
Separating Synchronization Concerns
with Frameworks and Generative Programming

Scott D. Fleming, R. E. K. Stirewalt, Laura K. Dillon, and Beata Sarna-Starosta
Software Engineering and Network Systems Laboratory

Department of Computer Science and Engineering
Michigan State University

East Lansing, Michigan USA 48824{sdf,stire,ldillon,bss}@cse.msu.edu

Abstract

Thread synchronization in object-oriented systems is difficult to implement, in part, because traditional
synchronization mechanisms are low level and, in part, because synchronization code is cross cutting and
usually interleaved with functional code. In prior work, weaddressed the first of these problems with a
compositional model of mutual exclusion calledSzumo, that is customized to the needs of strictly exclusive
systems. This paper extends our prior work to address the second problem. We present SzumoC++, an
approach to building strictly exclusive systems in C++ thataffords a high degree of abstraction and separa-
tion of concerns. Development in SzumoC++ proceeds from an explicit design model, which is assumed to
have been validated. Our approach uses object-oriented frameworks and a custom specification language to
support the development of separate functional and synchronization modules which retain a high degree of
design transparency. By virtue of this transparency, and with the aid of generative programming techniques,
these separately implemented modules may be composed in a consistent manner. By virtue of being based
on a Szumo design, we expect the resulting systems to be robust under change.

1 Introduction

Thread synchronization in object-oriented (OO) systems isa global and cross-cutting concern, which is dif-
ficult to implement and is resistant to clean separation fromthe primary functional logic of programs. While
much progress has been made in the development of tools and frameworks for separating the synchronization
from the functional logic of a program (e.g., [18]), synchronization concerns are difficult to modularize in
such a manner that local changes to the functional logic engender commensurately local changes to the syn-
chronization logic. Consequently, accommodating a local change or extension to the functional logic could
require a redesign of the program’s synchronization logic.This problem is especially vexing during software
maintenance and is detrimental to the construction of open and adaptable systems. Our work aims to support
the development and long-term maintenance of multi-threaded OO systems that are robust under change. We
believe this goal can be achieved if the methods used to separate synchronization from functional logic are
based on clean compositional design models, and if the separated synchronization and functional modules
exhibit a high degree of transparency with respect to the design. This design transparency enables both the
automated composition of and a form of consistency checkingbetween the functional and synchronization
modules.

Previously, we developed a compositional model of synchronization called the Synchronization Units
Model (Szumo) [2, 25]. Szumo trades generality for compositionality by focusing on the category ofstrictly
exclusive systems, in which multiple threads compete for exclusive access to dynamically changing sets of
shared resources. This narrowing of focus was motivated by the observation that many applications fit well
in this category and that, in such cases, we can exploit a clean, compositional model of design and verifica-

1

tion [22, 9]. Examples of strictly exclusive systems include extensible web servers and interactive applications
with complex graphical user interfaces.

Our previous implementation of Szumo involved an extensionof an existing programming language (Eif-
fel) with new constructs that directly express the featuresof a Szumo design [1, 25]. Using this extended
language, we were able to show how Szumo supports modular descriptions of the synchronization concern,
raising the level of abstraction at which synchronization concerns are expressed, and automating implemen-
tation and enforcement of these concerns. A case study involving maintenance and evolution of a web server,
based on the architectural design of Apache, demonstrated that a well-designed Szumo application could be
safely modified and extended without requiring redesign of the original synchronization concern [3]. How-
ever, this implementation of Szumo lacked facilities for separating synchronization logic and functional logic
to the extent achievable in approaches such as [4, 8, 18]. Upon reflection, we realized that an implementation
of Szumo based solely on a language extension could not easily accommodate such facilities, especially in a
modern production language such as C++.

This paper describes a new approach to programming Szumo applications that overcomes these deficien-
cies. The approach builds on explicit models of a Szumo design and a new programming system, called
SzumoC++. A prototype implementation of our programming system can be found at:

http://www.cse.msu.edu/sens/szumo/szumoc++.tar.gz.

SzumoC++ uses a novel combination of plug-compatible OO frameworks and generative programming to
impose upon the separated functional and synchronization modules a level of design transparency that enables
the safe and automatic composition of concerns.The result simplifies programming of the synchronization
concern and supports a separation of functional and synchronization concerns that inherits Szumo’s support
for robustness under change. In the remainder of the paper, we first give a background on the Szumo model
and a sample Szumo design to use in a running example (Section0.2). We then provide an overview of our
approach (Section 0.3), deferring the details of its many components to later sections. We conclude with a
comparison with related work (Section 0.8), and a discussion of lessons learned and possible directions for
the future work (Section 0.9).

2 Szumo

Irrespective of how it is implemented (i.e., as a language extension or as part of a programming system),
Szumo is a model of synchronization among entities in a strictly exclusive program. In this model, threads
contend with one another for exclusive access to sets ofsynchronization units. Intuitively, the synchronization
units in an application define indivisible units of sharing—at any time during execution, a thread is allowed
to access either all of the objects contained in a synchronization unit or none of the objects contained in that
unit [1, 25]. In lieu of code that invokes OS-level synchronization primitives, a synchronization unit declares
one or moresynchronization constraints, which specify the conditions under which the unit—acting as a
client—needs exclusive access to units—acting as the client’sdirect suppliers—that the client holds refer-
ences to. At run time, threadsnegotiatefor exclusive access to suppliers in accordance with the constraints
declared by any clients that they are executing. The declarative nature of synchronization constraints and
this automated process of negotiation are key to Szumo’s support for extension and maintenance [3]. As a
background for subsequent sections, we now describe the details of a Szumo design, and provide an overview
of the negotiation process.

2.1 Design Models

A key component of our approach is the use of an explicit modelof a program’s design, which is used both
as a reference during implementation and also during the composition of separated concerns. Szumo design

2

<<unit>>

right

sync_constr = "eating ==> right"

sync_constr = "eating ==> left"

<<unit>>

Philosopher Fork

void think()

<<unit>>

eating: bool

<<root_unit>> left

void eat()

Philosopher

before eat()

after eat()

! eating eating

(a) (b)

Figure 1: Diagrams depicting the unit-class and synchronization-state models of a Szumo design

models are expressed using a variant of the class and state diagram notations of UML 2.0 [21]. These models
impose a modular structure upon and record key design decisions related to the synchronization concern.

An important design decision involves the granularity of sharing among the threads. Szumo allows appli-
cation developers to choose the granularity of sharing by means of synchronization units, which are containers
of (one or more) program objects. Synchronization units themselves resemble objects in that they may en-
capsulate state, provide operations, and reference other synchronization units whose operations they use to
implement their own. When a program object is created, it is deployed to exactly one synchronization unit,
where it remains throughout its lifetime. A thread that holds exclusive access to a synchronization unit, holds
exclusive access to all objects contained within this unit.

Synchronization units are identified with instances of types calledunit classes. In addition to standard
operations, a unit classC may declareunit variables, condition variables, and synchronization constraints.
Unit variables reference synchronization units that serveas direct suppliers to units of typeC. Condition
variables are boolean-valued variables in a unit class. Thesynchronization constraints specify the suppliers
to which a client unit requires exclusive access based on thevalues of the unit’s condition variables and unit
variables. We say that a client unitc entailsa direct suppliers whenc requires exclusive access tos, and
refer to the set of all direct suppliers thatc entails at any given time asc’s entailment.

