© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Helping Programmers Navigate Code Faster
with Patchworks: A Simulation Study

Austin Z. Henley, Alka Singh, Scott D. Fleming, Maria V. Luong
Department of Computer Science
University of Memphis
Memphis, Tennessee 38152-3240
Email: {azhenley,arsingh,Scott.Fleming,mluong} @memphis.edu

Abstract—Programmers spend considerable time navigating
source code, and we recently proposed the Patchworks code editor
to help address this problem. A prior preliminary study of Patch-
works found that it significantly reduced programmer navigation
time and navigation errors. In this paper, we expand on these
findings by investigating the effect of various patch-arranging
strategies in Patchworks. To evaluate these strategies, we ran a
simulation study based on actual programmer navigation data.
Qur simulator results showed (1) that none of the strategies tested
had a significant effect on programmer-navigation time, and (2)
that navigating code using Patchworks, regardless of strategy,
was significantly faster than using Eclipse.

I. INTRODUCTION

Modern programmers spend a considerable portion of their
time navigating from fragment to fragment of source code
in their development environments. For example, one study
of Java programmers showed that as much as 35% of the
programmers’ time was spent navigating code [5]. Another
study found that 50% of programmers’ time was spent foraging
for information [9]. Still others have identified issues with
code navigation and with “re-finding” code that slowed pro-
grammers’ in their tasks [2]. Thus, our work seeks to improve
the design of programming environments and to significantly
reduce the time that programmers spend on code navigation.

In our previous work, we proposed a new editor design,
Patchworks, and a preliminary user evaluation showed promis-
ing results [4]. The evaluation compared Patchworks to two
existing editors, Eclipse and Code Bubbles. Participants using
Patchworks navigated significantly faster than those using
Eclipse, spent significantly less time arranging code than those
using Code Bubbles, and made significantly fewer navigation
mistakes than those using either Eclipse or Code Bubbles.

However, that work also raised two key questions that we
address in this paper. One question pertained to how program-
mers should arrange their code as they work in Patchworks.
Patchworks is based on a “ribbon of patches” idiom, depicted
in Fig. 1. The user views a grid of six patches at a time, and
can slide left or right along an infinite ribbon of patches. Each
patch on the ribbon is a code-fragment editor (e.g., for Java
classes or individual methods) that can be moved around the
ribbon. This idiom allows considerable flexibility in arranging
code fragments, and it is unclear what patch-arranging strategy
programmers should employ to achieve the fastest navigations.

The second question was how well the results will gen-
eralize to “real world” tasks. In our prior study, participants

Visible patches

l_‘____
LIt

Fig. 1. The Patchworks “ribbon of patches” idiom.

performed artificial navigation tasks in which we instructed
them to navigate to particular locations in the code. Thus,
the editors were not evaluated with respect to navigations
occurring naturally during development tasks.

To address these questions, we conducted a study in which
we recorded the navigations of programmers working on their
own development tasks, and then simulated users performing
those same navigation sequences using various editors and
code-arranging strategies. In particular, the study addressed
these research questions:

RQ1: Which Patchworks patch-arranging strategy yields the
fastest navigations?

RQ2: Do programmers navigate faster using Patchworks
than using Eclipse?

II. THE PATCHWORKS CODE EDITOR

Fig. 2 depicts our Patchworks code editor. The main part of
the editor consists of a 3x2 grid of patches (Fig. 2A-2). Each
patch is an editor that can hold code fragments at a variety of
granularities, including method, class, and file. For our initial
prototype, we tentatively chose for the grid to have 6 patches.
However, we defer to future work the question of what the
optimal number of patches might be.

Code fragments can be moved between patches in several
ways. A code fragment can be opened in a patch by dragging
an element from the package explorer (Fig. 2A-1) into the
patch. Fragments may be moved between patches by dragging
from one patch to another. If there is an existing fragment in
the destination patch, the contents of the patches are swapped.

Although the patch grid contains only six visible patches
at a time, conceptually, the six are a view into a never-ending
ribbon of patches, depicted in Fig. 1. The visible patch grid
can be shifted left or right along the ribbon via keyboard
shortcuts or menu items. Patchworks animates left/right shifts
to convey to the programmer the feeling of moving along the

sdf
Typewritten Text
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

o Patch-grid view

Fig. 2. The Patchworks editor, including (A) the patch-grid view, (B) a patch,
and (C) the ribbon view.

ribbon. Also, the ribbon view (Fig. 2B) provides a bird’s eye
perspective of the ribbon.

