Separating Synchronization Concerns
with Frameworks and Generative Programming

Scott D. Fleming, R. E. K. Stirewalt, Laura K. Dillon, and Ba&arna-Starosta
Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering
Michigan State University
East Lansing, Michigan USA 48824df , stire, | dill on, bss}@se. nsu. edu

Abstract

Thread synchronization in object-oriented systems isadilffito implement, in part, because traditional
synchronization mechanisms are low level and, in part, imeaynchronization code is cross cutting and
usually interleaved with functional code. In prior work, \&ddressed the first of these problems with a
compositional model of mutual exclusion callBdumothat is customized to the needs of strictly exclusive
systems. This paper extends our prior work to address ttendgaroblem. We present SzumoC++, an
approach to building strictly exclusive systems in C++ tiffdrds a high degree of abstraction and separa-
tion of concerns. Development in SzumoC++ proceeds fronxplioé design model, which is assumed to
have been validated. Our approach uses object-orienteeivarks and a custom specification language to
support the development of separate functional and syndation modules which retain a high degree of
design transparency. By virtue of this transparency, aril the aid of generative programming techniques,
these separately implemented modules may be composed is&tEmt manner. By virtue of being based
on a Szumo design, we expect the resulting systems to betnatdesr change.

1 Introduction

Thread synchronization in object-oriented (OO) systenasgfobal and cross-cutting concern, which is dif-
ficult to implement and is resistant to clean separation filoeprimary functional logic of programs. While
much progress has been made in the development of toolsameirorks for separating the synchronization
from the functional logic of a program (e.qg., [18]), synchization concerns are difficult to modularize in
such a manner that local changes to the functional logicraslgyecommensurately local changes to the syn-
chronization logic. Consequently, accommodating a lobahge or extension to the functional logic could
require a redesign of the program'’s synchronization logids problem is especially vexing during software
maintenance and is detrimental to the construction of opdradaptable systems. Our work aims to support
the development and long-term maintenance of multi-tredd2O systems that are robust under change. We
believe this goal can be achieved if the methods used to &epsynchronization from functional logic are
based on clean compositional design models, and if the aguhsynchronization and functional modules
exhibit a high degree of transparency with respect to thegdeJ his design transparency enables both the
automated composition of and a form of consistency chechétg/een the functional and synchronization
modules.

Previously, we developed a compositional model of syndzedion called the Synchronization Units
Model (Szumo) [2, 25]. Szumo trades generality for compasitlity by focusing on the category sfrictly
exclusive system@ which multiple threads compete for exclusive accessytachically changing sets of
shared resources. This narrowing of focus was motivatetidpbservation that many applications fit well
in this category and that, in such cases, we can exploit & cteanpositional model of design and verifica-

tion[22, 9]. Examples of strictly exclusive systems inawktensible web servers and interactive applications
with complex graphical user interfaces.

Our previous implementation of Szumo involved an extensfan existing programming language (Eif-
fel) with new constructs that directly express the featwfea Szumo design [1, 25]. Using this extended
language, we were able to show how Szumo supports moduleripkésns of the synchronization concern,
raising the level of abstraction at which synchronizationaerns are expressed, and automating implemen-
tation and enforcement of these concerns. A case studwingainaintenance and evolution of a web server,
based on the architectural design of Apache, demonstiaéta twell-designed Szumo application could be
safely modified and extended without requiring redesigrhefdriginal synchronization concern [3]. How-
ever, this implementation of Szumo lacked facilities fquasgting synchronization logic and functional logic
to the extent achievable in approaches such as [4, 8, 18]n igflection, we realized that an implementation
of Szumo based solely on a language extension could noy easibmmodate such facilities, especially in a
modern production language such as C++.

This paper describes a new approach to programming Szuntioatfgms that overcomes these deficien-
cies. The approach builds on explicit models of a Szumo desaigl a new programming system, called
SzumoC++. A prototype implementation of our programmingtesn can be found at:

http://ww. cse. nsu. edu/ sens/ szunp/ szunoc++. tar. gz.

SzumoC++ uses a novel combination of plug-compatible O@émaorks and generative programming to
impose upon the separated functional and synchronizatiatutas a level of design transparency that enables
the safe and automatic composition of concerns.The resofiliies programming of the synchronization
concern and supports a separation of functional and synidation concerns that inherits Szumo’s support
for robustness under change. In the remainder of the papdirst give a background on the Szumo model
and a sample Szumo design to use in a running example (S€c#pnWe then provide an overview of our
approach (Section 0.3), deferring the details of its manymanents to later sections. We conclude with a
comparison with related work (Section 0.8), and a discussidessons learned and possible directions for
the future work (Section 0.9).

2 Szumo

Irrespective of how it is implemented (i.e., as a languageresion or as part of a programming system),
Szumo is a model of synchronization among entities in athtréxclusive program. In this model, threads
contend with one another for exclusive access to setgrafhronization unitdntuitively, the synchronization
units in an application define indivisible units of sharingtany time during execution, a thread is allowed
to access either all of the objects contained in a synchatiniz unit or none of the objects contained in that
unit[1, 25]. In lieu of code that invokes OS-level synchaation primitives, a synchronization unit declares
one or moresynchronization constraintsvhich specify the conditions under which the unit—actirsgaa
client—needs exclusive access to units—acting as the clidirést suppliers—that the client holds refer-
ences to. At run time, thread®gotiatefor exclusive access to suppliers in accordance with thstcaints
declared by any clients that they are executing. The ddilaraature of synchronization constraints and
this automated process of negotiation are key to Szumopatifor extension and maintenance [3]. As a
background for subsequent sections, we now describe thdsdefta Szumo design, and provide an overview
of the negotiation process.