To illustrate these ideas, Fig. 1 depicts the models used to record the design of a Szumo solution to the
familiar dining philosophers problem, which we will use as arunning example in this paper. Fig. 1(a) depicts
the unit-class model, which is just a UML class diagram with the following extensions. The stereotypes
〈〈unit〉〉 and〈〈root unit〉〉 designate unit classes whose instances are, respectively,units that are passive
and can be shared among multiple threads, and units that serve as non-shared thread “roots”. We show con-
dition variables as class attributes, unit variables as directed associations, and synchronization constraints as
limited propositional formulas over condition variables and unit variables, formed using theentailment oper-
ator “==>”. The set of synchronization constraints for a client classis given as a value for the “syncconstr”
tag associated with that class. Thus, Fig. 1(a) shows that philosopher units execute in different threads (i.e.,
serve as root units) and perform operations on fork units bound to their unit variables,left andright.
Fork units are passive and may be shared. Associated with each philosopher, condition variableeating sig-
nifies when the philosopher needs exclusive access to its forks. The philosopher’s synchronization constraint
asserts that, ifeating is true, the philosopher entails the fork units bound toleft andright.

A synchronization-state model, which is depicted using a UML state diagram (Fig. 1(b)), shows how
operations that a unit performs affect the values of its condition variables. Transitions are annotated with
events that designate when they are taken. States are labeled with boolean expressions over the unit’s con-
dition variables, signifying possible valuations of the variables in the states. An arrow with no source state
marks the initial state. Thus, when a philosopher starts execution, itseating variable is false. Immediately
before the philosopher invokes itseat operation,eating becomes true, and immediately upon return of
this operation,eating becomes false. Together, the unit-class and synchronization-state models document
that a philosopher entails its forks while executing aneat operation.

The diagrams in Fig. 1 show how we represent functional and synchronization concerns in a Szumo
design. Although mixed, the representations of both concerns are highly abstracted in order to document how
the concerns affect one another in a precise, but intuitive,fashion, and to enable generation of behavioral

3

models that can be analyzed for concurrency errors. A developer uses these behavioral models in verifying
that a Szumo design exhibits necessary safety and liveness properties [22], and in generating visual traces of
anomalous behaviors, such as deadlocks [9]. By such means, she can debug the design before implementing
either of the concerns.

2.2 Negotiation

The set of units that a Szumo thread needs to access can be inferred at run time. For instance, from the
diagrams in Fig. 1, we infer that a thread needs only its root unit, except when executing the root’seat
operation, in which case it needs theFork units referenced by the root’sleft andright unit variables.
More generally, a thread needs all units in which it is executing, as well as any unit entailed by a unit
that it needs.1 The conjunction of the synchronization constraints associated with the units that a thread
needs defines the thread’s synchronization contract. The contract changes dynamically as the thread modifies
condition variables and unit variables of the units in whichit executes. Whenever a thread’s contract changes,
its contract must be (re)negotiated.

The semantics of contract negotiation is based on the concept of arealm, which is a set of synchronization
units associated with a thread. Each thread has its own realm. When executing, a thread is allowed to access
all units in its realm, and prevented from accessing any units outside its realm. To guarantee mutual exclusion,
the realms of different threads must always be disjoint; thus, no unit is permitted to simultaneously be in the
realm of more than one thread.

Changes in a thread’s contract may result in the thread holding units that it no longer needs or needing
units that it does not hold. When a thread’s realm contains exactly the set of needed units, we say that the
realm iscomplete; otherwise we say it isdamaged. A thread with a damaged realm blocks until the realm is
made complete. To make a thread’s realm complete, unneeded units are firstmigratedout of the realm. Then,
if no other thread holds any of the units needed by the thread,all units that the thread needs but does hold
are atomically migrated into the realm; otherwise, the thread blocks until its realm can be completed (i.e., no
needed units are held by other threads).

From a user’s perspective, a thread executes within a unit inits (complete) realm until it performs an
operation that modifies the values of the unit’s condition variables or unit variables, thereby damaging the
realm. Consider, for instance, a threadt whose initial realm contains only a philosopher unitp in its initial
state, in whichp.eating is false. Then, the entailment ofp is an empty set, and sot’s realm is complete.
However, before invoking theeat operation,p.eating becomes true, thereby affectingp’s entailment and
damagingt’s realm. To completet’s realm, the newly entailed fork units referenced byp.left andp.right

must be migrated into the realm. If neither of the fork units is held by another thread, they are atomically
migrated intot’s realm, andt continues its execution. Conversely, if either unit is in some other realm,t
blocks, with its realm damaged, until both units become available; at which time they are atomically migrated
into t’s realm, andt continues its execution.

3 Overview of SzumoC++

Having analyzed and verified a Szumo design, a developer would naturally like the implementation to be as
faithful to the design as possible. However, to enable analysis and verification, a Szumo design must indicate
how functional and synchronization concerns affect one another. Mixing these concerns in an implementation
obstructs understanding of the code and complicates testing and maintenance. Thus, when concerns are
mixed in the design model, the goals of separating functional and synchronization concerns and of producing

1Formally, we define the needs of a thread as the smallest set ofunits that contains the set of units a thread is executing and
that is closed under theentails relation. This inductive definition of needs based on the entailment closure is necessary for local
synchronization constraints to affect the global synchronization behavior.

4

Unit Class

Model

Synchronization
State Model

Szumo design

Specification
Synchronization

Executable Image
(synchronization

aware)
SzumoSzep

C++ Class
(synchronization

optimistic)

Figure 2: Overview of SzumoC++ approach

a transparent implementation of the design appear to be at odds with one another. SzumoC++ addresses this
problem, effectively supporting both goals.

Assuming that the developer is confident that the synchronization concern will be correct if implemented
and integrated with the functional concern in accordance with a design, separating the programming of these
concerns is justified. We support this separation of implementations while providing a high level of de-
sign consistency and transparency using a two-phase approach, which is illustrated in Fig. 2. Starting from a
Szumo design, the developer first programs and debugs the functional logic, without worrying about synchro-
nization. She then separately programs the synchronization logic and weaves this logic with the functional
logic using an automated tool. In the figure, programming tasks are depicted using dashed arrows; whereas
data flows into and out of the automated tool are depicted using solid arrows. To enforce design transparency
and to guard against inconsistencies that may arise by virtue of separating concerns, SzumoC++ includes a
pair of white-box OO frameworks [15], calledSimpleFrame andSzumoFrame, and a generative pro-
gramming tool, called SzumoSzep.

In the first phase of our two-phase approach, the developer usesSimpleFrame to code up the func-
tional logic of the program so that it reflects the structure of the unit-class model. She specializes framework
classes to produce C++ unit classes, whose instances will become the synchronization units in the completed
program. In this phase, the developer simply assumes that clients will have exclusive access to their direct
suppliers whenever necessary and writes code to implement only the functional logic. We refer to the pro-
gram developed in this phase as beingsynchronization optimisticbecause it is written under this optimistic
assumption.

SimpleFrame classes are essentially placeholders that stand in for their SzumoFrame counterparts.
From the programmer’s standpoint, classes inSimpleFrame are plug compatible with classes inSzu-
moFrame in the following sense: An application class that inherits from aSimpleFrame class can be
reparented to inherit from aSzumoFrame class of the same name without having to modify any of the
programmer’s code. Thus, a program that instantiatesSimpleFrame can be ported to one that instantiates
SzumoFrame without having toundoany of the programmer’s design decisions. Of course, to exploit the
synchronization facilities provided by theSzumoFrame classes, it will be necessary to add code to the
synchronization-optimistic program. This separation allows the programmer to perform early unit testing to
check for errors in the functional logic. Locating sources of errors detected in this phase is simplified by
not having synchronization code woven in. Moreover, the transparency of the synchronization-optimistic
program with respect to the design could be verified, using either auditing procedures or through the facilities
of a UML-based IDE. This transparency is essential to ensurethat this program will compose correctly with
the separately specified synchronization logic.

