDeviant evaluation were
notably positive. Participants using CodeDeviant identified

0%

20%

40%

60%

80%

100%

Helpful? Would use it?

P
e
rc

e
n
ta

g
e
 o

f
p
a
rt

ic
ip

a
n
ts

th

a
t
re

s
p
o
n
d
e
d
 “

Y
e
s
”

Fig. 5. Participant responses were highly positive on the CodeDeviant opinion
questionnaire (“Yes” or “No” answers).

behavior-altering bugs significantly more accurately than those
using the control treatment. Moreover, CodeDeviant also
helped participants complete the refactoring tasks significantly
faster than did the control treatment. In addition to the
positive results for these objective performance measures, the
participants also expressed predominantly favorable subjective
opinions of CodeDeviant.

A. Qualitative Observations

To better understand the reasons behind our overwhelmingly
positive results, we analyzed our data for qualitative evidence
to help explain these outcomes. In particular, we reviewed
the participants’ comments and mapped from quantitative
data points to qualitative episodes of participant behavior,
examining those episodes in detail to help explain and expand
upon our results.

1) Why Participants Validated Changes More Accurately
with CodeDeviant (RQ1): Every participant using Code-
Deviant had 100% accuracy in detecting behavior-altering
bugs. For every task, participants receiving the CodeDeviant
treatment used CodeDeviant to validate their changes, and
CodeDeviant reported correctly whether or not the program’s
output had changed. For example, during P3’s second task,
he identified the relevant code that needed to be refactored,
so he then executed the AppendToDisplay VI twice with two
different sets of input. He then performed the code change
and reran the VI. Finally, he turned to CodeDeviant, which
correctly reported that the behavior did not change.

However, the participants had a much more difficult time
when they did not use CodeDeviant. Multiple participants ran
the VI one or more times before and after their changes to see
if the program’s output changed. For example, P5 deliberately
executed the program with one set of inputs before making
his edits:

P5: “If I care about testing this, then I should go do that first.”

Once he finished his change, he reran the application. Al-
though the output was visibly different, he mistakenly declared
that it worked the same, perhaps unable to fully recall the
original output. Participants P4, P6, and P9 followed similar
strategies, and were also unsuccessful in noticing changes in
the output of their programs. In one extreme case, P4 alter-
nated between viewing the code and running the application

five times prior to making his change, and still failed to notice
that his program’s output had changed.

Even when participants tried other strategies to validate their
changes, they still had difficulties. Participant P10 took a more
thorough approach to testing the program by writing down
the program output on a piece of paper. However, this note-
taking strategy was ultimately unsuccessful. She incorrectly
thought that the program’s behavior had changed, perhaps
because she failed to notice that she had changed the input
values between her runs (an inconsistency that CodeDeviant
would have caught). In contrast, participant P12 did not rely on
running the application at all. Instead, he examined the code,
following nearly every wire in RemoveDecimalFromDisplay
and ApplyDecimal to understand his change. After examining
the wires for over two minutes, he finally declared:

P12: “I’m confident this code does the same thing.”

Unfortunately, he was incorrect: the behavior had changed.
2) Why Participants Validated Changes Faster with Code-

Deviant (RQ2): Not only were participants more accurate
while using CodeDeviant, they also completed the tasks con-
siderably faster. This speedup is likely thanks to the automa-
tion provided by CodeDeviant, which eliminated the need to
use tedious manual change-validation strategies, such as test-
ing and trying to remember the output values produced before
the change, or tracing wires in the hopes of discovering a bug.
Using CodeDeviant, participant P10 was able to achieve the
fastest overall time for the first task. She began by testing the
application, performed the change, ran the application once,
and consulted the CodeDeviant output. The whole process
took only 85 seconds. Similarly, participant P7 completed the
second task in just a little over a minute using CodeDeviant.
Thanks to CodeDeviant, he spent the majority of this time on
making edits to the code, rather than, say, testing it.

