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Abstract—Numerous studies have pointed to the considerable
potential of pair programming, for example, for improving
software quality. Using the technique, two programmers work
together on a single computer, and take turns playing the role
of driver, actively typing and controlling the mouse, and the
role of navigator, attentively monitoring the driver’s work and
offering suggestions. However, being a complex human activity,
there are still many questions about pair programming and its
moderating factors. In this paper, we report on a qualitative study
of seven pairs (14 senior undergraduate and graduate students)
engaged in a debugging task. The study addressed open questions
regarding partner teaching within pair programming, navigator
contributions to tasks, and the impact of partner interruptions.
Key findings included (1) that all pairs exhibited episodes of
teaching, often covering practical development knowledge, such
as how to use programming-tool features, (2) that navigators
contributed numerous ideas to the task and the pairs acted upon
the vast majority of those ideas without discussion, and (3) that
pairs exhibited almost no indications that partner interruptions
disrupted their flow.

I. INTRODUCTION

Over the past fifteen years, pair programming has demon-
strated considerable promise as a technique for enhancing both
software engineering education and practice. In pair program-
ming, two programmers work together on a single computer
(often sharing one keyboard and one mouse) collaboratively
performing programming tasks [30]. At a given time, one
of the programmers plays the role of driver, actively typing
and controlling the mouse, and the other plays the role of
navigator, attentively monitoring and checking the driver’s
work, offering suggestions, and asking clarifying questions.
Numerous benefits have been ascribed to pair programming.
Recent studies have found that pair programming can improve
software quality [11], [15], [21], [29], [28], that pairs complete
tasks faster [1], [8], [21], [29], [28], and that pairing leads
to increased programming self-efficacy (i.e., the confidence
a programmer has in his/her own ability to accomplish a
programming task) [15], [26], [29], [28].

Despite this positive evidence, pair programming remains
among the most controversial of development practices. For
example, Extreme Programming (XP) advocates the practice
of pair programming, with the rationale that the practice yields
more well thought out code faster. However, many practitioners
have expressed doubts about whether the practice is in fact
more efficient than programming individually [3]. Moreover,
some studies have contradicted the findings of benefit. For
instance, one study indicated that pair programming has no

positive effect on development time [20], and another found
that pair productivity varied over projects [21].

This controversy no doubt arises because pair program-
ming is a rich, complex human activity with many potential
moderating factors, which are not well understood. As Chong
and Hurlbutt put it, “our understanding of pair programming
as a practice is, at best, nascent” [7]. The empirical evidence to
date has tended to focus on byproducts and outcomes of pair
programming, with relatively few studies directly examining
the activity in detail.

To help fill this gap, we conducted a qualitative study of se-
nior undergraduate and graduate students working in pairs on a
debugging task. These pairs were working together for the first
time. Williams et al. [29] argue that two programmers pairing
for the first time go through an initial adjustment period, and
eventually become jelled. Jelled pairs are significantly more
productive that pre-jelled pairs (i.e., pairs who have not yet
adjusted to working together). However, the pre-jelled state
may also be important, for example, because each partner is
learning about how the other works for the first time. Thus,
the goal of our study was to refine our understanding of how
pre-jelled pairs behave during pair programming and to reveal
promising directions for future research.

To focus our investigation, we used the following research
questions. Salinger et al. [25] recommend the use of such
focusing perspectives to help save qualitative researchers from
“drowning” in rich qualitative data.

RQ1: (a) to what extent do partners teach one another, and
(b) what types of knowledge do they teach?

RQ2: (a) to what extent do navigators contribute ideas to the
task at hand; (b) what types of ideas do they contribute;
and (c) how do pairs respond to those ideas?

RQ3: (a) to what extent are interruptions by one partner that
disrupt the other’s flow an issue, and (b) what strategies do
pairs use to mitigate interruptions?

Regarding RQ1, pair programming has been touted as
benefitting learning and spreading knowledge [8], [28]; how-
ever, no prior studies have looked at how pairs teach one
another or at the types of knowledge they exchange. Students
in one study reported having learned from their partners, but
the study did not observe the learning firsthand [28]. An-
other study analyzed the communication among “side-by-side”
programmers, who work independently on separate machines
positioned next to each other, and found that participants
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exchanged project details and general knowledge [24], but
the study did not investigate the standard pair programming
technique. Additionally, prior studies have tended to emphasize
the benefits of jelled pairs; however, the pre-jelled period
may be particularly important for teaching because it is each
partner’s first exposure to how the other works.