In the second phase of our approach, the developer writessynchronization specifications, which collec-

5

start() : void

Thread

run() : void

RootUnit
Unit

Figure 3: Class diagram for SimpleFrame

tively define the synchronization concern, and uses SzumoSzep to integrate this concern into the synchro-
nization-optimistic program. A synchronization specification is supplied for each unit class in the design.
It is written in a special notation that expresses the synchronization relevant aspects of a Szumo design in
a highly transparent manner. SzumoSzep promotes synchronization-optimistic unit classes into classes that
aresynchronization awareby instantiatingSzumoFrame rather thanSimpleFrame and weaving in logic
generated from the synchronization specifications to invoke operations defined inSzumoFrame. In addition
to its generative and weaving capabilities, SzumoSzep provides a degree of consistency checking between
the synchronization-optimistic program and the synchronization specifications. This capability derives from
the design transparency afforded by our approach.

A key difference between our approach and aspect-oriented approaches to separating synchronization
concerns, such as the D framework [18], is our reliance on an explicit design and the measures we take to
ensure design transparency among the implementations of the separated concerns. Our approach is thus able
to provide prescriptive guidance on how to design the functional logic to enable a clean separation of concerns
and also to check for inconsistencies during composition. To our knowledge, no other approach can achieve
this degree of separation of global synchronization concerns, even when restricted to only the category of
strictly exclusive systems. Our use of a surrogate framework that allows a developer to “condition” the
functional logic so that it may be plugged into a complex and feature-rich framework is also novel. The
developer works directly withSimpleFrame in the first phase and SzumoSzep in the second. She never
directly works withSzumoFrame.2 Rather, SzumoSzep automatically instantiatesSzumoFrame while
weaving in the synchronization logic. We are not aware of other approaches that use plug-compatible OO
frameworks and generative programming in this synergisticmanner. The remainder of this paper describes
the various components of our approach in more detail and reflects on the design of these components.

4 Synchronization-Optimistic Programs

We now elaborate this idea of a synchronization optimistic program, whose classes implement the “functional
part” of a Szumo design. Recall that such a program assumes exclusive access to shared resources when they
are needed without taking steps to guarantee this assumption. Synchronization optimistic programs are con-
structed using the facilities of an object-oriented framework calledSimpleFrame, whose instantiation is
guided by a Szumo design (Section 0.4.1). The resulting program incorporates the structure of this design
but lacks any synchronization logic. Its classes are thus more amenable to understanding and unit testing;
however, if executed, the entire program is likely to exhibit concurrency errors, such as data races. Such a
program must then bepromotedinto one that is synchronization aware. Generally speaking, it is difficult
to promote an arbitrary program with no synchronization logic into one that is synchronization aware (Sec-
tion 0.4.2). However because a synchronization optimisticprogram incorporates the structure of a Szumo
design, promotion can be completely automated, as explained in the sequel.

4.1 SimpleFrame by Example

SimpleFrame is an object-oriented framework that enables a programmer to easily construct synchronization-
optimistic concurrent programs such that the objects are partitioned into synchronization units. Recall that

2Section 0.6 provides details aboutSzumoFrame and how it is instantiated for the reader who is interested, not just in how an
application developer uses SzumoC++, but also in how it works. Readers who are not interested in these details may safelyskip
Section 0.6.

6

1 class Fork : public virtual Unit { ... };
2

3 class Philosopher : public virtual RootUnit {
4 public:
5 Philosopher(Fork* l, Fork* r, int i);
6 void eat();
7 void think();
8 virtual void run();
9 ...

10 private:
11 Fork* left; Fork* right; int id;
12 };
13

14 void Philosopher::eat()
15 { cout << left <<" and "<< right <<" are in use\n";
16 cout << this <<" is eating\n";
17 cout << left <<" and "<< right <<" are free\n";
18 }
19

20 void Philosopher::think()
21 { cout << this <<" is thinking\n"; }
22

23 void Philosopher::run()
24 { while (true) { think(); eat(); } }
25 ...

Figure 4: Synchronization-optimistic program

an object-oriented framework is an application skeleton that is fleshed out into a concrete application by a
process calledframework instantiation, which involves:

• designing classes that extend (i.e., inherit from) one or more framework classes,

• writing code that allocates and configures instances of these new classes and perhaps also instances of
unextended framework classes, and

• writing or reusing a “main” program that cedes control to a driver, which is provided by the framework.

SimpleFrame provides three framework classes,Thread, Unit andRootUnit (Fig. 3). TheThread
andRootUnit classes are similar to the Java API classesThread andRunnable, respectively.Sim-
pleFrame is instantiated as follows. First, the designer creates a collection of application classes that
inherit and appropriately extend the framework classesUnit andRootUnit. This is a trivial exercise
because a Szumo design clearly identifies which applicationclasses are to be synchronization classes, and
thus should inherit fromUnit, and which should be root-unit classes, and thus should inherit from Root-
Unit. Next, she allocates instances of these application classes and of the framework classThread and
configures these instances appropriately. Finally, she writes a “main” program that calls into a framework
functioninit runtime, which causes the main thread to block until all activated threads have terminated.

Fig. 4 illustrates how to instantiateSimpleFrame for the dining philosophers problem. To designate
that the forks are passive shared (collections of) objects,classFork inherits fromUnit. To produce philoso-
pher units that may serve as the root of a thread’s realm, classPhilosopher inherits fromRootUnit and
provides an implementation ofrun for a thread to invoke. It declares instance variablesleft andright,
which will be bound to fork units to use when eating. Therunmethod repeatedly invokes two local methods,
firstthink and theneat (lines 23–24). Invokingeat on a philosopher appends a trace to the output stream
(lines 15–17). In this case, the trace models the activity a philosopher performs to eat.

The simplicity of the methods in Fig. 4 owes to the fact that they express only synchronization-optimistic
logic, without regard to the global context in which the object is deployed: A philosopher repeatedly thinks
and then eats, emitting a trace modeling its activities; moreover, it performs these activities regardless of how
many philosophers are created, how the philosophers are configured to reference forks, whether philosophers
eat concurrently or sequentially, and so on. Of course, without proper synchronization, there is no way to

7

ensure that if two philosophers share a fork, they never eat at the same time. For example, the synchronization-
optimistic program might generate a trace of the form

...

Fork 0 and Fork 1 are in use

Philosopher 0 is eating

Fork 1 and Fork 2 are in use

Philosopher 1 is eating

...

in which two philosophers are modeled as both eating withFork 1 at the same time. Synchronization logic
must be introduced to prevent multiple threads from interleaving in this manner.

4.2 Obstacles to Promotion

Readers who are familiar with textbook solutions to the dining philosophers problem should appreciate the
transparency of the code in Fig. 4. The code becomes much harder to read and understand when it includes
synchronization logic. For example, in a common monitor-based solution, each fork is implemented as a
monitor, which encapsulates a status variable that recordsavailability and which supplies two methods,up
anddown, for philosophers to invoke before and after eating. Briefly, theup method either makes the fork
unavailable or, if it is already unavailable, inserts the caller on the fork’swait queueand blocks; whereas the
down method makes the fork available and, if the fork’s wait queueis nonempty, also unblocks a waiting
philosopher. Then, to prevent races on the forks, a philosopher callsleft.up andright.up before the
call toeat andleft.down andright.down after the call. As long as the monitors are fair, this design
is also fair. However, it does not necessarily prevent deadlock. A common strategy for preventing deadlock
is to impose a total order on the forks and arrange that each philosopher callsup on the fork that comes first
in this order and then callsup on the other fork.

Even in this simple example, the synchronization logic becomes complex. Much of this complexity
stems from the low level at which synchronization is operationalized. The requirement that a philosopher
needs exclusive access to both forks while eating is simple enough to state and understand. But implement-
ing it requires defining a low-level protocol for how objectsexchange status information in method calls,
manipulate queues, and block and unblock.