In contrast, when using standard LabVIEW without Code-
Deviant, participants took much longer in completing their
tasks. The participants’ strategies for validating their code
seemed to be the main cause of this slowdown. For example,
in the case of participant P8’s first task, he simply stared at
the code for long stretches of time without saying or doing
anything. Although his strategy was not entirely clear, he may
have been visually tracing the code relevant to his change. He
was ultimately correct in reporting that the code change had
altered the program’s behavior, but it took him over 7 minutes
to reach that conclusion.

3) Why Participants Liked (or Disliked) CodeDeviant
(RQ3): Participants were generally favorable of CodeDeviant.
In the interview, participants expanded on their thoughts of
CodeDeviant, providing a range of feedback. Several partic-
ipants explained how CodeDeviant alleviated the burden of
remembering the program behavior as they worked. In particu-
lar, participant P11 described his normal working environment,
where he can write down his test inputs and outputs on a piece
of paper, and how using CodeDeviant will make that process
more efficient:

P11: “On the one where I was doing it without having the tool,
it isn’t terribly difficult to write down... when I’m sitting at

my desk I have notepads and pens, but if you can get around
having to have one... If you have one output it’s fine, but if you
have something that has to output an entire array, being able
to validate that [with the tool] is really nice.”

Other participants had similar sentiments regarding how Code-
Deviant can enhance efficiency:

P6: “Now [without the tool] you have to manually see if the
output is the same. If you have more inputs or outputs it is
harder to do it manually. If you are working on something
complex, this would be a really useful tool.”

P8: “[Without the tool] it was all on me to remember what I got
for the outputs. It isn’t too terrible for a small VI but as soon
as you hit any level of complexity...”

Furthermore, participants elaborated on the general useful-
ness of the tool in regards to testing. When asked why they
found CodeDeviant useful, P3 and P7 expressed the impor-
tance of testing, which they believed CodeDeviant helped with:

P3: “If you don’t have to do all the setup yourself, and you just
have a tool that will do it for you then I feel like more people
would be more willing to do it.”

P7: “Having any kind of testing is incredibly important.”

Although most participants were favorable of CodeDeviant,
one participant said it was not helpful, and two said they would
not use it in their daily workflows. Participant P1 reported his
concerns about choosing the correct input values:

P1: “What if it only works because these inputs are the ones
I’m testing but my change doesn’t work.”

His concern is valid, but this problem also exists without
the tool (e.g., manually providing inputs and observing the
outputs). Participant P9 reported that he believed the tool was
helpful but would not use it because he believed it might be
difficult for others to discover the feature and to integrate into
their workflow.

P9: “I think it is a thing that could be useful to people who
know about it and are trained to do that, and see the benefit
of it... It is kind of a tricky situation to figure out how to help
people who don’t know how to use the tools that exist.”

He later explained that it could be integrated more closely into
a programmer’s typical workflow:

P9: “It would be neat if it just showed up as a warning in their
errors window.”

B. Opportunities for Improving CodeDeviant

Based on our participants’ feedback and the findings from
the user study, we identified several key opportunities for
potentially improving the design of CodeDeviant.

1) Interaction Design Improvements: One key opportunity
for improvement is to better explain to the programmer
how executions behaved differently. Currently, CodeDeviant
reports whether there is a difference in behavior, but does
not communicate how it differed or by how much. For
example, CodeDeviant could display the specific input values
that resulted in different output values between executions. To
provide the programmer more context about what was tested,
CodeDeviant could report a correctness percentage (e.g., 75%
of the tested values are equal) as well as a coverage percentage
(e.g., 20% of the original inputs were tested).

2) Performance Overhead Reduction: A second key op-
portunity for improvement is by reducing the performance
overhead of CodeDeviant. The main overhead stems from
recording the program output at runtime. (We did not detect
any noticeable performance impact in CPU load while running
CodeDeviant.) In our test cases, VIs that ran only once used
little storage for recordings (<1KB). However, VIs that ran
continuously (certain GUIs and data acquisition functions)
used as much as 50MB of storage per minute of recording.
While inspecting these data, we observed that over 90% were
redundant, and could be filtered periodically to save space.