Regarding RQ2, the thing that most separates pair pro-
gramming from solo programming is the introduction of the
navigator, but what does the navigator really contribute to
tasks? Since the navigator generally lacks direct control of
the activity, it stands to reason that the navigator’s main
contribution to the task will be ideas and suggestions. However,
studies have found that the traditional characterization of the
navigator as a strategist, thinking about the task at a high level
of abstraction, is false, and that navigators approach tasks in
a manner more similar to the drivers [5], [7]. Moreover, some
programmers have indicated feeling more engaged in the task
when they have control of the keyboard and mouse [7], and
one study found that it was not uncommon for navigators to
disengage from the task periodically [23]. But none of these
prior studies has looked specifically at the types of ideas that
the navigator offers and how pairs respond to those ideas.

Regarding RQ3, it has long been held that to maximize
productivity it is important for a programmer to enter flow,
which is a mental state marked by heightened concentration
and full immersion in an activity [10]; but what impact does
pairing have on flow? Flow is notoriously difficult to achieve
in the presence of noise and distractions, and it is unclear
the extent to which a partner might inhibit flow. For instance,
as one anonymous developer told us: “The team I’m on
right now is big on pair programming, and it’s driving me
*crazy*. Subjectively, I feel like having someone sitting over
my shoulder interrupting all the time makes it very difficult to
hold the pieces of a problem or design in my head.” Indeed,
an in-depth study of two pair programmers found that pair
communication was frequent, and that the navigator tended to
dictate what the driver should do [31]. However, Belshee [4]
argues the existence of pair flow in which partners jointly
achieve a flow state. Thus, our study investigated the extent
to which partner interactions disrupt concentration.

The remainder of the paper is organized as follows. Sec-
tion II provides background on prior work regarding the ben-
efits and moderating factors of pair programming. Section III
describes our study method. Sections IV–VI report the results
for each of our research questions along with discussion.
Section VII concludes with discussion of future directions.

II. BACKGROUND: PAIR PROGRAMMING

A. Potential Benefits

The literature suggests several key benefits of pair pro-
gramming.

1) Product Quality: Studies have suggested that pairs
produce higher quality software than solos. For example, a
series of experiments, involving hundreds of undergraduate
college students compared the work of student pairs versus solo
programmers. Student pairs’ projects passed significantly more
automated tests than did solos’ [29], and student pairs scored
significantly higher on their projects than did solos [15]. A

meta-analysis (by Dybå et al.) of four studies of professionals
and 11 studies of students found general agreement among the
studies that pair programming improves software quality over
solo programming, with small to medium effect sizes [11].
But not all results regarding professionals have agreed: One
study of 295 professional programmers found only a 7-percent
(insignificant) improvement in the correctness of pair-produced
programs over those of solos [1]. In contrast, a different study
of 17 professional developers found that software produced
with at least some pair programming had significantly lower
defect densities than software produced by only solo program-
mers [22].

2) Task Efficiency: Studies have also suggested that pairs
produce this higher quality work more efficiently than solo
programmers. For example, one early study of 15 professional
programmers found that pairs completed tasks faster that solos;
however, the difference was not statistically significant. More-
over, the Dybå meta-analysis found that pair programming had
a medium-sized overall reduction of the time to complete tasks,
compared with individual programming [11].

3) Self-Efficacy: A consistent result has been that pairs
report higher confidence in their work than solos. A study
of 15 professionals found that pairs were significantly more
confident in their work than solos [21], a result echoed by a
subsequent study of 554 undergraduate college students [16].
Confidence is particularly important because research has
shown that individuals with high self-efficacy, a person’s
confidence in their ability to perform a particular task, tend
to be more persistent and flexible in their problem solving,
compared to individuals with low self-efficacy [2].

4) Knowledge Transfer: A final potential benefit of pair
programming that the literature suggests is knowledge transfer
between programmers. For example, Cockburn and Williams
offer this characterization: “Knowledge is constantly being
passed between partners, from tool usage tips (even the
mouse), to programming language rules, design and program-
ming idioms, and overall design skill” [8]. There is some
empirical support for this characterization: In one study of
20 undergraduate students, 84 percent of participants agreed
subjectively with a statement that they had learned a topic
better because they were working with a partner [28]. In the
professional realm, an ethnographic study of two teams of
professional developers observed instances where developers
who knew more about a particular task brought developers
with less knowledge up to speed, thus narrowing the gap in
their knowledge [7]. Another study in which 18 professional
developers were interviewed found that although the develop-
ers believed that peer interaction, such as pair programming, is
an effective way to discover new tools, such discovery happens
infrequently [18]. However, none of these studies analyzed
the types of knowledge being taught. In contrast, a qualitative
study of three “side-by-side” programmers (students) observed
instances of the programmers exchanging project-related and
general knowledge [24]; however, the study did not investigate
pairs engaged in the standard pair programming technique.