Additionally, the code implementing this protocol is not confined to one module, but is spread throughout
the code base. As a result, it is difficult to reason about. Forexample, to reason that the synchronization
logic in classFork is correct requires knowing properties of classPhilosopher that are not typically
documented in the class interface (e.g., that philosopherscall a fork’sup method before eating and itsdown
method after eating and never callup twice without callingdown in between). Thus, two key problems that
contribute to the complexity of thread synchronization in object-oriented systems are: First, the synchroniza-
tion logic is operationalized at a low level of abstraction.Second, the code that operationalizes it is cross
cutting and interleaved with the functional code. SzumoC++addresses both of these problems.

5 Synchronization Specifications

We now elaborate the notion of a synchronization specification, which defines that aspect of the synchro-
nization concern that pertains to a particular unit class ina Szumo design. The specification declares a unit’s
entailment at a suitably high level of abstraction. In the sequel, we illustrate how the SzumoSzep tool uses
synchronization specifications to promote syncopt unit classes into synchronization-aware unit classes. The
resulting synchronization-aware program incorporates logic for ensuring that a thread does not access units
outside its realm and a negotiation protocol that blocks a thread from executing until when all of its needs are
met.

8

1 sync_spec Fork {};
2

3 sync_spec Philosopher {
4 unit left; unit right;
5 sync_pointcut phil_eats : call(eat);
6 condition eating {
7 init(false);
8 trigger before: phil_eats;
9 cancel after: phil_eats;

10 }
11 constraint {
12 eating ==> left;
13 eating ==> right;
14 }
15 };

Figure 5: Example synchronization specifications

Fig. 5 depicts synchronization specifications for the unit classesPhilosopher andFork. Each spec-
ification consists of a header, introduced by the keywordsync spec, followed by a body, delimited by set
braces. The header names the unit class to be promoted, and the body declares how operations affect the val-
ues of condition variables. The body of the synchronizationspecification forFork is empty (line 1) because
fork units have no condition variables or synchronization constraints. In contrast, the body of the synchro-
nization specification forPhilosopher formalizes the requirement that when a philosopher is eating, she
needs exclusive access to both of her forks. In order to do so,it declares

• two unit variables,left andright (line 4);

• apointcut designator, phil eats (line 5);

• a condition variable,eating (line 6), aninitial-value clausefor eating (line 7), and twotransition
clausesspecifying when the value ofeating may change (lines 8 and 9); and

• two synchronization constraints (lines 12 and 13).

The notion of pointcut designators derives from the AspectJlanguage [16]. The other features are imported
almost verbatim from Szumo design models.

Theunit declarations name unit variables, which are assumed to havebeen declared in the unit-class
model. The current version of SzumoSzep handles synchronization constraints of the form

condVar ==> unitVar (1)

wherecondVar andunitVar stand for a condition variable and a unit variable, respectively. As with
unit declarations, these constraints are imported directly from a unit-class model in a Szumo design.

Condition variable blocks are used to declare condition variables, which appear as class attributes in the
unit-class model. The value of a condition variable is defined by an initial-value clause and zero or more
transition clauses. When a synchronization unit is created, its condition variables are initialized with the
indicated initial values. Subsequently, the value of a condition variable can change only before or after
executing an operation selected by a pointcut expression appearing in one of the variable’s transition clauses.
SzumoSzep currently supports only pointcut designators that select method invocations, indicated by the
pointcut expressioncall(fun), wherecall is a keyword andfun is the method name. In a transition
clause,before indicates that the value changes immediately before executing the operation andafter
indicates that the value changes immediately after; whereas trigger indicates that the variable becomes
true andcancel indicates that it becomes false. A pointcut designator abbreviates a pointcut expression. For
instance, the synchronization specification forPhilosopher declaresphil eats (line 5), which is used
in specifying the pointcuts in the transition clauses foreating. The first transition clause (line 8) declares
thatp.eating becomes true immediately beforep callseat (Fig. 4, line 14) and the second (line 9) declares
thatp.eating becomes false immediately upon return from the call, for a philosopherp.

9

As they are defined, the condition variables and unit variables in a unit represent the synchronization-
relevant portion of a unit’s state. They determine a unit’s entailment, from which a thread infers the suppliers
that it must hold exclusive access to in order to safely execute in the unit. When this portion of a unit’s state
changes, the thread executing the unit enters into a negotiation with other threads competing for exclusive
access to shared suppliers.

6 SzumoFrame

Synchronization-awareprograms perform two functions over and above those performed by their synchronization-
optimistic counterparts: They check accesses to a synchronization unit to ensure that the unit is in the realm
of the accessing thread, and they implement a protocol according to which threads negotiate for exclusive
use of dynamically determined sets of synchronization units. SzumoFrame is an OO framework that en-
capsulates much of the logic for realm boundary checking andnegotiation into framework classes, which are
reused and extended in the construction of a synchronization-aware program.SzumoFrame is plug compat-
ible with SimpleFrame, but it is also significantly larger in terms of the number of framework classes and
methods and the number of hot spots that a programmer must fillin. To appreciate the value added by Szu-
moSzep, we now summarize in some detail what would be involved if developers had to manually instantiate
SzumoFrame. Readers who are interested only in how to use SzumoSzep may safely skip over this section.

6.1 Behavior of Synchronization-Aware Program

In a synchronization-aware Szumo program, each thread is prevented from accessing any unit that is outside
of its realm, and threads negotiate with one another for exclusive access to dynamically determined sets of
synchronization units. The responsibility for realm-boundary checking is relegated to the synchronization
units as follows: Each client unit must perform a realm-boundary check prior to invoking a method on a
supplier. SzumoFrame provides a collection of class and function templates to automate these checks.
For brevity, the examples we present in this paper do not illustrate their use; however, their application is
straightforward and is handled automatically by SzumoSzep. Thread negotiation is implemented by a highly
dynamic and decentralized collaboration, within which both thread objects and synchronization units play
a role. To instantiateSzumoFrame is to design (or adapt) application classes so that their instances are
capable of playing an appropriate role in this collaboration.

Each instance of the negotiation collaboration comprises one or more objects that play theThreadCon-
text role and one or more objects that play theUnit role. Thread context objects encapsulate the state and
operations required to manage and evolve the realm of a thread, and unit objects encapsulate the state and
operations required for a synchronization unit to be negotiated for. Thus, a synchronization unit may now be
understood to be an object that is capable of playing theUnit role. Such an object must:

1. maintain a representation of itssynchronization-relevant state,

2. be receptive toentailsmessages, returning a collection of references to other synchronization units,
which this unit entails based on its current synchronization state, and

3. notify the thread thatholdsthis unit whenever its synchronization state changes.

Unit and thread-context objects collaborate as follows: Notification (item 3) occurs when a unit object sends
a damagerealm message to the thread-context object associated with the currently executing thread. This
message indicates that the realm of the current thread mightnow be damaged and may thus be in need of
repair. The thread-context object responds by attempting to repair the realm, which involves sendingentails
requests to unit objects to decide whether a realm is complete and to figure out which, if any, units may be
released from the realm or which, if any, must be acquired.

10

...
damage_realm(Unit*) : void

ThreadContext

start() : void

Thread

run() : void
eat() : void
think() : void

entails() : UnitSet
return NO_UNITS;

if(eating) return lr_units;
return NO_UNITS;

Unit
1..*

Philosopher
eating : boolean

0..1

right

left
Fork

entails() : UnitSet

...

entails() : UnitSet

lr_units : UnitSet

notify_holder() : void

run() : void

RootUnit

while(1) {
 think();

 notify_holder();
 eat();

}
 notify_holder();

 eating = true;

 eating = false;

ActivateUnit au(this);

Figure 6: Dining philosophers instantiation of SzumoFrame

To assist in the development of objects that play these roles, SzumoFrame provides several frame-
work classes and functions. The framework classUnit provides operations and hot spots for implementing
objects that are capable of playing theUnit role. ClassUnit declares an abstract operationentails,
thereby making instances of any class that derives fromUnit receptive toentailsmessages (item 2). It also
provides a protected, non-polymorphic operation callednotify holder, which locates the thread context
associated with the currently executing thread and sends itadamagerealmmessage (item 3). A synchroniza-
tion class then extends classUnit by declaring instance variables to represent the synchronization-relevant
state, maintaining this state and invokingnotify holder when it changes, and providing a method for
theentails operation. For completeness, notice that the framework classRootUnit extends classUnit,
adding the declaration of an abstract operation calledrun, and the framework classThread extends class
ThreadContext.