3) Extended Coverage of Program Behaviors: A third op-
portunity for improvement is to expand the program behaviors
that can be compared by CodeDeviant. Although CodeDeviant
never failed to detect a behavior change for of our participants,
there are possible scenarios where it could fail. In particular,
any application where it is difficult to reproduce the same input
values could be problematic. For example, if the application
acquires streaming data from specialized hardware (e.g., an
instrument for real-time radio measurements) such that each
execution will not yield the same input values (or some
subset thereof), then CodeDeviant will not be able to do a
comparison. To address this problem, CodeDeviant could be
enhanced with replay debugging, a technique that enables the
replaying of events that produced a particular outcome [29].

VIII. THREATS TO VALIDITY

Our evaluation study has several threats to validity that
are inherent to laboratory studies of programmers. The code
base was small, and thus, may not be representative of all
programs; however, to enhance its realism, we based it on
an open source LabVIEW project. Our participants may not
have been representative of all expert programmers; however,
they were all professional LabVIEW programmers. Reactivity
effects, such as the participant trying to please the researchers,
may have occurred; however, we attempted to minimize these
effects by presenting the two versions of LabVIEW to par-
ticipants as possible design alternatives, and by not revealing
that the CodeDeviant version was the researchers’ creation.
Finally, our sample size was small, with only 12 participants
performing 2 tasks each; however, we used multiple metrics
and both quantitative and qualitative analyses to triangulate
and enhance confidence in our findings.

IX. RELATED WORK

A. Refactoring Support

Researchers have proposed a variety of automated refac-
toring tools to improve the efficiency and correctness of these
code changes, but they rely on programmers explicitly utilizing
these features. However, many studies have shown that the
majority of refactorings are performed manually [13], [19],
[28], [30], [44]. One notable tool, SafeRefactor [41], generates
unit tests for the original code and the refactored code to verify
that the behavior does not change when applying automated
refactorings. Other work in automated refactoring has been to
formally verify the refactoring operations (e.g., [9], [25]) and

the refactoring engine (e.g., [26], [40], [42]), and yet there are
still bugs introduced by the most commonly used refactoring
tools [4], [39], [41], [44], [47]. CodeDeviant was designed
to fit into programmers’ existing workflow, without requiring
them to use automated refactorings.

To better integrate refactoring tools into programmers’ ex-
isting workflows, researchers have designed tools to assist in
manual refactorings, but they rely on detecting when a man-
ual refactoring has occurred. For example, BeneFactor [13],
GhostFactor [14], and WitchDoctor [11] aim to recognize
when a programmer is performing a refactoring manually
and provide features to automatically complete the change
while attempting to validate correctness. RefDistiller [1] takes
a different approach by identifying manual refactorings after
they are completed, and provides features for the programmer
to review these changes, while suggesting missing changes and
extra changes that are needed to maintain the same behavior.
However, these tools rely on static analysis to identify manual
refactorings and are limited in the types of refactorings that
they support, unlike CodeDeviant, which does not need to
detect that the programmer is refactoring.

B. Change Impact Analysis

Change impact analysis is a complementary approach to
CodeDeviant’s, which locates portions of the code that may
be affected by a code change [22]. These analyses could be
leveraged by tools to identify whether a refactoring is behavior
altering. However, a variety of issues have prevented such
techniques from being adopted by programmers in practice.
For example, these tools output a list of code locations
that are potentially impacted by a change (e.g., EAT [2],
Sieve [38], Jimpa [6], JDIA [18], Impala [16], JRipples [5],
and ROSE [49]), which then requires a programmer to man-
ually investigate these locations. Another issue is that they
can have high rates of false positives and false negatives [16],
while more accurate algorithms incur substantial performance
costs (e.g., PathImpact [32]). Yet another barrier of these
tools is that they may require substantial effort to setup and
maintain, such as creating unit test suites (e.g., Crisp [8]) or
instrumenting the source code prior to use (e.g., EAT [2]).