2.1 Design Models

A key component of our approach is the use of an explicit moflalprogram’s design, which is used both
as a reference during implementation and also during theposition of separated concerns. Szumo design

2

W left <<unit>> M)
Philosopher right Fork
It | before eat()
eating: bool
<<unit>> ._,
void think) 777777 sync_constr = "eating ==> left"
| vodeat) f------7 ‘ sync_constr = "eating ==> right" after eat)

(a) (b)

Figure 1: Diagrams depicting the unit-class and synchaiitin-state models of a Szumo design

models are expressed using a variant of the class and stgi@ni notations of UML 2.0 [21]. These models
impose a modular structure upon and record key design desisélated to the synchronization concern.

An important design decision involves the granularity adising among the threads. Szumo allows appli-
cation developers to choose the granularity of sharing gnsef synchronization units, which are containers
of (one or more) program objects. Synchronization unitentbedves resemble objects in that they may en-
capsulate state, provide operations, and reference othehnization units whose operations they use to
implement their own. When a program object is created, iejglayed to exactly one synchronization unit,
where it remains throughoutits lifetime. A thread that tsadetclusive access to a synchronization unit, holds
exclusive access to all objects contained within this unit.

Synchronization units are identified with instances of gypalledunit classes In addition to standard
operations, a unit clags may declaraunit variables condition variablesand synchronization constraints.
Unit variables reference synchronization units that sexwvelirect suppliers to units of tyge. Condition
variables are boolean-valued variables in a unit class.syhehronization constraints specify the suppliers
to which a client unit requires exclusive access based ouahees of the unit's condition variables and unit
variables. We say that a client uritentailsa direct supplies whenc requires exclusive access ¢pand
refer to the set of all direct suppliers tha¢ntails at any given time as entailment

To illustrate these ideas, Fig. 1 depicts the models useddmrd the design of a Szumo solution to the
familiar dining philosophers problem, which we will use asianing example in this paper. Fig. 1(a) depicts
the unit-class modelwhich is just a UML class diagram with the following extems$. The stereotypes
({(uni t)) and((r oot _uni t)) designate unit classes whose instances are, respectiuglthat are passive
and can be shared among multiple threads, and units tha asmon-shared thread “roots”. We show con-
dition variables as class attributes, unit variables aectidd associations, and synchronization constraints as
limited propositional formulas over condition variableslaunit variables, formed using tlemtailment oper-
ator “==>". The set of synchronization constraints for a client ciasgiven as a value for the “symonstr”
tag associated with that class. Thus, Fig. 1(a) shows thilmgopher units execute in different threads (i.e.,
serve as root units) and perform operations on fork unitsi\dda their unit variabled, ef t andri ght .
Fork units are passive and may be shared. Associated withptdlosopher, condition variabtat i ng sig-
nifies when the philosopher needs exclusive access to ks.fdhe philosopher’s synchronization constraint
asserts that, iat i ng is true, the philosopher entails the fork units bountiéd t andri ght .

A synchronization-state modekhich is depicted using a UML state diagram (Fig. 1(b)),vehtow
operations that a unit performs affect the values of its d@dvariables. Transitions are annotated with
events that designate when they are taken. States aredabitheboolean expressions over the unit's con-
dition variables, signifying possible valuations of theiahles in the states. An arrow with no source state
marks the initial state. Thus, when a philosopher startswdian, itseat i ng variable is false. Immediately
before the philosopher invokes #at operationeat i ng becomes true, and immediately upon return of
this operationeat i ng becomes false. Together, the unit-class and synchromizatate models document
that a philosopher entails its forks while executingeat operation.

The diagrams in Fig. 1 show how we represent functional amghapnization concerns in a Szumo
design. Although mixed, the representations of both carscare highly abstracted in order to document how
the concerns affect one another in a precise, but intuifashion, and to enable generation of behavioral

3

models that can be analyzed for concurrency errors. A dpeelases these behavioral models in verifying
that a Szumo design exhibits necessary safety and livenegsnties [22], and in generating visual traces of
anomalous behaviors, such as deadlocks [9]. By such mdamsas debug the design before implementing
either of the concerns.

2.2 Negotiation

The set of units that a Szumo thread needs to access can bednhé run time. For instance, from the
diagrams in Fig. 1, we infer that a thread needs only its rodt, @xcept when executing the rootat
operation, in which case it needs tRer k units referenced by the rootf'sef t andr i ght unit variables.
More generally, a thread needs all units in which it is exegytas well as any unit entailed by a unit
that it needs. The conjunction of the synchronization constraints asgedi with the units that a thread
needs defines the thread’s synchronization contract. Timeazi changes dynamically as the thread modifies
condition variables and unit variables of the units in whtaxecutes. Whenever a thread’s contract changes,
its contract must be (re)negotiated.