Before proceeding with an example, we should point out two characteristics of the design ofSzumo-
Frame. First, all of the “traditional” synchronization mechanisms—e.g., mutex locks, wait and notify state-
ments, are encapsulated in the two classesUnit andThreadContext, hidden away from clients who
wish to instantiate the framework. Second, the public interfaces of classesRootUnit andThread exactly
mimic the public interfaces of theirSimpleFrame counterpartsassuming one ignores the public operations
that are inherited from the base classes. Together, these design decisions are key to separating concerns from
Szumo users. To collaborate, objects that play theThreadContext andUnit roles must be able to “see”
operations that we wish to hide users who wish to instantiatethe framework. By forcing developers to instan-
tiateSimpleFrame and then use SzumoSzep to promote their code into an instantiation ofSzumoFrame
rather than designing againstSzumoFrame directly, we enforce this separation of concerns.

6.2 Example Instantiation

Figs. 6 and 7 depict an instantiation ofSzumoFrame for the dining philosophers example. All of the
synchronization-optimistic code (Fig. 4) is preserved in the synchronization-aware version (Fig. 7). The
differences are purely additive, and are called out explicitly with enclosing boxes in Fig. 7. We now briefly
describe and explain these additions.

Recall that classUnit declares anentails operation but provides no method for it, as the method
will vary depending upon the synchronization state and exclusion constraints of a given unit. Lines 2 and 3
implement anentails method for classFork. In this case, the method is trivial becauseFork objects
provide no synchronization state. Thus, aFork object responds toentailsmessages by returning the empty
entailmentNO UNITS.

11

1 class Fork : public virtual Unit {

2 public: virtual const UnitSet& entails() const

3 { return NO_UNITS; }

4 };
5

6 class Philosopher : public virtual RootUnit {
7 public:
8 Philosopher(Fork *l, Fork *r, int i);
9 void eat();

10 void think();
11 virtual void run();
12 ...
13 public: virtual const Needs& entails() const

14 { if (eating) return lr_units;

15 return NO_UNITS; }

16 private:
17 Fork *left; Fork *right; int id;

18 private: mutable bool eating;

19 private: mutable UnitSet lr_units;
20 ...
21 };
22

23 Philosopher::Philosopher(Fork *l, Fork *r, int i)

24 : RootUnit(), left(l), right(r), id(i) , eating(false)

25 { ActivateUnitConstructor auc(this);

26 lr_units.add(left); lr_units.add(right); }
27

28 void Philosopher::eat()

29 { ActivateUnit au(this);

30 cout << left <<" and "<< right <<" are in use\n";
31 cout << this <<" is eating\n";
32 cout << left <<" and "<< right <<" are free\n";
33 }
34

35 void Philosopher::think()

36 { ActivateUnit au(this);

37 cout << this <<" is thinking\n";
38 }
39

40 void Philosopher::run()

41 { ActivateUnit au(this);

42 while (true) {
43 think();

44 (eating = true, notify_holder(), eat(),

45 eating = false, notify_holder());

46 } }
47 ...

Figure 7: Dining philosophers synchronization-aware program

12

ClassPhilosopher declares a Boolean variableeating (line 18) that constitutes part of the synchronization-
relevant state of a philosopher unit, and line 24 initializes this variable to false. Theentails method for
classPhilosopher (lines 13–15) returnslr units, a collection comprising references to the units bound
to theleft andright instance variables, wheneating is true and the empty entailment wheneating
is false. By convention, each unit declares a variable for every possible set of unit references it may entail
(except the empty set, which is provided by theSzumoFrame variableNO UNITS). A Philosopher
unit will always entail either nothing or the set containingboth itsleft andright unit references. Class
Philosopher declares (line 19) and initializes (line 26) a unit set called lr units to represent the latter
case. We use these pre-computed unit sets to ensure calls to entails are as efficient as possible.

Lines 25, 29, 36, and 41 each declare instances of an object (calledau) whose lifetime coincides with the
activation of the method in which they are declared. These objects add animplicit synchronization constraint
on the object that is hosting the activation. Without implicit constraints, a situation might arise during a series
of recursive calls between two units where one unit’s explicitly specified synchronization constraints dictate
that access to the other unit is no longer needed when in fact it is. Every unit-class method (exceptentails)
should begin by declaring such a variable.

Lines 44 and 45 update the synchronization-relevantstate and notify the currently executing thread of state
changes. This state is being maintained in two places in these lines. One is before the call toeat, where
the condition variableeating is set to true, and the other follows the call toeat, whereeating is set to
false. Notice how these assignments toeating create the effect that while the methodeat is executing, the
Philosopher’s synchronization-relevant state reflects the fact that itis eating. Since assigning new values
to one or more condition variables represents a change in synchronization-relevant state, such a sequence of
assignments must be followed with a notification to the holder thread, which is accomplished in the code by
callingnotify holder.

6.3 Connecting to Synchronization Specifications

By design, the signature of each framework class inSimpleFrame is a subset of the signature of its coun-
terpart inSzumoFrame. This allows the insertion of a significant amount of synchronization logic into a
synchronization-optimistic program by merely recompiling the program againstSzumoFrame rather than
SimpleFrame. However, to fully exploit the benefits of this separation, we need a fully-automated way
to enhance aSimpleFrame instantiation with the kind of code that appears in the boxesin Fig. 7. This is
where synchronization specifications come into play.

Each synchronization specification describes how to adapt asynchronization-optimistic unit class, here-
after theadaptee, into one whose instances are capable of playing theUnit role inSzumoFrame as follows.
Condition variables in the synchronization specification engender boolean instance variables in the adaptee.
Likewise, the synchronization constraints collectively engender anentails method, which consults these
instance variables to determine entailments. Finally, thetransition clauses engender logic for updating these
boolean instance variables and for invoking the framework methodnotify holder upon change. This
logic (and also logic to invokenotify holder whenever a unit variable is updated) must then be woven
into the body of the existing methods of the adaptee. SzumoSzep performs both the code generation described
here and also the weaving necessary for promotion.

7 SzumoSzep

As mentioned previously, SzumoSzep takes a synchronization-optimistic program and a collection of syn-
chronization specifications and promotes the former into a synchronization-aware program (Fig. 2). Szumo-
Szep combines code generation and source-to-source translation capabilities with a standard C++ compiler
to:

13

Library
OpenC++

OpenC++
Compiler

Custom
Compiler

Class
Model

Library
SzumoSzep

Specification

Generator
Translator

Metaclass
Translator

Synchronization

Figure 8: Generation of the custom compiler

1. type check synchronization specifications against a synchronization-optimistic program,

2. generate synchronization logic from the synchronization specifications and then rewrite the subject
program into to incorporate this logic at the appropriate locations, and

3. compile and link the resulting program into an executableimage.

The synchronization-optimistic program is assumed to be aninstantiation ofSimpleFrame. By contrast,
the resulting program is compiled against theSzumoFrame classes, as opposed to theSimpleFrame
classes, effectively promoting an instantiation of the latter framework into an instantiation of the former. We
now briefly describe the OpenC++ [6] tool, which we used to implement the translation (Section 0.7.1) before
describing the architecture of SzumoSzep in detail (Section 0.7.2).