C. Program Steering

A related idea to comparing program outputs to validate a
code change, is program steering [3], which provides continu-
ous feedback to the programmer and allows the programmer to
modify the program at runtime. For example, Forms/3 provides
affordances to time travel, so the programmer can investigate
the causes and effects of a program’s behavior [3], which could
potentially help a programmer detect a bug in their refactoring.
Since these features were implemented in a spreadsheet-like
environment, it is an open question how well they would gen-
eralize to a visual dataflow programming environment (e.g.,
with streaming data). Additionally, program steering features
require considerable changes to a programmer’s workflow,
which may be a barrier to adoption.

X. CONCLUSION

In this paper, we have presented the novel CodeDeviant tool
design to support programmers in detecting behavior-altering
bugs while refactoring visual dataflow code. An evaluation
study comparing the CodeDeviant-extended LabVIEW with
the standard LabVIEW IDE made the following key findings:

• RQ1 (accuracy): Programmers using CodeDeviant-extended
LabVIEW identified behavior-altering bugs significantly
more accurately than with standard LabVIEW.

• RQ2 (time): Programmers using CodeDeviant-extended
LabVIEW completed the refactoring tasks significantly
faster than with standard LabVIEW.

• RQ3 (user opinions): Programmers generally found Code-
Deviant helpful and agreed that they would use it in their
daily work.

We hope that CodeDeviant and our findings represent a
noteworthy advancement toward helping programmers refactor
their code more correctly and efficiently. Moving beyond our
current work, a promising direction for the future is to explore
novel ways in which a programmer can effectively compare all
aspects of their program to some previous state of the program,
including input values, output values, and code changes.
Although there have been tools proposed that provide specific
comparisons (e.g., how did my code look previously? [17]),
there has not been a comprehensive system that allows the
programmer to compare all aspects of their program and
its behavior. Our CodeDeviant design and implementation
demonstrated the strong potential of such a system, eliciting
extensive positive feedback and optimism from professional
programmers. We believe this work represents a substantial
step toward better supporting programmers in the fundamental,
yet tedious and error-prone, task of refactoring code.

ACKNOWLEDGMENTS

We give special thanks to Andrew Dove for his counsel
on all things LabVIEW. This material is based upon work
supported by National Instruments and by the National Science
Foundation under Grant No. 1302117. Any opinions, findings,
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views
of National Instruments or of the National Science Foundation.

REFERENCES

[1] E. L. G. Alves, M. Song, and M. Kim, “RefDistiller: A refactoring aware
code review tool for inspecting manual refactoring edits,” in Proc. 22nd
ACM SIGSOFT Int’l Symp. Foundations of Software Engineering (FSE
’14), 2014, pp. 751–754.

[2] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise
dynamic impact analysis using execute-after sequences,” in Proc. 27th
Int’l Conf. Software Engineering (ICSE ’05), 2005, pp. 432–441.

[3] J. W. Atwood, M. M. Burnett, R. A. Walpole, E. M. Wilcox, and S. Yang,
“Steering programs via time travel,” in Proc. 1996 IEEE Symp. Visual
Languages, Sep 1996, pp. 4–11.

[4] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs?: An empirical study,”
in Proc. 2012 IEEE 12th Int’l Working Conf. Source Code Analysis and
Manipulation (SCAM ’12), 2012, pp. 104–113.

[5] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “JRipples: A tool
for program comprehension during incremental change,” in 13th Int’l
Workshop on Program Comprehension (IWPC’05), May 2005, pp. 149–
152.

[6] G. Canfora and L. Cerulo, “Impact analysis by mining software and
change request repositories,” in 11th IEEE Int’l Software Metrics Sym-
posium (METRICS ’05), Sept 2005, pp. 21–29.

[7] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to the
whiteboard: How and why software developers use drawings,” in Proc.
SIGCHI Conf. Human Factors in Computing Systems (CHI ’07), 2007,
pp. 557–566.

[8] O. C. Chesley, X. Ren, and B. G. Ryder, “Crisp: A debugging tool
for Java programs,” in 21st IEEE Int’l Conf. Software Maintenance
(ICSM’05), Sept 2005, pp. 401–410.