B. Possible Moderating Factors

As pair programming is a complex human activity, it is
perhaps unsurprising that the literature discusses a number of
factors that may influence the potential benefits of pairing.



1) Pair Jelling: The literature contains some evidence that
pairs may go through an adjustment period when they first
work together [29]. After the pair has adjusted, or jelled, they
perform tasks considerably more efficiently than before. We
are unaware of any prior work that has specifically studied
pre-jelled pairs, and we intentionally focused on new partners
to better understand this essential part of the pairing process.

2) Pair Composition: The literature contains numerous
studies of how pair performance is influenced by various at-
tributes of each partner. Surprisingly, personality traits have not
been a strong indicator of pair performance. For instance, one
study of 196 professional developers found that participants’
personality-test results were not strong indicators of how pairs
performed [14]. Similarly, another study of 218 undergradu-
ate CS students found that differences in conscientiousness
level did not significantly affect the academic performance of
students who pair program [26]. In contrast, combinations of
partner expertise have been indicators of pair performance. For
example, several studies have offered evidence that individuals
with similar expertise levels tend to make more successful
pairs (e.g., [1], [27]). Moreover, one such study found that
lower expertise pairs were generally as successful as higher
expertise pairs on high complexity tasks [1].

3) Engagement: Navigators’ engagement in the task (i.e.,
the amount of attention they give it) has also been shown
to impact pair performance. For example, a study of 31
professional developers found that, although navigator disen-
gagement was sometimes useful, there were also instances
where such disengagement led the navigator to be unable to
follow the driver’s action and to be unable to contribute to the
task at hand [23].

4) Flow: The concept of flow has long been held as
important to successful development [10]. When a developer
is in a flow state, he/she is fully immersed in his/her task, and
achieves a state of heightened concentration and productivity.
More recently, the concept of pair flow has been proposed
wherein a pair of developers working together achieve the
flow state [4]. However, we could find no empirically grounded
characterization of pair flow in the literature. Thus, it is an open
question the extent to which partners interrupt each other’s
flow, and we address this question with our RQ3.

III. METHOD

A. Participants

Participants in our study comprised 14 students (seven
pairs) enrolled in CS courses at the University of Memphis.
Four were senior undergraduate students enrolled in the CS
capstone course. The other 10 were graduate students enrolled
in a graduate-level software engineering course. Two of the 14
participants had pair programmed before in their undergraduate
courses. Table I lists the participants’ background information.

B. Task and Environment

The primary pair programming task consisted of finding
and fixing a bug in jEdit, a Java-based open source text editor.
The defect came from an actual bug report (#2548764) and
involved a problem with jEdit’s text “folding” functionality.
The jEdit code base comprised 96,713 source lines of code.
None of the participants were familiar with jEdit.

TABLE I. PARTICIPANT BACKGROUND INFORMATION.

ID Sex Age Major 
Years of Programming Experience 

Total With Java As professional 
P1M1 M 20s CS 8 3 NA 
P1M2 M 20s CS 4 3 NA 
P2M1 M 40s CS 4 4 0 
P2M2 M 20s CS 4 4 0 
P3M1 M 20s MIS 1 1 0 
P3M2 M 20s CS 4 3 1 
P4M M 20s CS 6 1 2 
P4F F 20s CS 1 1 1 
P5F1 F 20s CS 1 1 0 
P5F2 F 20s CS 3 2 NA 
P6M1 M 20s CE 3 1 0 
P6M2 M 20s ME 5 1 0 
P7M1 M 40s CS 2 2 0 
P7M2 M 20s CS 4 4 4 

Pairs worked side by side at a workstation with a 24”
wide-screen monitor, one keyboard, and one mouse. Their
programming environment consisted mainly of the Eclipse
IDE, although they could also browse the Web or use any
tools commonly found on a Windows PC.

C. Procedure

We randomly partitioned the participants into pairs with the
constraint that pairs had to have compatible schedules. Each
pair participated in a session that was at most 2.5 hours in
length and took place in a closed laboratory (materials avail-
able at http://www.cs.memphis.edu/∼sdf/studies/vlhcc2013/).
For each session, we collected screen-capture video, video of
the participants, and audio of their utterances.

At the beginning of a session, each participant filled
out a background questionnaire. Next, the pairs were given
a 15-minute pair-programming tutorial and practice pair-
programming exercise. The participants then worked on the
main task for 110 minutes. The task was sufficiently challeng-
ing that no participants finished in the allotted time.