7.1 OpenC++

Numerous tools have been developed to assist programmers ininserting new code into an existing C++
program [6, 14, 24]. OpenC++ is a tool for customizing a C++ compiler, including modest extensions to
the language syntax. The custom compiler is a standard C++ compiler with a source-to-source translation
phase interposed between preprocessing and compilation. One develops custom compilers by customizing
the translator, which implements this intermediate translation phase.

The translator itself is designed for extension using ideasfrom object-oriented frameworks. During trans-
lation, each input feature (e.g., class, method, assignment statement) is parsed into an internal representation
which is then forwarded to an object called ametaobject, whose operations are invoked to translate features
of the particular input type. For example, having recognized and constructed an internal representation of
a C++ class definition in the input, the translator transforms this representation by invoking operations on
a class metaobject. In a similar manner, the internal representation of a method in the input is translated
by invoking operations on amethod metaobject. The framework classes in this extensible design are those
from which metaobjects of the various kinds are instantiated; in OpenC++ parlance, such classes are called
metaclasses. OpenC++ translators are thus customized by developing newmetaclasses, which inherit from
the framework metaclasses, and overriding one or more of theinherited operations with new methods.

7.2 SzumoSzep Architecture

SzumoSzep uses OpenC++ to generate a custom compiler that, when invoked on the synchronization-optimistic
program, will translate it to promote itsSimpleFrame instantiation to aSzumoFrame instantiation be-
fore compiling against and linking with theSzumoFrame library. Fig. 8 depicts the process of generating
this custom compiler. TheTranslator Generatorreads in the synchronization specifications and a model

14

of the (synchronization-optimistic) classes of the subject program, and from these generates a collection of
OpenC++ metaclasses, one for each unit class in the Szumo design. Each generated metaclass is customized
to adapt a specific synchronization-optimistic class, using the adaptation strategy described in Section 0.6.3.
OpenC++ then compiles these metaclasses (and various supporting library classes) to produce the custom
compiler.

Notice that the Translator Generator requires an “as-built” model of the synchronization-optimisticclasses.
By “as-built,” we mean that the model reflects the implementation structure of these classes, including the
names and types of all declared instance variables and any inheritance relationships. This model must be
derived from the program itself; in fact, we harnessed OpenC++ to generate a program that extracts it au-
tomatically (not depicted in the figures). Moreover, the as-built model must be a consistent refinement of
the unit-class model that was supplied in the Szumo design. Briefly, each a class in the as-built model must
have a counterpart of the same name in the design model, and all inheritance relationships must be preserved.
Classes in the as-built and the design model may have non-overlapping sets of attributes, as the attributes in
the design model are used to define condition variables, which are a part of the synchronization concern and
which should not appear in the synchronization-optimisticprogram.

Finally, the generated compiler is used to rewrite, compile, and link the synchronization-optimistic pro-
gram, yielding a synchronization-aware program that instantiatesSzumoFrame. Recall our goal was to
completely separate synchronization concerns at the implementation level. The ability to compile aSim-
pleFrame instantiation againstSzumoFrame contributes significantly to the accomplishment of this goal
but cannot completely separate synchronization concerns because the classes that instantiateSzumoFrame
require code that is generated from the synchronization specifications. With SzumoSzep, we are able to
automatically generate this code and translate the subjectprogram to use it, thus achieving our larger goal.

8 Related Work

Many others have worked on approaches, which automaticallyrewrite base programs to exploit synchroniza-
tion based on some separated synchronization concern [18, 8, 20, 12, 7]. The work most closely related to
ours is the D Framework, which uses an aspect-like language,called COOL, for expressing the coordination
requirements of classes separately from their primary functionality [18]. COOL associates classes withcoor-
dinatorsin much the same way that Szumo uses synchronization units; however, coordinator specifications
lack the local and compositional properties of our synchronization specifications. For example, each of the
coordinator-based solutions to the dining philosophers problem must be modified to accommodate a change
in the size of the configuration. That is, a coordinator specification is designed to work for a specific number
of three philosophers and must be modified to accommodate more or fewer. In Szumo, the synchronization
specification is unaffected by the size of the configuration.

Other related work focuses on the application of off-the-shelf AOP tools (e.g., AspectJ [16]) to achieve a
separation of synchronization concerns. Rashid et al. usedAspectJ to separate data persistence concerns [20],
and Harbulot et al. experimented using AspectJ to separate performance (e.g., parallelism) and computational
concerns in scientific computing systems [12]. While these approaches deal with the separation of synchro-
nization concerns, the class of systems they apply to is muchnarrower than SzumoC++ making them difficult
to compare. Cunha et al. implemented a collection of concurrency patterns in AspectJ [7]. However, as with
any pattern-based approach, the burden of composition is placed on the developer.

Several approaches separate synchronization concerns forpurposes of verification. Among these, the
most closely related to our work is SyncGen, which employs a declarative specification ofregion invariants
to generate synchronization code that is then woven into a subject program at predefined join points [8].
Region invariants represent an elegant mechanism for specifying synchronization in the style of conditional
critical regions. They are not ideally suited for specifying synchronization constraints over sets of resources,
such as are exemplified by the dining philosophers example. Also, SyncGen does not fully separate synchro-
nization concerns from the functional code because there isno analog to an aspect-like language with pointcut
designators. Rather, the programmer must identify join points in her code using using stylized comments.

15

Bultan and colleagues synthesizeconcurrency controllersfrom an operational action language specifica-
tion [4]. Concurrency controllers implement global policies for sharing a resource while encapsulating the
low-level synchronization logic required to implement these policies. The policies are expressed as collec-
tions of high-level guarded commands based on a set of pre-defined patterns. In addition to the policy speci-
fication, for every controller, the designer writes acontroller interfacedictating the acceptable sequences of
calls the threads may make to the respective resources. By separating interface from implementation, concur-
rency controllers afford modular reasoning, but in a mannerthat is quite different from the compositionality
of synchronization constraints in Szumo.

Magee and Kramer propose an articulate model-based methodology that separates synchronization and
functional concerns for the purposes of verification and architectural design [19]. In this approach, the de-
signer constructs and verifies an explicit model of the system. Once verified, elements of the model can
be implemented idiomatically, though not automatically, as monitors in Java. This methodology separates
concerns for the purpose of verification, however the modeling language is intentionally operational, and the
overall approach does not address the code-tangling problem.

Vaziri, Tip, and Dolby proposed a declarative model of synchronization, which is similar in some respects
to Szumo [26]. This model is implemented using Java languageextensions whereby programmers declare
sets of data that must be updated atomically. Their model is compositional and the compiler uses the atomic-
set declarations to generate synchronization logic. Neither atomic sets nor Szumo synchronization constraints
is strictly more expressive than the other.

9 Discussion and Future Work

In this paper, we presented a new approach to implementing strictly exclusive applications that separates
synchronization and functional concerns. The approach extends our prior work on Szumo and combines
several ideas, including:

• the use of an explicit design model, which has been verified and which informs the subsequent imple-
mentation of the functional and synchronization concerns,

• methods for achieving a high level of transparency between the design model and each of the imple-
mentation artifacts, and

• automated composition tools that exploit this transparency and dependence upon a shared design
model.

In this section, we discuss some interesting corollaries ofthis work and our thoughts on future directions.

9.1 Explicit Design Modeling

Current best practices in multi-threaded program design make heavy use of models and modeling notations
prior to (or in concert with) implementation [19]. The design of thread synchronization logic involves rea-
soning over state spaces that grow non-linearly with the size of the program. The virtue of models is that
they are often able to represent the synchronization concern at a level of abstraction suitable for coping with
the state-explosion problems that accompany property verification. Indeed, our Szumo design models are
expressed at a high level of abstraction for precisely this reason [22, 9].