The semantics of contract negotiation is based on the con€apealm, which is a set of synchronization
units associated with a thread. Each thread has its own r&dhmen executing, a thread is allowed to access
allunitsin its realm, and prevented from accessing anysunitside its realm. To guarantee mutual exclusion,
the realms of different threads must always be disjointstimo unit is permitted to simultaneously be in the
realm of more than one thread.

Changes in a thread’s contract may result in the thread mgldinits that it no longer needs or needing
units that it does not hold. When a thread’s realm contaimstikthe set of needed units, we say that the
realm iscomplete otherwise we say it idamagedA thread with a damaged realm blocks until the realm is
made complete. To make a thread’s realm complete, unne@itsde firsmigratedout of the realm. Then,
if no other thread holds any of the units needed by the thralhdnits that the thread needs but does hold
are atomically migrated into the realm; otherwise, theallielocks until its realm can be completed (i.e., no
needed units are held by other threads).

From a user’s perspective, a thread executes within a uri$ iicomplete) realm until it performs an
operation that modifies the values of the unit’s conditiorialdes or unit variables, thereby damaging the
realm. Consider, for instance, a threadhose initial realm contains only a philosopher ynih its initial
state, in whiclp.eating is false. Then, the entailment pfis an empty set, and s realm is complete.
However, before invoking theat operationp.eating becomes true, thereby affectiply entailment and
damaging’s realm. To complete's realm, the newly entailed fork units referencedibyeft andp.right
must be migrated into the realm. If neither of the fork untheld by another thread, they are atomically
migrated intot’'s realm, and: continues its execution. Conversely, if either unit is imgoother realmg
blocks, with its realm damaged, until both units becomelalstg; at which time they are atomically migrated
into ¢'s realm, and continues its execution.

3 Overview of SzumoC++

Having analyzed and verified a Szumo design, a developerywtlrally like the implementation to be as
faithful to the design as possible. However, to enable ambnd verification, a Szumo design must indicate
how functional and synchronization concerns affect onéte@roMixing these concerns in an implementation
obstructs understanding of the code and complicates ¢geatid maintenance. Thus, when concerns are
mixed in the design model, the goals of separating functiand synchronization concerns and of producing

IFormally, we define the needs of a thread as the smallest satitsf that contains the set of units a thread is executing and
that is closed under thentails relation. This inductive definition of needs based on theaiéméent closure is necessary for local
synchronization constraints to affect the global synclzation behavior.

Szumo design

Unit Class Synchronization
State Model
Model

o \
C++ Class
(synchronization
optimistic)

N

Synchronization
Specification

Executable Image
(synchronization
aware)

Figure 2: Overview of SzumoC++ approach

a transparent implementation of the design appear to bedstwith one another. SzumoC++ addresses this
problem, effectively supporting both goals.

Assuming that the developer is confident that the synchatioiz concern will be correct if implemented
and integrated with the functional concern in accordandle svdesign, separating the programming of these
concerns is justified. We support this separation of implaaiens while providing a high level of de-
sign consistency and transparency using a two-phase agppmwhich is illustrated in Fig. 2. Starting from a
Szumo design, the developer first programs and debugs thednal logic, without worrying about synchro-
nization. She then separately programs the synchronizktgic and weaves this logic with the functional
logic using an automated tool. In the figure, programmingda@se depicted using dashed arrows; whereas
data flows into and out of the automated tool are depictedysifid arrows. To enforce design transparency
and to guard against inconsistencies that may arise byevirtiseparating concerns, SzumoC++ includes a
pair of white-box OO frameworks [15], callesi npl eFr ane and SzunoFr anme, and a generative pro-
gramming tool, called SzumoSzep.

In the first phase of our two-phase approach, the develogSismpl eFr ane to code up the func-
tional logic of the program so that it reflects the structurthe unit-class model. She specializes framework
classes to produce C++ unit classes, whose instances wilhiiethe synchronization units in the completed
program. In this phase, the developer simply assumes tieatsiwill have exclusive access to their direct
suppliers whenever necessary and writes code to implenmintiee functional logic. We refer to the pro-
gram developed in this phase as besygchronization optimistibecause it is written under this optimistic
assumption.

Si npl eFr ane classes are essentially placeholders that stand in far $aeinoFr ane counterparts.
From the programmer’s standpoint, classesSimpl eFr ane are plug compatible with classes 8z u-
noFr ane in the following sense: An application class that inheriteni aSi npl eFr ane class can be
reparented to inherit from &zunoFr ame class of the same name without having to modify any of the
programmer’s code. Thus, a program that instanti§tegpl eFr anme can be ported to one that instantiates
SzunoFr anme without having toundoany of the programmer’s design decisions. Of course, tooéxiie
synchronization facilities provided by tHez unoFr ane classes, it will be necessary to add code to the
synchronization-optimistic program. This separationai the programmer to perform early unit testing to
check for errors in the functional logic. Locating sourcé®wors detected in this phase is simplified by
not having synchronization code woven in. Moreover, thedparency of the synchronization-optimistic
program with respect to the design could be verified, usitigeeauditing procedures or through the facilities
of a UML-based IDE. This transparency is essential to enthaiethis program will compose correctly with
the separately specified synchronization logic.