[9] M. Cornelio, A. Cavalcanti, and A. Sampaio, “Sound refactorings,”
Science of Computer Programming, vol. 75, no. 3, pp. 106–133, 2010.

[10] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing of
refactoring engines,” in Proc. the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symp. The
Foundations of Software Engineering (ESEC-FSE ’07), 2007, pp. 185–
194.

[11] S. R. Foster, W. G. Griswold, and S. Lerner, “WitchDoctor: IDE support
for real-time auto-completion of refactorings,” in Proc. 2012 Int’l Conf.
Software Engineering, 2012, pp. 222–232.

[12] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[13] X. Ge, Q. L. DuBose, and E. Murphy-Hill, “Reconciling manual and
automatic refactoring,” in Proc. 34th Int’l Conf. Software Engineering
(ICSE ’12), 2012, pp. 211–221.

[14] X. Ge and E. Murphy-Hill, “Manual refactoring changes with automated
refactoring validation,” in Proc. 36th Int’l Conf. Software Engineering
(ICSE ’14), 2014, pp. 1095–1105.

[15] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: A ‘cognitive dimensions’ framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[16] L. Hattori, G. dos Santos Jr, F. Cardoso, and M. Sampaio, “Mining
software repositories for software change impact analysis: A case study,”
in Proc. 23rd Brazilian Symp. Databases SBBD ’08, 2008, pp. 210–223.

[17] A. Z. Henley and S. D. Fleming, “Yestercode: Improving code-change
support in visual dataflow programming environments,” in 2016 IEEE
Symp. Visual Languages and Human-Centric Computing (VL/HCC ’16),
Sept 2016, pp. 106–114.

[18] L. Huang and Y. T. Song, “A dynamic impact analysis approach for
object-oriented programs,” in 2008 Advanced Software Engineering and
Its Applications, Dec 2008, pp. 217–220.

[19] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring
challenges and benefits,” in Proc. ACM SIGSOFT 20th Int’l Symp. the
Foundations of Software Engineering (FSE ’12), 2012, pp. 50:1–50:11.

[20] A. Kittur, A. M. Peters, A. Diriye, T. Telang, and M. R. Bove, “Costs
and benefits of structured information foraging,” in Proc. SIGCHI Conf.
Human Factors in Computing Systems, ser. CHI ’13, 2013, pp. 2989–
2998.

[21] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, “A case study in
refactoring a legacy component for reuse in a product line,” in Software
Maintenance, 2005. ICSM’05. Proc. 21st IEEE Int’l Conf., Sept 2005,
pp. 369–378.

[22] B. Li, X. Sun, H. Leung, and S. Zhang, “A survey of code-based
change impact analysis techniques,” Software Testing, Verification and
Reliability, vol. 23, no. 8, pp. 613–646, 2013.

[23] S. McDonald, “Studying actions in context: a qualitative shadowing
method for organizational research,” Qualitative Research, vol. 5, no. 4,
pp. 455–473, 2005.

[24] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE Trans.
Softw. Eng., vol. 30, no. 2, pp. 126–139, Feb 2004.

[25] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens, “Formalizing
refactorings with graph transformations,” J. Softw. Maint. Evol., vol. 17,
no. 4, pp. 247–276, 2005.

[26] M. Mongiovi, “Safira: A tool for evaluating behavior preservation,”
in Proc. ACM Int’l Conf. on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’11), 2011, pp. 213–214.

[27] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, “Does refactoring
improve reusability?” in Int’l Conf. Software Reuse. Springer, 2006,
pp. 287–297.

[28] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and how we
know it,” Software Engineering, IEEE Transactions on, vol. 38, no. 1,
pp. 5–18, Jan 2012.

[29] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously
recording program execution for deterministic replay debugging,” in
Proc. 32Nd Annual Int’l Symp. Computer Architecture (ISCA ’05), 2005,
pp. 284–295.

[30] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A
comparative study of manual and automated refactorings,” in Proc. 27th
European Conf. Object-Oriented Programming (ECOOP ’13), 2013, pp.
552–576.