Unfortunately, most model-based approaches do not directly support the verification of conformance be-
tween the design models and their implementation. This makes the models prone to becoming outdated
during the maintenance phase of a system’s lifecycle in muchthe same way that documentation does. The
problem is exacerbated when we then attempt to separate functional and synchronization concerns in the

16

implementation. Szumo design models are structured in a waythat affords transparency with the imple-
mentation and thus simplifies the problem of conformance checking and also the composition of separately
specified functional and synchronization concerns.

9.2 Design Transparency

We contend that to support the maintenance and evolution of large multi-threaded systems, design trans-
parency is the key. This paper demonstrates how to retain transparency when a design is implemented using
techniques for separating concerns. Achieving transparency in such an environment is not trivial, which is
why our approach uses both OO frameworks and a heavy dose of generative programming. Specifically, we
use an OO framework (SimpleFrame) and a custom synchronization specification language to impose a
high level of design transparency on the implementations ofboth the functional and synchronization concerns.

Currently, we enforce design transparency through a combination of auditing procedures, whereby the
developer manually checks his implementation against the design, and automated consistency checks that are
performed by SzumoSzep. Checking the transparency of the functional logic involves verifying that each unit
class inherits from eitherUnit or RootUnit depending upon the stereotype associated with the class in
the unit-class model and that any inheritance relationships in the model are preserved in the code. Checking
transparency of the synchronization logic involves checking that there exists a synchronization specification
for each class in the unit-class model, and for each such specification checking that:

• there is a unit variable declaration for each association inthe unit-class model,

• there is a condition variable declaration for each attribute in the unit-class model,

• with respect to a given condition variable, there is a transition clause for each transition in the synchronization-
state model that affects that variable, and

• the synchronization constraints are imported directly from the unit-class model.

In future work, we intend to automate both of these auditing procedures in the context of an Eclipse-based
UML development tool [11].

To further support our manual auditing procedures, we builtinto SzumoSzep the ability to detect some of
the inconsistencies that might arise by separating the functional and synchronization concerns. For example,
design transparency dictates that each unit class in a synchronization-optimistic program must have corre-
sponding to a synchronization specification and vice versa.A developer could introduce an inconsistency
by mistyping the name of the unit class in the synchronization specification. A fully automated technique
for enforcing transparency would catch this problem prior to composition time. However, in absence of this
capability, SzumoSzep detects and reports inconsistencies between synchronization specifications and their
associated synchronization-optimistic programs.

9.3 Further Separation of Concerns

Anecdotal evidence suggests, and our experience affirms, that one cannot achieve a truly complete separation
of synchronization and functional concerns. Rather, we optfor solutions that provide a clean separation and
one that is robust under change. It is worth noting where, in our approach, there is the potential for tangling
of synchronization and functional concerns. The obvious point is in the synchronization-specification lan-
guage, where the condition variable triggering and cancelling is bound to pointcuts in the functional program.
These pointcuts tend to be tightly coupled with the functional logic such that changes to this logic require
re-examining and possibly modifying the pointcut designators in the synchronization specification. For ex-
ample, a simple change to the name of thePhilosopher methodeat would result in the need to change
the pointcut designator in thePhilosopher synchronization specification. This problem is largely caused

17

by our use of syntax-level pointcut designators, which are also common to many general aspect-oriented pro-
gramming tools (e.g., AspectC++ and AspectJ). There has been much interest in developing more expressive
pointcut designators [20, 10, 13], with the apparent goal ofachieving pointcut designators that are closer to
the semantic level and would reduce the tangling described above.

We plan to expand and improve the expressiveness of the pointcut designators accepted by the synchro-
nization aspect language. Initially, this would be primarily to increase the usability of our synchronization
specifications; recall that at present, our pointcut designators can only express calls to methods with a partic-
ular name. An obvious improvement to our pointcut designators would be to enable distinguishing between
calls by pattern-matching against the arguments, in addition to the name of the function. For example, point-
cut descriptors of the forms

call(eat(*))

call(eat(x,y))

could be used to designate calls toeat with any combination of arguments, and argumentsx andy, respec-
tively. We also intend to implement pointcut descriptors for specifying assignments to member variables,
which also incorporate pattern matching to improve their expressiveness. As we develop more expressive
pointcut designators, we plan to increase our focus on exploring pointcut designators that are more semantic
in nature, and thereby, less tightly coupled with functional code. However, an open question is the degree of
power needed with regard to our pointcut designator language and consequent coupling of concerns. More-
over, there is also an open question of whether enabling pointcuts to refer to entities not represented in the
design model will negatively impact design transparency inthe the implementation.

9.4 Implementation Issues

That our synchronization specification language includes aspect-like concepts begs the question: Why did
we use OpenC++ rather than an AOP tool, such as AspectC++ [24]. We now briefly describe our rationale
and explain what we perceived to be the pros and cons of both technologies.

The factor that weighed most heavily on our decision was the need to check for inconsistencies be-
tween the synchronization-optimistic program and the synchronization specifications at composition time.
OpenC++’s metaprogramming facilities support introspection, which provides a natural way to implement
these checks. We were unable to find any support in AspectC++ for this type of base-program analysis. That
said, we believe this deficiency could be addressed by enhancing AspectC++ with a feature such as AspectJ’s
declare warning or statically executable advice as proposed by Lieberherr et al. [17].

Another requirement of SzumoSzep that was straightforwardto address in OpenC++, but was obscure in
AspectC++, was the need to weave in interdependent advice. For example, consider a variant of thePhil-
osopher class given earlier, whoseeat method returns the number of times the philosopher has eatenso
far. Assume theeat is called as follows.

int count = eat();

Now, consider the same statement in a synchronization-aware program produced by SzumoSzep based on the
originalPhilosopher synchronization specification.

int count = (eating = true ,

notify holder() ,

tmp var = eat() ,

eating = false ,

notify holder() ,

tmp var);

18

Because the call toeat is embedded in an assignment expression, its return value must be stored in a
temporary variable,tmp var. This is done so thateat’s after advice (i.e., seteating to false and call
notify holder) can execute after the call toeat, but before the assignment expression is evaluated. The
temporary variable is given at the end of the parenthetical expression, so it will be used by the assignment
expression (as opposed to the value returned bynotify holder).

The need for interdependent advice arises because the temporary variable must be declared before it
can be used; however this declaration cannot appear in before, after, or around advice to the call toeat.3

Essentially, the declaration involves another advice thatmust precede the statement in whicheat was called
(e.g., in our implementation, we place the declaration nearthe beginning of the enclosing method). We were
unable to find a clean way to apply such interdependent advicein AspectC++. By contrast, OpenC++ enables
the metaprogrammer to manipulate the parse tree representation of a method, which allows one to implement
highly context-sensitive advice weaving, which is needed in this case to handle interdependent advice. We
think this could be addressed in AspectC++ with a more expressive pointcut designator language.

Despite these benefits, OpenC++ was not without its own obscurities. Because SzumoSzep involves
both the generation and weaving of code, the most natural wayto organize the compiler involved translation
in a sequence of consecutive stages. Unfortunately, the metaobject protocol provided by OpenC++ made
it difficult to implement a truly staged translation of the base program, and our implementation of this is
admittedly unclean. We considered trying to remedy the situation by reifying the stages as mixin layers [23],
but our early experiments suggested that such advanced use of C++ templates would lead to a brittle and
unmaintainable compiler. On the other hand, AspectC++ supports staged transformations at a much higher
level through advice ordering. Using AspectC++, one can write an aspect for each type of translation and
declaratively specify the order that aspects apply their advice to common join points. This functionality
makes generating aspects from synchronization specifications much simpler than the technique we currently
use for generating metaclasses that perform staged transformations.