In the second phase of our approach, the developer vayteshronization specificationg/hich collec-

5

Thread - RootUnit
- { |
start() : void

run() : void

Figure 3: Class diagram for SimpleFrame

tively define the synchronization concern, and uses Szuam8&rintegrate this concern into the synchro-
nization-optimistic program. A synchronization specifica is supplied for each unit class in the design.
It is written in a special notation that expresses the syorkation relevant aspects of a Szumo design in
a highly transparent manner. SzumoSzep promotes synehatmri-optimistic unit classes into classes that
aresynchronization awarby instantiatingSzunoFr ane rather tharSi npl eFr ame and weaving in logic
generated from the synchronization specifications to isvagerations defined iBzunoFr are. In addition

to its generative and weaving capabilities, SzumoSzepiges\a degree of consistency checking between
the synchronization-optimistic program and the synchration specifications. This capability derives from
the design transparency afforded by our approach.

A key difference between our approach and aspect-oriermiptbaches to separating synchronization
concerns, such as the D framework [18], is our reliance onxalioit design and the measures we take to
ensure design transparency among the implementations skfharated concerns. Our approach is thus able
to provide prescriptive guidance on how to design the funmeti logic to enable a clean separation of concerns
and also to check for inconsistencies during compositi@nodr knowledge, no other approach can achieve
this degree of separation of global synchronization cams;egven when restricted to only the category of
strictly exclusive systems. Our use of a surrogate framkewluat allows a developer to “condition” the
functional logic so that it may be plugged into a complex aealtdire-rich framework is also novel. The
developer works directly witlsi npl eFr ame in the first phase and SzumoSzep in the second. She never
directly works withSzunoFr ame.? Rather, SzumoSzep automatically instantisesinoFr ane while
weaving in the synchronization logic. We are not aware oEptpproaches that use plug-compatible OO
frameworks and generative programming in this synergisitiner. The remainder of this paper describes
the various components of our approach in more detail anectsfon the design of these components.

4 Synchronization-Optimistic Programs

We now elaborate this idea of a synchronization optimistigpam, whose classes implement the “functional
part” of a Szumo design. Recall that such a program assuncissese access to shared resources when they
are needed without taking steps to guarantee this assum@jmchronization optimistic programs are con-
structed using the facilities of an object-oriented frarogwcalledSi npl eFr ane, whose instantiation is
guided by a Szumo design (Section 0.4.1). The resultingrarogncorporates the structure of this design
but lacks any synchronization logic. Its classes are thusramenable to understanding and unit testing;
however, if executed, the entire program is likely to exthdaincurrency errors, such as data races. Such a
program must then bpromotedinto one that is synchronization aware. Generally speaktng difficult

to promote an arbitrary program with no synchronizatioridagto one that is synchronization aware (Sec-
tion 0.4.2). However because a synchronization optimjstiggram incorporates the structure of a Szumo
design, promotion can be completely automated, as explairhe sequel.

4.1 SimpleFrame by Example

Si npl eFr ane is an object-oriented framework that enables a prograrmoreagily construct synchronization-
optimistic concurrent programs such that the objects argtipaed into synchronization units. Recall that

2Section 0.6 provides details aboBz unoFr ame and how it is instantiated for the reader who is interested,just in how an
application developer uses SzumoC++, but also in how it sorReaders who are not interested in these details may sy
Section 0.6.

1 class Fork : public virtual Unit { ... };

2
3 cl ass Philosopher : public virtual RootUnit {

4 public:

5 Phi | osopher (Fork* |, Fork* r, int i);

6 void eat();

7 void think();

g8 virtual void run();

9 ...

10 private:

11 Fork* left; Fork* right; int id;

12 };

13

14 voi d Phi | osopher: : eat ()

15 { cout << left <<" and "<< right <<" are in use\n";
16 cout << this <<" is eating\n";

17 cout << left <<" and "<< right <<" are free\n";
18 }

19

20 voi d Phi |l osopher: :thi nk()

21 { cout << this <<" is thinking\n"; }

22

23 voi d Phil osopher::run()

24 { while (true) { think(); eat(); } }

25 ...

Figure 4: Synchronization-optimistic program

an object-oriented framework is an application skeletat ik fleshed out into a concrete application by a
process calleframework instantiationwhich involves:

e designing classes that extend (i.e., inherit from) one arenframework classes,

¢ writing code that allocates and configures instances o&thew classes and perhaps also instances of
unextended framework classes, and

e writing or reusing a “main” program that cedes control toiael; which is provided by the framework.

Si npl eFr ane provides three framework class@$ir ead, Uni t andRoot Uni t (Fig. 3). TheThr ead
andRoot Uni t classes are similar to the Java API clasbsead andRunnabl e, respectively.Si m

pl eFr ane is instantiated as follows. First, the designer createsli@atmn of application classes that
inherit and appropriately extend the framework claddest andRoot Uni t. This is a trivial exercise
because a Szumo design clearly identifies which applicafmsses are to be synchronization classes, and
thus should inherit frontuni t , and which should be root-unit classes, and thus shoulditrfhem Root -

Uni t. Next, she allocates instances of these application damse of the framework clasghr ead and
configures these instances appropriately. Finally, shiesva “main” program that calls into a framework
functioni ni t _r unt i me, which causes the main thread to block until all activatedads have terminated.