D. Analysis

To analyze the data, we used qualitative methods from
grounded theory [13] (esp. the Corbin and Strauss variant [9]).
Central to our qualitative analysis was the coding of data. In
coding, a researcher identifies points in the data where certain
concepts/phenomena are apparent, and marks those points.
In particular, the identification of key concepts/phenomena
happens through an iterative open coding process. As the
researcher immerses him/herself in the data, he/she identifies
and codes concepts. Analytic tools, which consist of thinking
techniques, support the coding process. For example, in con-
stant comparison, with each piece of data that the researcher
analyzes, he/she considers how that data is similar to or
different from the other pieces of data seen so far. As new
concepts emerge, the researcher revisits previously analyzed
data and recodes those data to capture the new concepts. For
our video data, we used our research questions as a guide,
and coded by watching and re-watching the videos, annotating
them with the concepts we observed.

IV. RQ1 RESULTS: PARTNER TEACHING

As Fig. 1 shows, all pairs exhibited teaching episodes (i.e.,
at least one bar per pair). Each episode of teaching involved
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one partner instructing the other in, for example, how to do
something or how something worked. Note that the audio
quality for Pair 3 was poor, potentially making some of their
teaching episodes inaudible.
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Fig. 1. Frequencies of partner-teaching episodes by topic. Vertical lines
separate pairs. * indicates that some data was lost due to poor audio quality.

The topics partners taught can be divided into two cat-
egories: general development knowledge and project-specific
knowledge. General development knowledge is applicable in
a wide variety of software development contexts, whereas
project-specific knowledge tends to be applicable to only one
particular project.

A. General Development Knowledge

Participants taught about two main types of general de-
velopment knowledge: how to use development tools (in this
case, features of Eclipse) and how to use the programming
language (in this case, Java), labeled as Tool and Programming,
respectively, in Fig. 1.

Tool knowledge taught included keyboard shortcuts, how
to perform a code search on the entire project, and how to
use the breakpoint debugger. For example, P6M1 (as driver)
taught P6M2 (as navigator) about breakpoints:

P6M1: If you want a breakpoint, you have to put– [points at
screen] If you want a breakpoint here– [points at screen]
So you have to put from here. [demonstrates placing and
removing a breakpoint; then lets P6M2 try it] . . . This is the
break point.

Programming knowledge included Java naming conven-
tions, how to define an inner class, how to use try/catch
blocks, and the concept of an “offset.” For example, P5F2
(driver) explained to P5F1 (navigator) how to write a Java
catch statement that catches all exceptions:

P5F2: [starts writing a catch block and pauses on entering the
type of exception to be caught]

P5F1: If in the catch block you write dots, it will catch every
type of exception. I don’t know if it’s good in Java [it is not],
but in C++, you don’t have to explicitly mention it, that this
kind of exception is–

P5F2: Um, you can just write “Exception,” just the word, also.
[referring to Java’s Exception class]

B. Project-Specific Knowledge

Participants also taught about two main types of project-
specific knowledge: how to reproduce the bug and the structure

of the jEdit code (e.g., where a particular method was located
in the code), labeled as Bug and Code, respectively, in Fig. 1.

Many participants ran into trouble reproducing the bug,
evidenced by the number of teaching moments related to the
bug. Their difficulty may have arisen because reproducing the
bug required precisely following a series of detailed steps,
and it was easy to make subtle mistakes. For example, P5F1
corrected P5F2 several times on how to recreate bug, as in the
following episode:

P5F2: [types text into jEdit]
P5F1: No, you have to fold that first.
P5F2: Huh?
P5F1: You have to fold it up.
P5F2: Oh yeah. [folds text input]

Code structure knowledge taught included where certain
variables were defined, which methods perform a particular
function, and how to call a particular method. For example,
P5F2 (as navigator) explained that P5F1 had not given the
number of parameters required by a method:

P5F2: It’s not the right one. [takes over driving] . . . This method
accepts two. [corrects the method call] It accepts two integers
you just can’t give it an array.

C. Discussion

Although pre-jelled pairs have generally been characterized
as being less effective than jelled pairs in the literature because
pre-jelled pairs are less efficient than jelled ones, our results
suggest that the pre-jelled period may be a particularly rich
time for learning from a partner—all participants but one
taught their partner something.

Participants’ high number of teaching instances related to
development tools are particularly encouraging. As shown by
the Tool bars in Fig. 1, all but two pairs exhibited instances of
such tool teaching. Modern IDEs contain scads of features, and
leveraging these features effectively can help make developers
significantly more productive [12]. Unfortunately, in practice,
developers frequently take advantage of only a small subset
of the features that IDEs have to offer [17]. The cause of this
deficiency may be that such skills are typically not explicitly
covered by computer science curricula, and developers are
left to discover the skills on their own. Our results suggest
that pair programming may help open developers up to new
tools, helping to fill the education gap, and making them more
productive individuals.