9.5 Longer Term Future Work

As longer-term future work, we are investigating extensions or enhancements to Szumo to accommodate
different categories of multi-threaded systems, i.e., categories that differ from the strictly exclusive. In par-
ticular, we would like to support systems that currently useread-write locks. To accomplish this will require
a variant ofSzumoFrame that (1) enables programmers to express whether an entailedunit is needed for
writing or for reading only, and (2) to negotiate using new scheduling policies that distinguish between read-
ers and writers. We are specifically interested in building frameworks that inculcate specific design decisions
that simplify development using features that are difficultto use in general. So, for example, while there
are known fairness issues inherent to the readers-writer problem in the abstract, implementations often make
simplifying decisions, such as giving priority to writers in the interest of keeping data as current as possible.
Thus a new category of systems might be those that exhibit readers-writer style sharing where the writers
have priority.

Another interesting subset of the larger multi-threaded computing problem concerns high-performance
computing applications, which exhibit a radically different synchronization profile than exclusive systems.
An interesting question is whether a SzumoC++-like approach based on a different fundamental model of
concurrency and synchronization would be feasible. To thisend, we are looking at the abstractions provided
in IBM’s X10 language [5] among others.

Acknowledgements:Partial support for this research was provided by the Office of Naval Research grant
N00014-01-1-0744 and by NSF grants EIA-0000433 and CCR-9984726.

3because this assignment expression could be embedded within a larger expression.

19

References

[1] R. Behrends.Designing and Implementing a Model of Synchronization Contracts in Object-Oriented
Languages. PhD thesis, Michigan State University, East Lansing, Michigan USA, December 2003.

[2] R. Behrends and R. E. K. Stirewalt. The Universe Model: Anapproach for improving the modularity
and reliability of concurrent programs. InProc. of FSE’2000, 2000.

[3] R. Behrends, R. E. K. Stirewalt, and L. K. Dillon. A self-organizing component model for the de-
sign of safe multi-threaded applications. InProc. of the ACM SIGSOFT International Symposium on
Component-Based Software Engineering (CBSE’05), 2005.

[4] Aysu Betin-Can and Tevfik Bultan. Verifiable concurrent programming using concurrency controllers.
In Automated Software Engineering, 2004.

[5] P. Charles et al. X10: An object-oriented approach to non-uniform cluster computing. InProc. of the
ACM 2005 OOPSLA conference, October 2005.

[6] Shigeru Chiba. A metaobject protocol for C++. InProceedings of OOPSLA, 1995.

[7] C. A. Cunha, J. L. Sobral, and M. P. Monteiro. Reusable aspect-oriented implementations of concur-
rency patterns and mechanisms. InAOSD ’06: Proceedings of the 5th international conference on
Aspect-oriented software development, 2006.

[8] X. Deng et al. Invariant-based specification, synthesis, and verification of synchronization in concurrent
programs. InProc. of the IEEE International Conference on Software Engineering (ICSE’02), 2002.

[9] L. K. Dillon, R. E. K. Stirewalt, B. Sarna-Starosta, and S. D. Fleming. Developing an Alloy framework
akin to OO frameworks. InProc. of the First Alloy Workshop, 2006. co-located with FSE’2006.

[10] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Marc Ségura-Devillechaise, and
Mario Südholt. An expressive aspect language for system applications with arachne. InAOSD ’05:
Proceedings of the 4th international conference on Aspect-oriented software development, 2005.

[11] E. Gamma and K. Beck.Contributing to Eclipse: Principles, patterns, and plug-ins. Addison-Wesley,
2004.

[12] Bruno Harbulot and John R. Gurd. Using AspectJ to separate concerns in parallel scientific Java code. In
AOSD ’04: Proceedings of the 3rd international conference on Aspect-oriented software development,
2004.

[13] Matti Hiltunen, François Taı̈ani, and Richard Schlichting. Reflections on aspects and configurable
protocols. InAOSD ’06: Proceedings of the 5th international conference on Aspect-oriented software
development, 2006.

[14] Yutaka Ishikawa. MPC++ approach to parallel computingenvironment.ACM SIGAPP Applied Com-
puting Review, 4(1), 1996.

[15] R. E. Johnson and B. Foote. Designing reusable classes.Journal of Object-Oriented Programming,
pages 22–35, June/July 1988.

[16] G. Kiczales et al. An overview of Aspect/J. InProc. of the European Conference on Object-Oriented
Programming, 2001.

[17] Karl Lieberherr, David H. Lorenz, and Pengcheng Wu. A case for statically executable advice: checking
the law of demeter with AspectJ. InAOSD ’03: Proceedings of the 2nd international conference on
Aspect-oriented software development, 2003.

[18] Cristina Videira Lopes and Gregor Kiczales. D: A language framework for distributed programming.
Technical Report SPL97-010, P9710047, Palo Alto, CA, USA, February 1997.

20

[19] J. Magee and J. Kramer.Concurrency: State Models and Java Programs. John Wiley and Sons, 2000.

[20] Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. InAOSD ’03: Proceedings of the 2nd
international conference on Aspect-oriented software development, 2003.

[21] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Modeling Language Reference Manual. Addison–
Wesley, second edition, 2004.

[22] B. Sarna-Starosta, R. E. K. Stirewalt, and L. K. Dillon.A model-based design-for-verification approach
to checking for deadlock in multi-threaded applications. In Proc. of18

th Intl. Conf. on Softw. Eng. and
Knowledge Eng., 2006.

[23] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented implementation technique for
refinements and collaboration-based designs.ACM Trans. Softw. Eng. Methodol., 11(2), 2002.

[24] Olaf Spinczyk, Andreas Gal, and Wolfgang Schröder-Preikschat. AspectC++: an aspect-oriented ex-
tension to the C++ programming language. InProc. of the Fortieth International Conference on Tools
Pacific, 2002.

[25] R. E. K. Stirewalt, R. Behrends, and L. K. Dillon. Safe and reliable use of concurrency in multi-threaded
shared memory sytems. InProc. of the29

th Annual IEEE/NASA Software Engineering Workshop, 2005.

[26] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization constraints with data in an
object-oriented language. InPrinciples of Programming Languages, 2006.

21

A Synchronization-Specification Language Grammar

Below we present the grammar for our synchronization-specification language. The grammar usesitalic font
for nonterminals andtypewriter font for terminals. Note that braces, colons, commas and semicolons
are all terminal symbols. Brackets are metasymbols that group elements, and may be followed by one of two
special metasymbols. The first metasymbol is a superscript∗, which indicates that the preceding group of
elements may repeat zero or more times. The second metasymbol is a subscriptopt, which indicates that the
preceding group of elements may occur zero or one times.

syncSpec := syncSpecHead{ syncSpecBody} ;

syncSpecHead := sync spec className

syncSpecBody := [unitRefDecl]∗

[pointcutDecl]∗

[condVarDecl]∗

[constraintSpec]opt

unitRefDecl := unit unitVar ;

pointcutDecl := sync pointcut pcdVar : pcdExpr ;

condVarDecl := condition condVar { condDeclBody}

condDeclBody := initDecl [adviceDecl]∗

initDecl := init(boolVal) ;

adviceDecl := adviceType adviceTime: pcdExpr [, pcdExpr]∗ ;

adviceType := trigger | cancel

adviceTime := before | after

constraintSpec := constraint { constrBody}

constrBody := [constrExpr ;]∗

pcdExpr := call(fun) | pcdVar

constrExpr := true

| unitVar

| condVar ==> unitVar

boolVal := 0

| 1

| true

| false

className := a legal C++ class name

unitVar := a legal C++ variable name

condVar := a legal C++ variable name

pcdVar := a variable name

fun := a legal C++ function name

22