Fig. 4 illustrates how to instantiat& npl eFr ame for the dining philosophers problem. To designate
that the forks are passive shared (collections of) objetdssFor k inherits fromUni t . To produce philoso-
pher units that may serve as the root of a thread’s realns Elaisl osopher inherits fromRoot Uni t and
provides an implementation ofun for a thread to invoke. It declares instance variablest andri ght,
which will be bound to fork units to use when eating. Then method repeatedly invokes two local methods,
firstt hi nk and thereat (lines 23-24). Invokingat on a philosopher appends a trace to the output stream
(lines 15-17). In this case, the trace models the activitigilppopher performs to eat.

The simplicity of the methods in Fig. 4 owes to the fact thaytexpress only synchronization-optimistic
logic, without regard to the global context in which the aljis deployed: A philosopher repeatedly thinks
and then eats, emitting a trace modeling its activities;auoer, it performs these activities regardless of how
many philosophers are created, how the philosophers afiggaoed to reference forks, whether philosophers
eat concurrently or sequentially, and so on. Of course,awitiproper synchronization, there is no way to

7

ensure that if two philosophers share a fork, they neverdla¢@ame time. For example, the synchronization-
optimistic program might generate a trace of the form

Fork O and Fork 1 are in use
Philosopher 0 is eating
Fork 1 and Fork 2 are in use
Philosopher 1 is eating

in which two philosophers are modeled as both eating ®ithk 1 at the same time. Synchronization logic
must be introduced to prevent multiple threads from intasileg in this manner.

4.2 Obstacles to Promotion

Readers who are familiar with textbook solutions to therfinphilosophers problem should appreciate the
transparency of the code in Fig. 4. The code becomes muckhardead and understand when it includes
synchronization logic. For example, in a common monitaseuhsolution, each fork is implemented as a
monitor, which encapsulates a status variable that re@vaitability and which supplies two methods
anddown, for philosophers to invoke before and after eating. Brjgfigup method either makes the fork
unavailable or, if it is already unavailable, inserts thibecan the fork’swait queueand blocks; whereas the
down method makes the fork available and, if the fork’s wait queueonempty, also unblocks a waiting
philosopher. Then, to prevent races on the forks, a philesogallsl ef t . up andr i ght . up before the
calltoeat andl ef t. down andr i ght . down after the call. As long as the monitors are fair, this design
is also fair. However, it does not necessarily prevent desdIA common strategy for preventing deadlock
is to impose a total order on the forks and arrange that eaiétsppher callsip on the fork that comes first

in this order and then callsp on the other fork.

Even in this simple example, the synchronization logic Inee® complex. Much of this complexity
stems from the low level at which synchronization is operadlized. The requirement that a philosopher
needs exclusive access to both forks while eating is simpegh to state and understand. But implement-
ing it requires defining a low-level protocol for how objeetschange status information in method calls,
manipulate queues, and block and unblock.

Additionally, the code implementing this protocol is nohfioed to one module, but is spread throughout
the code base. As a result, it is difficult to reason about. éxample, to reason that the synchronization
logic in classFor k is correct requires knowing properties of cladsi | osopher that are not typically
documented in the class interface (e.qg., that philosopiadira fork’sup method before eating and id®wn
method after eating and never caf) twice without callingdown in between). Thus, two key problems that
contribute to the complexity of thread synchronizationlijeet-oriented systems are: First, the synchroniza-
tion logic is operationalized at a low level of abstractid®econd, the code that operationalizes it is cross
cutting and interleaved with the functional code. Szumo@ddresses both of these problems.

5 Synchronization Specifications

We now elaborate the notion of a synchronization specifioativhich defines that aspect of the synchro-
nization concern that pertains to a particular unit class 8zumo design. The specification declares a unit's
entailment at a suitably high level of abstraction. In thguss, we illustrate how the SzumoSzep tool uses
synchronization specifications to promote syncopt ungsga into synchronization-aware unit classes. The
resulting synchronization-aware program incorporatggcléor ensuring that a thread does not access units
outside its realm and a negotiation protocol that blockseetth from executing until when all of its needs are
met.

1 sync_spec Fork {};

2

3 sync_spec Phil osopher {

unit left; unit right;
sync_poi ntcut phil_eats : call (eat);
condi tion eating {

init(false);

trigger before: phil_eats;

cancel after: phil_eats;

}

constraint {
eating ==> left;
eating ==> right;

}

Figure 5: Example synchronization specifications

Fig. 5 depicts synchronization specifications for the ulsissesPhi | osopher andFor k. Each spec-
ification consists of a header, introduced by the keyweyrdc _spec, followed by a body, delimited by set
braces. The header names the unit class to be promoted,eahddi declares how operations affect the val-
ues of condition variables. The body of the synchronizatipecification folFor k is empty (line 1) because
fork units have no condition variables or synchronizationstraints. In contrast, the body of the synchro-
nization specification foPhi | osopher formalizes the requirement that when a philosopher is gasine
needs exclusive access to both of her forks. In order to dib declares

e two unit variables| ef t andri ght (line 4);
e apointcut designatgmhi | _eat s (line 5);

e acondition variablegat i ng (line 6), aninitial-value clausedor eat i ng (line 7), and twdransition
clausesspecifying when the value @&at i ng may change (lines 8 and 9); and

e two synchronization constraints (lines 12 and 13).