Pre-jelled pairs may see particularly strong gains in such
tool skills. When a pair first works together, the repertoire of
productivity tricks that each partner employs may be quickly
revealed and shared. Our participants’ high number of tool-
teaching instances is consistent with this idea. It stands to
reason that the longer two partners work together, there will
be diminishing returns on such learning. Thus, a possible
implication is that individuals in an organization should pair
up—at least a few times—with as many others as possible to
maximize dissemination of tool skills.

In addition to the above long-term productivity benefits of
pair teaching, the bug-related teaching instances clearly bene-
fited short-term productivity. In every case of teaching about
the bug, one partner exhibited a misunderstanding about how



TABLE II. TIME PARTICIPANTS SPENT AS NAVIGATOR.

Participant Turns as Navigator Time as Navigator Pct. Time 
P1M1 16 0:35:58 30% 
P1M2 16 1:23:37 70% 
P2M1 1 0:11:49 12% 
P2M2 2 1:24:14 88% 
P3M1 11 0:34:49 32% 
P3M2 12 1:14:39 68% 
P4M 2 0:00:21 0% 
P4F 3 1:39:09 100% 
P5F1 9 1:17:41 81% 
P5F2 8 0:18:13 19% 
P6M1 26 0:43:11 39% 
P6M2 25 1:06:17 61% 
P7M1* 5 0:50:28 47% 
P7M2* 4 0:56:09 53% 

* Some data excluded due to missing video. 

to reproduce the bug. Given the subtlety of the steps required
to reproduce the bug, an individual might waste considerable
time figuring out his/her misunderstanding alone. Having a
partner to quickly identify and clear up the misunderstanding
shortcuts this process and speeds up the task overall.

Also noteworthy is that within each pair the teaching
instances did not all come from just one partner. With the
exception of Pair 3 (for which some data was lost), all
participants taught their partners about something. It seems that
everyone had something to offer despite substantial differences
in the programming experience of nearly all pairs (Table I).

V. RQ2 RESULTS: NAVIGATOR CONTRIBUTIONS

A. Preliminaries: Distribution of Navigator Role

Before we address navigator contributions, we first look at
how the partners distributed the role of navigator. As Table II
shows, all participants played the role of navigator at least
once; however, the number of turns each partner took as
navigator and the ratio of time each partner spent as navigator
ranged widely. In our coding, the partner who had control of
the keyboard and mouse was the driver, and the other partner
was the navigator. A technical failure caused the head/hands
video for Pair 7 to be lost. Although it was often clear from the
screen-capture video and audio which of the Pair 7 participants
was navigator, there were some periods where it was unclear
who was driving, and we excluded that data from our analysis.

B. Ideas Offered by the Navigator

As the second to last column of Table III shows, all
participants but one contributed ideas for how to proceed with
the task while playing the role of navigator. (And that one par-
ticipant played the role of navigator for only about 12 minutes
of his 1.5 hour session.) In our coding, a navigator contributed
an idea if he/she verbally recommended or suggested some
action or course of action to the driver.

Also apparent in Table III is that most ideas offered by
navigators were specific actions for the driver to perform. With
such ideas, it was always clear exactly what the driver should
click, type, etc. For example, P6M1 (as navigator) proposed
the specific action of searching within a class for the word
delete using Eclipse’s Find utility:

TABLE III. FREQUENCIES OF IDEAS CONTRIBUTED AS NAVIGATOR.

Participant Specific action Goal/strategy Total ideas Ideas per hour 
P1M1 3 2 5 8.6 
P1M2 12 3 15 10.9 
P2M1 0 0 0 0.0 
P2M2 19 6 25 17.9 
P3M1 2 1 3 5.3 
P3M2 6 0 6 4.9 
P4M* - - - - 
P4F 18 9 27 16.4 
P5F1 13 1 14 10.9 
P5F2 2 0 2 6.7 
P6M1 26 0 26 36.1 
P6M2 2 0 2 1.8 
P7M1 14 4 18 21.7 
P7M2 14 0 14 15.1 
Mean 10.1 2.0 12.1 12.0 

Std. Dev. 8.2 2.8 9.8 9.7 
* P4M played the role of navigator for less than 30 seconds. 