[31] W. F. Opdyke, “Refactoring: An aid in designing application frameworks
and evolving object-oriented systems,” in Proc. of 1990 Symp. Object-
Oriented Programming Emphasizing Practical Applications (SOOPPA),
1990.

[32] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J. Harrold,
“An empirical comparison of dynamic impact analysis algorithms,” in
Proc. 26th Int’l Conf. Software Engineering (ICSE ’04), 2004, pp. 491–
500.

[33] N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs,” Cognitive Psychol., vol. 19,
no. 3, pp. 295–341, 1987.

[34] D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B. John,
R. Bellamy, and C. Swart, “Reactive information foraging: An empirical
investigation of theory-based recommender systems for programmers,”
in Proc. ACM SIGCHI Conf. Human Factors in Computing Systems, ser.
CHI ’12, 2012, pp. 1471–1480.

[35] D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. K. Bellamy, and J. Jordahl, “The whats and hows of programmers’
foraging diets,” in Proc. SIGCHI Conf. Human Factors in Computing
Systems, ser. CHI ’13, 2013, pp. 3063–3072.

[36] J. U. Pipka, “Refactoring in a test first world,” in Proc. Third Int’l Conf.
eXtreme Programming and Flexible Processes in Software Eng, 2002.

[37] N. Rachatasumrit and M. Kim, “An empirical investigation into the
impact of refactoring on regression testing,” in 2012 28th IEEE Int’l
Conf. Software Maintenance (ICSM), Sept 2012, pp. 357–366.

[38] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Sieve: A tool
for automatically detecting variations across program versions,” in 21st
IEEE/ACM Int’l Conf. Automated Software Engineering (ASE’06), Sept
2006, pp. 241–252.

[39] M. Schäfer and O. de Moor, “Specifying and implementing refactor-
ings,” in Proc. ACM Int’l Conf. Object Oriented Programming Systems
Languages and Applications (OOPSLA ’10), 2010, pp. 286–301.

[40] M. Schäfer, T. Ekman, and O. de Moor, “Sound and extensible renaming
for Java,” in Proc. 23rd ACM SIGPLAN Conf. Object-oriented Program-
ming Systems Languages and Applications (OOPSLA ’08), 2008, pp.
277–294.

[41] G. Soares, R. Gheyi, D. Serey, and T. Massoni, “Making program
refactoring safer,” IEEE Software, vol. 27, no. 4, pp. 52–57, July 2010.

[42] G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral testing
of refactoring engines,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp.
147–162, Feb. 2013.

[43] K. T. Stolee and S. Elbaum, “Refactoring pipe-like mashups for end-user
programmers,” in Proc. 33rd Int’l Conf. Software Engineering (ICSE
’11), 2011, pp. 81–90.

[44] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E.
Johnson, “Use, disuse, and misuse of automated refactorings,” in Proc.
34th Int’l Conf. Software Engineering (ICSE ’12), 2012, pp. 233–243.

[45] F. Vonken and A. Zaidman, “Refactoring with unit testing: A match
made in heaven?” in Proc. 2012 19th Working Conf. Reverse Engineer-
ing (WCRE ’12), 2012, pp. 29–38.

[46] P. Weissgerber and S. Diehl, “Identifying refactorings from source-
code changes,” in 21st IEEE/ACM Int’l Conf. Automated Software
Engineering (ASE ’06), Sept 2006, pp. 231–240.

[47] P. Weissgerber and S. Diehl, “Are refactorings less error-prone than other
changes?” in Proc. 2006 Int’l Workshop on Mining Software Repositories
(MSR ’06), 2006, pp. 112–118.

[48] K. N. Whitley, L. R. Novick, and D. Fisher, “Evidence in favor of visual
representation for the dataflow paradigm: An experiment testing Lab-
VIEW’s comprehensibility,” Int’l Journal of Human–Computer Studies,
vol. 64, no. 4, pp. 281–303, 2006.

[49] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” IEEE Trans. Softw. Eng.,
vol. 31, no. 6, pp. 429–445, June 2005.