III. CANDIDATE PATCH-ARRANGING STRATEGIES

A key question of the current work is how should pro-
grammers arrange their patches as they use Patchworks? An
important design assumption of Patchworks is that program-
mers will use the ribbon as a timeline, with less recently
visited fragments being further back (left) and more recently
visited fragments being further forward (right); thus, we frame
the problem of patch arranging as deciding which patches
to bring forward and when. In this work, bringing a patch
forward entails using the ribbon view to make a new patch for
the fragment adjacent to the rightmost patches on the ribbon
(leaving the original patch unchanged to preserve the timeline).

We considered four possible strategies for deciding if/when
to bring a patch forward, and we define them below. To facil-
itate automated simulation of the strategies, we defined them
formally. A key concern in choosing these strategies was the
extent to which a programmer would be capable of performing
the strategy as defined. We selected two simplistic strategies
that a programmer would likely be capable of doing, and two
that approximate complex internal programmer behavior, but
that might be difficult for a programmer to perform exactly.

In the Never strategy, the programmer never brings any
patches forward. This simple strategy serves as a baseline
where a programmer essentially does no arranging of code.

In the Distance strategy, the programmer brings forward
the current patch if he/she shifted more than three columns on
the ribbon to get to the patch. The rationale for three columns
is that the patch grid is three columns wide. The difficulty of
performing this strategy should be low: the programmer needs

only to count how many shifts (up to four) it takes to get to a
patch. We hypothesize that this strategy will improve upon the
Never strategy by bringing distal code forward, thus reducing
the navigation cost of revisiting that code.

The Recency strategy also tries to reduce the cost of
revisits; however, unlike the above two strategies, a program-
mer may have difficulty performing the strategy exactly. In
Recency, the programmer brings forward the current patch if
it was not already on screen (i.e., it required clicking to get to),
and it was among the top six most recently visited fragments.
The rationale for this strategy is that studies have found
recency to be a strong predictor of where a programmer will
navigate [6], [8]. We chose six because the patch grid holds
six fragments. However, it may be difficult for a programmer
to recall exactly the last six methods he/she visited.

Finally, the DOI strategy attempts to approximate the
programmer’s degree of interest (DOI) in the current fragment
to decide whether the fragment should be brought forward. It
is common to estimate a person’s DOI based on his/her past
behavior (e.g., as in [3]). However, we compute a participant’s
DOI in a code fragment at a given time using his/her future
navigations. Given a fragment f, for each future navigation g;
to f, we compute a weight W (g;) = 0.859"1 where d is the
number of navigations into the future that g; is from the current
navigation. Then, we sum all the g; weights for f to compute
the total DOI for f. In the DOI strategy, the programmer brings
forward the current patch if it is among the top six greatest
DOI values (and it was not already on screen). The rationale
for six here is the same as for the Recency strategy. Since this
strategy uses future behavior, it is the one that programmers
would be least capable of performing exactly.

IV. STUDY METHOD

To address our research questions, we compared the various
editors and strategies with respect to the same sequence of
navigations. We first conducted a user study to collect code-
navigation data (where/when they navigated), and then used
that data to simulate how the developers might perform the
same navigations using different editors and strategies.

We collected the navigation data from 14 graduate students
(11 male, 3 female) working individually on their software
projects for a graduate-level software engineering course.
The projects involved developing Java EE web applications,
made up of Java servlets, JSPs, and “plain old” Java classes.
All participants had experience with Java and Eclipse, and
on average, they had 7.5 years of programming experience
(SD = 2.9). Although the projects varied, on average, the
code bases consisted of 9344 lines of Java and JSP code
spread across 84 code files. We video-recorded each participant
working for 2 hours on his/her project. Participants performed
“think aloud” as they worked.

Based on each participant’s video data, we used quali-
tative coding to identify where the participant navigated. In
particular, we coded each time the participant moved his/her
attention from one fragment to another. We coded fragments
at the granularity of methods, classes, and non-Java code files
(e.g., JSP and XML). To ensure that our coding was reliable,
three researchers independently coded the same 20% of the

TABLE 1. PARTICIPANT NAVIGATION DATA (VALUES ROUNDED TO
NEAREST WHOLE NUMBER). NAVIGATIONS PER FRAGMENT INDICATES
HOW MUCH A PARTICIPANT REVISITED FRAGMENTS.

L Files Fragments Navigations
Navigations g
opened visited per fragment
Min: 50 4 15 2
Mean (SD): 157 (74) 16 (6) 27 (8) 6 (3)
Max: 303 24 39 13

data (spread across all participants), and achieved 86% inter-
rater agreement (Jaccard similarity) on their codes. Then, they
coded the remaining 80% independently.