P6M2: [opens the class in the editor]
P6M1: Ctrl-F.
P6M2: [types Ctrl-F, which opens Eclipses Find utility]
P6M1: Just type “delete.”
P6M2: [types “edit”]
P6M1: No, use “delete” because the title itself is “jedit.”
P6M2: [types “delete” and executes the search]

In addition to specific actions, navigators also proposed
(albeit much less frequently) pursuing broad goals and strate-
gies for which the specific actions were not specified. For
instance, Pair 2 was inspecting some source code when P2M2
(as navigator) proposed they pursue the goal of figuring out
how two methods work:

P2M2: Get-line-start-offset, or whatever. End-offset.
P2M1: Say that again.
P2M2: Those methods, get-line-start-offset, get-line-end-offset,

we need to know what that’s doing.

C. Responses to Ideas

As Fig. 2a shows, pairs acted upon the ideas offered by
navigators much more often than not. (See also Table IV for
results broken down by pair.) In our coding, pairs responded to
navigator ideas in one of three ways: (1) acting upon the idea,
(2) modifying/refining the idea, and (3) dismissing the idea.
Pairs acted upon an idea if they took action exactly as specified
by the idea. For example, P4M (as driver) was working on
reproducing the bug in jEdit, when P4F (as navigator) offered
an idea:

P4M: [enters two lines of text into jEdit, the number of lines
that the bug report specified was needed to reproduce the bug]

P4F: You can enter more lines so you can see.
P4M: [enters three more lines, as P4F suggested]

Pairs modified/refined an idea if they changed some aspect of
the idea, and then took action consistent with the modified
idea. For example, P1M2 (as driver) was annotating code with
diagnostic print statements when P1M1 offered an idea to add
an additional diagnostic if-statement:

P1M1: Right there. End-line minus start-line. [points at the
screen] If that is becoming negative– Go ahead and try. . . . I
was going to say, like, if less than 0, then 0, or something.
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Fig. 2. Frequencies of responses (by type) to navigator ideas over all pairs.

TABLE IV. FREQ. OF RESPONSES TO EACH NAVIGATOR’S IDEAS.

Pair Acted upon Modified, 
acted upon 

Not acted 
upon Discussed Not 

discussed 
P1M1 3 1 1 1 4 
P1M2 13 1 1 1 14 
P2M1 0 0 0 0 0 
P2M2 23 0 2 2 23 
P3M1 2 1 0 1 2 
P3M2 6 0 0 0 6 
P4M - - - - - 
P4F 15 0 12 2 25 
P5F1 10 0 4 1 13 
P5F2 2 0 0 0 2 
P6M1 24 0 2 0 26 
P6M2 1 0 1 0 2 
P7M1 15 0 3 2 16 
P7M2 9 1 4 4 10 

P1M2: [types “if”, then deletes it; mumbles; types a diagnostic
print statement that displays the number of lines, rather than
an if-statement, as P2M1 suggested]

Pairs dismissed an idea if they dropped it without acting
upon it. For example, P2M1 (driver) was scrolling in the
console, looking at the thrown-exceptions output, when P2M2
(navigator) suggested navigating to and inspecting the method
endCompoundEdit, which was referenced in the output:

P2M2: One thing I really don’t want to look at is this method
[endCompoundEdit], but–

P2M1: [laughs]
. . .
P2M2: Let’s look at it one more time.
P2M1: [highlights the name of the method endCompoundEdit

in stack trace, but does not move to open the method]
P2M2: [notices another method] Fire-transaction-complete.

Want to look at that method?
P2M1: [opens method fileTransactionComplete in the editor,

disregarding P2M2’s previous suggestion about endCom-
poundEdit]

Also apparent in Fig. 2b is that pairs rarely discussed the
ideas offered by the navigator. In our coding, pairs discussed an
idea if the driver and navigator had a verbal exchange regarding
the idea prior to acting upon, modifying, or dismissing the idea.
A large majority of the time pairs simply acted upon navigator
ideas without any discussion.

D. Discussion

The strong tendency of navigators to suggest specific
actions (i.e., what to click or scroll) to the driver is a testament
to how closely partners worked together. Chong et al. [7] also
observed pairs (professionals) working very closely together—
so close that the partners were practically finishing each other’s
sentences. Similar to the Chong pairs, our navigators were so

engaged in the task and in tune with the context that they
made most of their suggestions at the level of what to click
next, rather than higher level strategies.

Our navigators’ strong tendency to offer ideas for specific
actions contrasts with prior findings about the level of ab-
straction of navigator discourse. In particular, Bryant et al. [5]
studied the utterances of professional pairs and coded them
based on five levels of abstraction (from lowest to highest).
Their study found that navigator discourse was predominantly
at a moderate level of abstraction, in which the program was
discussed in terms of logical chunks and strategies. However,
our navigators’ specific-action suggestions were at a lower
level of abstraction than logical chunks and strategies.