The notion of pointcut designators derives from the Aspkoiduage [16]. The other features are imported
almost verbatim from Szumo design models.

Theuni t declarations name unit variables, which are assumed to heee declared in the unit-class
model. The current version of SzumoSzep handles synclatmizconstraints of the form

condVar ==> unitVar (1)

wherecondVar anduni t Var stand for a condition variable and a unit variable, respeliti As with
uni t declarations, these constraints are imported directiy faainit-class model in a Szumo design.

Condition variable blocks are used to declare conditiomatdes, which appear as class attributes in the
unit-class model. The value of a condition variable is defibg an initial-value clause and zero or more
transition clauses. When a synchronization unit is credtsccondition variables are initialized with the
indicated initial values. Subsequently, the value of a @b variable can change only before or after
executing an operation selected by a pointcut expressip@amg in one of the variable’s transition clauses.
SzumoSzep currently supports only pointcut designatats gblect method invocations, indicated by the
pointcut expressiogal | (f un), wherecal | is a keyword and un is the method name. In a transition
clause,bef or e indicates that the value changes immediately before exertlie operation andf t er
indicates that the value changes immediately after; wisdreagger indicates that the variable becomes
true anccancel indicates that it becomes false. A pointcut designatorebates a pointcut expression. For
instance, the synchronization specificationfbii | osopher declarephi | _eat s (line 5), which is used
in specifying the pointcuts in the transition clausesdat i ng. The first transition clause (line 8) declares
thatp.eat i ng becomes true immediately befgreallseat (Fig. 4, line 14) and the second (line 9) declares
thatp.eat i ng becomes false immediately upon return from the call, forisopbpherp.

9

As they are defined, the condition variables and unit vagglih a unit represent the synchronization-
relevant portion of a unit’s state. They determine a unit®ément, from which a thread infers the suppliers
that it must hold exclusive access to in order to safely etesicuthe unit. When this portion of a unit's state
changes, the thread executing the unit enters into a néigatiaith other threads competing for exclusive
access to shared suppliers.

6 SzumoFrame

Synchronization-aware programs perform two functions emel above those performed by their synchronization-
optimistic counterparts: They check accesses to a synidation unit to ensure that the unit is in the realm

of the accessing thread, and they implement a protocol dtapto which threads negotiate for exclusive

use of dynamically determined sets of synchronizationsur8z unoFr ane is an OO framework that en-
capsulates much of the logic for realm boundary checkingegtiation into framework classes, which are
reused and extended in the construction of a synchroniraticare programSz unoFr ame is plug compat-

ible with Si npl eFr ane, but it is also significantly larger in terms of the numbermafhework classes and
methods and the number of hot spots that a programmer must filb appreciate the value added by Szu-
moSzep, we now summarize in some detail what would be indaf\@evelopers had to manually instantiate
SzunoFr anme. Readers who are interested only in how to use SzumoSzepafely skip over this section.

6.1 Behavior of Synchronization-Aware Program

In a synchronization-aware Szumo program, each threaeiepted from accessing any unit that is outside
of its realm, and threads negotiate with one another forumsiat access to dynamically determined sets of
synchronization units. The responsibility for realm-bdary checking is relegated to the synchronization
units as follows: Each client unit must perform a realm-kaany check prior to invoking a method on a
supplier. SzunmoFr ame provides a collection of class and function templates tomate these checks.
For brevity, the examples we present in this paper do nddtithte their use; however, their application is
straightforward and is handled automatically by SzumoSZepead negotiation is implemented by a highly
dynamic and decentralized collaboration, within whichhbtitread objects and synchronization units play
a role. To instantiat&zunoFr ane is to design (or adapt) application classes so that theianmtes are
capable of playing an appropriate role in this collaboratio

Each instance of the negotiation collaboration comprisesay more objects that play thér eadCon-
t ext role and one or more objects that play thr@ t role. Thread context objects encapsulate the state and
operations required to manage and evolve the realm of adhasal unit objects encapsulate the state and
operations required for a synchronization unit to be negedi for. Thus, a synchronization unit may now be
understood to be an object that is capable of playindgnet role. Such an object must:

1. maintain a representation of ggnchronization-relevant state

2. be receptive t@ntailsmessages, returning a collection of references to othethsgnization units,
which this unit entails based on its current synchronizesiate, and

3. notify the thread thatoldsthis unit whenever its synchronization state changes.

Unit and thread-context objects collaborate as followstifidation (item 3) occurs when a unit object sends
a damagerealm message to the thread-context object associated with tently executing thread. This
message indicates that the realm of the current thread mmhtbe damaged and may thus be in need of
repair. The thread-context object responds by attemptimgpair the realm, which involves sendiegtails
requests to unit objects to decide whether a realm is complad to figure out which, if any, units may be
released from the realm or which, if any, must be acquired.