To gain insight into how Patchworks users would fair
given the same sequence of navigations each participant made,
we built a simulator that uses the navigation data to create
alternative scenarios of interaction. The simulator simulates
both users of Eclipse and Patchworks, and the simulated users
can be given different usage strategies, such as the ones in Sec-
tion III. To simulate Eclipse users, the simulator goes through
the navigation data step by step, simulating the opening/closing
of tabs, scrolling of files, and switching of tabs. Similarly, for
Patchworks, it simulates a user opening patches, dragging and
dropping patches, and shifting the ribbon, as dictated by the
various strategies from Section III.

Based on the simulated scenarios, we computed two met-
rics for comparing strategies and tools: the number of simu-
lated navigations to patches that were already on screen and
the Keystroke-Level Model (KLM) cost of each navigation in
seconds. KLM [1] is a technique for estimating interaction
times by breaking tasks into low-level operations. Although
these metrics are not entirely orthogonal, each offers important
insights. KLM addresses the time cost of the user interactions
(e.g., clicks) that produce each navigation. However, KLM,
being a model, ignores many details of the real world. Thus,
we also included the simpler on-screen navigations metric.
To build confidence that our results are valid, we looked for
triangulation among these two metrics.

V. RESULTS

In this section, we present the simulator results for each
research question. Table I summarizes our participants’ navi-
gation data, which we used as input to the simulator.

Regarding RQI1, as Figs. 3 and 4 show, the simulator
results across patch-arranging strategies were fairly similar.
Indeed, Kruskal-Wallis tests showed no statistically significant
difference among the strategies in the number of navigations
simulated programmers made to patches already on screen,
and no significant difference in the KLM times yielded by
simulated programmers.

Regarding RQ?2, Figs. 3 and 4 also show that the simulated
Patchworks users had a substantially greater percentage of nav-
igations to patches already on screen and substantially lower
KLM times than simulated users of Eclipse. For purposes
of statistics, we compared simulated Patchworks users using
the Distance patch-arranging strategy to simulated Eclipse
users (however, our results were the same no matter which
strategy we chose). Wilcoxon signed-rank tests showed that
simulated Patchworks users had significantly more navigations
to fragments already on screen (Z = 3.30,p < 0.001), and had

100

[
3 -_
E 80
w0
55 T
o X0
o S
£2 a0
f= -
]
: |
(3]
a 20
0 é
Never Distance Recency DOI Eclipse
Patchworks
Fig. 3. Aggregate results: Percentage of simulated navigations to fragments
already on screen (bigger is better; n = 14).
4
)
e 35
8
& 3 -
5 25 -[
-]
B 2
>
g 15 E
S
8 1
@ 1
£ o5
(=
0
Never Distance Recency DOI Eclipse
Patchworks

Fig. 4. Aggregate results: KLM times (smaller is better; n = 14).

significantly lower KLM times than simulated users of Eclipse
(Z = -3.30,p < 0.001).

VI. DISCUSSION
A. Patchworks: Robust to Different Strategies

Based on our RQI results, it generally mattered little which
patch-arranging strategy was chosen. No strategy showed a
statistically significant improvement over any of the others, and
the magnitude of the differences between the strategies were
relatively small. For example, the best-performing strategy
(DOI, the future-peeking strategy) improved upon the worst
(Never, the no-arranging strategy) by only 16 percentage points
for mean on-screen navigations and by only a 10% speedup in
mean KLM times. This result suggests that Patchworks users
need not be overly concerned about what strategy they use, as
long as they treat the ribbon as a timeline.

Although, in general, strategy had little effect, for a few
participants’ navigation sequences, certain strategies worked
far better or worse than the others (see Figs. 5 and 6). For
example, participants P14 and P7 make an interesting contrast.
For P14’s navigations, the Never strategy outperformed the
others, whereas for P7’s, that strategy performed worse than
the others. P14’s curious result can be explained because
he did not revisit patches very often. In fact, he had the
fewest navigations per fragment of any participant. Because
P14 did little revisiting, there were fewer opportunities to
navigate to patches already on screen, and the cost of moving
patches forward in anticipation of revisits did not outweigh
the cost of simply shifting the ribbon. P7’s result can also be
explained because she made many back-and-forth navigations

ONever ODistance @Recency B DOI W Eclipse
100

00
o

60

40

navigations

Percentage of on-screen
N
[S)

0 = =3
P14 P4 P3 P9 P2 P11 P8 P10 P13 P12 P7 P5 P6 P1
Fig. 5. Per-participant results: Percentage of simulated navigations to
fragments already on screen (bigger is better). Participants sorted from fewest
navigations per fragment to greatest.