This difference may be because we looked only at utter-
ances in which navigators offered ideas, but it may also be
because of differences between the Bryant pairs and ours. For
example, our pairs may have worked more closely together
than the Bryant professional programmers. A study of profes-
sional pairs by Plonka et al. [23] found that their navigators
often had reason to disengage from the driver’s activity, for
example, because of interruptions or because they divided up
work to be done in parallel with the driver. Our navigators
generally did not exhibit such disengagement behavior.

The difference may also be because the Bryant pairs were
professionals who had been pair programming for over 6
months. Thus, their pairs were likely already jelled, and as
such, had developed their pair communication such that they
could converse using higher levels of abstraction. In contrast,
our pairs may not have developed the common vernacular nec-
essary for easy communication at higher levels of abstraction.

Further indication of the closeness with which our navi-
gators and drivers worked together was how pairs responded
to navigator ideas: The vast majority of times, pairs acted
upon such ideas without any discussion. Chong et al. [7]
observed that when pairs were closely in sync, they had a
shared context that reduced how much they needed to say
to communicate a thought. Such a shared context among our
pairs may have in many cases mitigated the need to discuss
a navigator idea because the intent was evident to the driver.
This shared context may also explain why pairs acted upon so
many of the navigators’ ideas: By being in tune with driver, the
navigators were able to suggest ideas that were closely aligned
with the drivers’ goals and activities. Thus, drivers found many
of the ideas apt and chose to act upon them.

As shown in Table IV, Pair 4 was a notable exception to
this trend, and their divergence may have been an indication
of pair dysfunction. In particular, the pair dismissed a consid-
erable number of P4F’s ideas—44%, the highest dismissal rate
of any navigator. This pair was also peculiar in that P4M drove
the entire 1.5 hour session (save for 21 seconds). It is difficult
to overlook the possible gender implications here because Pair
4 was the only mixed gender pair. A common pattern with the
pair was for P4F to suggest an idea and for P4M to ignore
her, offering no acknowledgment that she had spoken. To her
credit, P4F stayed engaged in the task for the entire session,
and was persistent, often voicing an idea several times (and
having it dismissed) before P4M finally acknowledged the idea
and acted upon it. Williams and Kessler [27] argue (and we
agree) that gender itself is a non-issue in pair programming;



however, gender chauvinism, an attitude of superiority toward
members of the opposite gender, can be an issue. At present,
the literature contains relatively little empirical evidence about
gender bias and compatibility in pairing, and it is an open
question whether chauvinism played a role in P4M’s behavior
and the extent to which chauvinism is generally an issue in
pair programming.

VI. RQ3 RESULTS: PARTNER DISRUPTIONS OF FLOW

In 14 hours of video, only one participant indicated that
his partner had disrupted his concentration. We coded an
episode as indicating an interruption if a participant gave a
clear sign that his/her partner had disrupted his/her thinking.
In the one such episode we coded, P7M1 (as driver) was
trying to reproduce the bug while simultaneously monitoring
jEdit’s internal state in the debugger. This activity apparently
required concentration because whenever the debugger hit a
breakpoint, jEdit froze and become unresponsive. Because the
jEdit window usually covered the debugger window, it was
not always clear why jEdit had frozen. As P7M1 was working
through this activity, P7M2 (as navigator) interrupted him:

P7M1: [trying to reproduce the bug, flipping back and forth
between jEdit and the debugger]

P7M2: You have to–
P7M1: It’s defining it there.
P7M2: You just press F8.
P7M1: Yeah. Let me think for a second. You’re kind of pushing

me through here.
P7M2: OK.

Complying with P7M1’s request, P7M2 waited for P7M1 to
finish what he was doing before speaking again.

A. Discussion

The lack of partner interruptions in our pairs is encouraging
given concerns about the potential interaction between flow
and pairing. Our results are consistent with the idea that partner
interruptions are infrequent, and therefore, may be relatively
easy to manage. For example, handling such situations in the
manner of Pair 7—by simply asking the interrupting partner
to hold his/her thought—may be sufficient.

There are several possible explanations for the lack of ob-
served partner interruptions: First, partners may have tended to
enter flow state, but not to interrupt each other’s flow. Second,
participants may have tended not to enter flow state in the
first place. Third, participants may have been interrupted more
than our results indicate, but tended not to give observable
indications when it happened. In rest of this section, we discuss
the first two of these possibilities in turn.