10

0.. - -
ThreadContext Unit

notify_holder() : void
entails() : UnitSet

T T

damage_realm(Unit*) : void

Thread - RootUnit
start() : void run() : void
- left
Philosopher [Fork
ActivateUnit au(this); eating : boolean right
while(1) { . -
think(); Ir_units ; UnitSet entails() : UnitSet
eating = true; |<----lorun() : void
noti fy_hol der (); eat() : void
eat(); _ think() : void
eating = fal se;) ’
notify_hol der(); entails() : UnitSet_o
} T return NO_UNITS;
]
if(eating) return Ir_units;
return NOUNITS;

Figure 6: Dining philosophers instantiation of SzumoFrame

To assist in the development of objects that play these ,r@eanoFr ane provides several frame-
work classes and functions. The framework cldsst provides operations and hot spots for implementing
objects that are capable of playing tbei t role. Classuni t declares an abstract operatient ai | s,
thereby making instances of any class that derives tdoint receptive toentailsmessages (item 2). It also
provides a protected, non-polymorphic operation catletli f y_hol der , which locates the thread context
associated with the currently executing thread and serdkaitnagerealmmessage (item 3). A synchroniza-
tion class then extends clasai t by declaring instance variables to represent the syncration-relevant
state, maintaining this state and invokingt i f y_hol der when it changes, and providing a method for
theent ai | s operation. For completeness, notice that the framewodsBlaot Uni t extends claseni t,
adding the declaration of an abstract operation called, and the framework clasghr ead extends class
Thr eadCont ext .

Before proceeding with an example, we should point out twaratteristics of the design & uno-
Fr ame. First, all of the “traditional” synchronization mechamis—e.g., mutex locks, wait and notify state-
ments, are encapsulated in the two claddeist and Thr eadCont ext , hidden away from clients who
wish to instantiate the framework. Second, the public fates of classelRoot Uni t andThr ead exactly
mimic the public interfaces of the8i npl eFr ane counterpartassuming one ignores the public operations
that are inherited from the base class@sgether, these design decisions are key to separatirgawfrom
Szumo users. To collaborate, objects that playTtheeadCont ext andUni t roles must be able to “see”
operations that we wish to hide users who wish to instantietéramework. By forcing developers to instan-
tiate Si mpl eFr ame and then use SzumoSzep to promote their code into an irsiantof SzunoFr anme
rather than designing agairi& unoFr ane directly, we enforce this separation of concerns.

6.2 Example Instantiation

Figs. 6 and 7 depict an instantiation 82 unoFr ane for the dining philosophers example. All of the
synchronization-optimistic code (Fig. 4) is preservedhie synchronization-aware version (Fig. 7). The
differences are purely additive, and are called out expfigiith enclosing boxes in Fig. 7. We now briefly
describe and explain these additions.

Recall that class&)ni t declares arent ai | s operation but provides no method for it, as the method
will vary depending upon the synchronization state andustch constraints of a given unit. Lines 2 and 3
implement arent ai | s method for clas$or k. In this case, the method is trivial becausa k objects
provide no synchronization state. Thug;@ k object responds tentailsmessages by returning the empty
entailmentNO.UNI TS.

11

1 class Fork : public virtual Unit {
2 |public: virtual const UnitSet& entails() const

3 { return NOUNITS; }

45,

5

6 cl ass Philosopher : public virtual RootUnit {
7 public:

8 Phi | osopher (Fork *I, Fork *r, int i);

9 void eat();

10 void think();
11 virtual void run();

13 |public: virtual const Needs& entails() const

14 { if (eating) return Ir_units;
15 return NO_UNITS; }
16 private:

17 Fork *left; Fork *right; int id;
18 |private: nutable bool eating;|

19 |private: nutable UnitSet Ir_units; |

21 };

23 Phi | osopher:: Phil osopher (Fork *I, Fork *r, int i)

24 1 RootUnit(), left(l), right(r), id(i)

25 {| Acti vat eUni t Constructor auc(this); |

26 |[lr_units.add(left); Ir_units.add(right); |}

28 voi d Phi |l osopher: : eat ()

29 {| ActivateUnit au(this); |

30 cout << left <<" and "<< right <<" are in use\n";
31 cout << this <<" is eating\n";

32 cout << left <<" and "<< right <<" are free\n";
33 }

34

35 voi d Phil osopher: :think()

36 {| ActivateUnit au(this); |

37 cout << this <<" is thinking\n";

38 }

39

40 voi d Phil osopher::run()

41 {| ActivateUnit au(this); |

42 while (true) {

43 t hi nk();

44 (eating = true, notify_holder(), eat(),
45 eating = fal se, notify_hol der())
46} }

a7 ...

Figure 7: Dining philosophers synchronization-aware paoy

12

ClassPhi | osopher declares a Boolean variatdat i ng (line 18) that constitutes part of the synchronization-
relevant state of a philosopher unit, and line 24 initiadidels variable to false. Thent ai | s method for
classPhi | osopher (lines 13-15) returnisr _uni t s, a collection comprising references to the units bound
to thel ef t andri ght instance variables, wherat i ng is true and the empty entailment wheat i ng
is false. By convention, each unit declares a variable feryepossible set of unit references it may entail
(except the empty set, which is provided by tBeunoFr ane variableNO.UNI TS). A Phi | osopher
unit will always entail either nothing or the set containtmgth itsl ef t andri ght unit references. Class
Phi | osopher declares (line 19) and initializes (line 26) a unit set ahlle _uni t s to represent the latter
case. We use these pre-computed unit sets to ensure cafitails are as efficient as possible.