ONever ODistance ERecency E@DOI MEclipse

4
3.5
§
8 3
&
EAZ'S
€3
g 5
915
T
= 1
c
S 05
s
0

P14 P4 P3 P9 P2 P11 P8 P10 P13 P12 P7 P5 P6 P1

Fig. 6. Per-participant results: KLM times (smaller is better). Participants
sorted from fewest navigations per fragment to greatest.

between fragments that were initially placed at the extreme
ends of the ribbon. In her case, bringing forward patches
made a considerable difference in reducing the cost of these
navigations.

As another atypical example, for P13’s navigation
sequence, the Recency strategy performed noticeably worse
than the others. In his case, the Recency strategy made many
long, costly shifts along the ribbon to far-away patches,
and when the strategy finally brought the far-away patches
forward, it turned out that they were no longer needed,
leading to more wasted time.

B. Patchworks: Faster than Eclipse Regardless of Strategy

Based on our RQ2 results, Patchworks significantly out-
performed Eclipse. Although Patchworks’” KLM times were
strong, where it really shone was in increasing the number of
navigations to fragments already on screen. Given the limited
viewing space in the Eclipse editor, a user is lucky if there are
three or four fragments visible at a time. In contrast, Patch-
works always displays six patches where fragments can go.

Also clear from the per-participant results (Figs. 5 and 6) is
that Patchworks does a particularly effective job of supporting
revisits. For example, it was no accident that P1’s navigation
sequence, the one with the greatest navigations per fragment,
yielded among the greatest percentage of navigations to on-
screen patches (67-84 percent, depending on strategy) and the
lowest KLLM times. Similarly, the only navigation sequence for
which Patchworks (Distance strategy) had worse KLM times
than Eclipse (albeit by a small amount) was P4’s, who had
among the fewest navigations per fragment.

VII. CONCLUSION

In this paper, we have presented a simulation study of
the Patchworks and Eclipse code editors. The study evaluated
strategies for arranging code fragments in Patchworks, and
compared Patchworks and Eclipse. Our main measures were
the number of navigations that simulated users made to code
that was already on screen, and the cost of navigation based
on KLM. Key findings included the following: (RQ1) There
was little difference among the patch-arranging strategies and
(RQ2) Patchworks had significantly more on-screen naviga-
tions and significantly lower cost per navigation than Eclipse,
regardless of patch-arranging strategy.

These results raise several interesting possibilities for future
work. One question is how programmers might use Patchworks
over days, months, or years. For example, augmenting the
ribbon with timestamps may allow programmers to find what
they were working on a few hours ago or even a few weeks
ago. Another idea is to enable collaborative sharing of ribbons,
which may lead to interesting uses, such as maintaining task-
relevant working sets between team members over periods
of time or helping in onboarding new developers. One final
idea is applying information foraging theory (as in [7]) to
design a recommender system that predicts the fragments a
programmers will visit and automatically assists in arranging
those fragments on the ribbon. In conclusion, exploring these
ideas will provide further insights into the design of effective
tools for the next generation of programming environments.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation (NSF) under Grant No. 1302117.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

REFERENCES

[1] S. K. Card, A. Newell, and T. P. Moran, The Psychology of Human-
Computer Interaction. L. Erlbaum Associates Inc., 1983.

[2] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson, “Towards
understanding programs through wear-based filtering,” in Proc. ACM
Symp. Software Visualization (SOFTVIS °05), 2005, pp. 183-192.

[3] T. d’Entremont and M.-A. Storey, “Using a degree of interest model to
facilitate ontology navigation,” in Proc. VL/HCC, 2009, pp. 127-131.

[4] A.Z. Henley and S. D. Fleming, “The Patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Proc. CHI, 2014, to appear.

[5] A.J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented IDEs: A detailed study of corrective and perfective
maintenance tasks,” in Proc. ICSE, 2005, pp. 126-135.

[6] C. Parnin and C. Gorg, “Building usage contexts during program
comprehension,” in Proc. 14th IEEE Int’l Conf. Program Comprehension
(ICPC °06), 2006, pp. 13-22.

[7]1 D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B. John,
R. Bellamy, and C. Swart, “Reactive information foraging: An empirical
investigation of theory-based recommender systems for programmers,”
in Proc. CHI, 2012, pp. 1471-1480.

[8] D. Piorkowski, S. D. Fleming, C. Scaffidi, L. John, C. Bogart, B. E. John,
M. Burnett, and R. Bellamy, “Modeling programmer navigation: A head-
to-head empirical evaluation of predictive models,” in Proc. VL/HCC,
2011, pp. 109-116.

[9] D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. K. Bellamy, and J. Jordahl, “The whats and hows of programmers’
foraging diets,” in Proc. CHI, 2013, pp. 3063-3072.