When two partners work together closely on a task, they
may be able to enter and maintain flow without interrupting
each other. This idea is consistent with Belshee’s notion of
pair flow [4]; however, Belshee provided neither a detailed
characterization of pair flow, nor empirical support for its
existence. In Section V, our results suggested that the pairs
were working together extremely closely. In doing so, a partner
may be integrated into the task to the extent that interacting
with him/her does not disrupt either partner’s flow or take
either one out of the task. The interruption we saw with Pair 7

seemed to be a case where one partner was engaged in a sub-
activity that was particularly taxing on his cognitive resources.
Although our participants encountered few such situations, it is
an open question how much those situations present themselves
in contexts other than debugging (e.g., in design tasks).

It is also possible that partners did not interrupt each other’s
flow because they tended not to enter flow state. Nakamura and
Csikszentmihalyi [19] argue that a sense that one is engaging
challenges at a level appropriate to one’s capacities is necessary
for achieving a flow state. Situations where a person feels
inadequate for the task may lead to feelings of anxiety or
apathy toward the task, feelings which inhibit flow. Several
participants indicated feeling daunted by the task, and thus,
they may have had difficulty entering flow. For example, Pairs
1, 2, and 5 each expressed frustration with the task in the
following three episodes:

P1M1: This is frustrating. So much code.

P2M2: The screen is getting blurry.
P2M1: [laughs] No, that is your eyes. [laughs more]
P2M2: Yeah.

P5F2: I’m tired of catching the same exceptions. [both partners
laugh]

However, recall (Section III) that studies have shown that
pair programming tends to raise programmers’ self-efficacy.
The fact that often partners’ expressions of frustration were
responded to with humor and laughter by the pair may be in-
dicative of how having a partner helps to ease anxieties. Thus,
an interesting question is whether pairing actually promotes
flow by reducing anxieties, which can inhibit flow.

VII. CONCLUSION AND FUTURE WORK

In conclusion, our qualitative study has shed new light
on several aspects of pair programming: partner teaching,
navigator contributions to the task, and partner interruptions
of flow. Key findings of our study included:

RQ1 (partner teaching):
• Partner teaching was common—all participants but one

taught their partner something.
• Often the knowledge taught was general development

knowledge about tools and programming, knowledge in
which many developers have been found to have gaps [17].

• The most common knowledge taught was project-specific
knowledge about how to reproduce the bug, the teaching
of which served to clear up subtle misunderstandings that
might otherwise have taken considerable time to resolve.

RQ2 (navigator contributions to the task):
• All navigators but one (who played the role for only 12

minutes) contributed ideas to the task, with an average
rate of 12 ideas per hour.

• The vast majority of navigator ideas were specific actions
for the driver to take, which suggests that navigators may
have actually been more like “backseat drivers,” working
extremely closely with the driver and reasoning about the
activity at essentially the same level.

• The vast majority of navigator ideas were acted upon
without discussion, which further indicates the closeness
with which drivers and navigators worked.



RQ3 (partner disruptions of flow):
• Among all the pairs, there was only one episode where a

participant exhibited a clear instance of having his flow
disrupted by his partner. By working very closely together,
partners may have been so well integrated with each
others’ activities that interruptions were not an issue.

These findings point to several promising avenues for
future research. Our partner-teaching findings point to the idea
that “promiscuous pairing” (pairing with many partners) may
increase developer expertise and productivity. Furthermore, a
few “trysts” with each partner may be sufficient to get the
main benefit. Others in the literature (e.g., [6]) have discussed
the usefulness of promiscuous pairing (at any stage of jelling)
for maintaining awareness of the state of the project. However,
ours is the first work to suggest the importance of promiscuity
among pre-jelled partners for spreading tool skills.

Our navigator-contribution findings suggest that navigators
follow closely what the driver is doing; however, this leaves
open the potential problem of the navigator losing activity
awareness of what the driver is doing. For example, the driver
might be performing a sequence of actions quickly, and the
navigator might lose the thread or not understand the rationale
behind the driver’s actions.

Our findings regarding the absence of partner disruptions
of flow may also have implications here. In particular, pairs in
our study were mainly engaged in program comprehension and
bug localization activities. Thus, they were likely coping with
uncertainty as they worked—but what if they were engaged in
activities for which the path was clearer? In such situations, the
driver might roll ahead, applying greater concentration to get
through the activity efficiently. Thus, the driver would be more
susceptible to interruptions, and the navigator more likely to
lose activity awareness.

Finally, our study emphasized debugging, and it is an open
question to what extent our findings generalize to other types
of programming tasks. Further study of the above possibil-
ities could yield considerable implications for the practice
of pair programming, and could help software engineering
practitioners and educators alike better leverage this promising
technique.
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