Lines 25, 29, 36, and 41 each declare instances of an ob@lgidau) whose lifetime coincides with the
activation of the method in which they are declared. Thegectbadd aimplicit synchronization constraint
on the object that is hosting the activation. Without implonstraints, a situation might arise during a series
of recursive calls between two units where one unit's explispecified synchronization constraints dictate
that access to the other unit is no longer needed when intiacBvery unit-class method (excegit ai | s)
should begin by declaring such a variable.

Lines 44 and 45 update the synchronization-relevant stat@atify the currently executing thread of state
changes. This state is being maintained in two places iretliess. One is before the call &at , where
the condition variableat i ng is set to true, and the other follows the callgat , whereeat i ng is set to
false. Notice how these assignmente#d i ng create the effect that while the methedt is executing, the
Phi | osopher 's synchronization-relevant state reflects the fact thateating. Since assigning new values
to one or more condition variables represents a change rhsgnization-relevant state, such a sequence of
assignments must be followed with a notification to the holldeead, which is accomplished in the code by
callingnot i fy_hol der.

6.3 Connecting to Synchronization Specifications

By design, the signature of each framework clasSiinpl eFr ane is a subset of the signature of its coun-
terpart inSzunoFr anme. This allows the insertion of a significant amount of synctization logic into a
synchronization-optimistic program by merely recomgjlthe program again8zunoFr ane rather than
Si npl eFr ane. However, to fully exploit the benefits of this separatiorg meed a fully-automated way
to enhance &i npl eFr ane instantiation with the kind of code that appears in the bardsg. 7. This is
where synchronization specifications come into play.

Each synchronization specification describes how to adaphehronization-optimistic unit class, here-
after theadapteeinto one whose instances are capable of playingttie role inSzunoFr ane as follows.
Condition variables in the synchronization specificatiogender boolean instance variables in the adaptee.
Likewise, the synchronization constraints collectivetfgender arent ai | s method, which consults these
instance variables to determine entailments. Finallytitwesition clauses engender logic for updating these
boolean instance variables and for invoking the framewoekhmdnot i f y_hol der upon change. This
logic (and also logic to invokaot i f y_hol der whenever a unit variable is updated) must then be woven
into the body of the existing methods of the adaptee. Szuewgerforms both the code generation described
here and also the weaving necessary for promotion.

7 SzumoSzep

As mentioned previously, SzumoSzep takes a synchronizafdimistic program and a collection of syn-
chronization specifications and promotes the former intgn@lsronization-aware program (Fig. 2). Szumo-
Szep combines code generation and source-to-sourcedtianstapabilities with a standard C++ compiler
to:

13

—
SzumoSzep
Library

Synchronization
Specification
——

OpenC++
Compiler

Custom
Compiler

Translator Translator
Metaclass

Generator
—
OpenC++

Library

Class
Model

Figure 8: Generation of the custom compiler

1. type check synchronization specifications against atsymization-optimistic program,

2. generate synchronization logic from the synchronizasipecifications and then rewrite the subject
program into to incorporate this logic at the appropriatatons, and

3. compile and link the resulting program into an executahbge.

The synchronization-optimistic program is assumed to bmstantiation ofSi npl eFr ane. By contrast,
the resulting program is compiled against tB2unoFr ane classes, as opposed to tBenpl eFr ane
classes, effectively promoting an instantiation of theelaframework into an instantiation of the former. We
now briefly describe the OpenC++ [6] tool, which we used tolengent the translation (Section 0.7.1) before
describing the architecture of SzumoSzep in detail (Sedia.2).

7.1 OpenC++

Numerous tools have been developed to assist programmaénsdrting new code into an existing C++

program [6, 14, 24]. OpenC++ is a tool for customizing a C+pder, including modest extensions to

the language syntax. The custom compiler is a standard Cmpiber with a source-to-source translation
phase interposed between preprocessing and compilatina.dévelops custom compilers by customizing
the translator, which implements this intermediate tratitsh phase.

The translator itself is designed for extension using idesm object-oriented frameworks. During trans-
lation, each input feature (e.g., class, method, assighstatement) is parsed into an internal representation
which is then forwarded to an object calledn@taobjectwhose operations are invoked to translate features
of the particular input type. For example, having recogaiaad constructed an internal representation of
a C++ class definition in the input, the translator trans®this representation by invoking operations on
a class metaobjectin a similar manner, the internal representation of a meihahe input is translated
by invoking operations on method metaobjecfThe framework classes in this extensible design are those
from which metaobjects of the various kinds are instantigite OpenC++ parlance, such classes are called
metaclassesOpenC++ translators are thus customized by developingmetaclasses, which inherit from
the framework metaclasses, and overriding one or more ahtteited operations with new methods.

7.2 SzumoSzep Architecture

SzumoSzep uses OpenC++ to generate a custom compiler treatjmvoked on the synchronization-optimistic
program, will translate it to promote IS npl eFr ane instantiation to é&zunoFr ane instantiation be-
fore compiling against and linking with tHéz umoFr arre library. Fig. 8 depicts the process of generating
this custom compiler. Thdaranslator Generatoreads in the synchronization specifications and a model

14

of the (synchronization-optimistic) classes of the sutoprogram, and from these generates a collection of
OpenC++ metaclasses, one for each unit class in the SzurigmdEsch generated metaclass is customized
to adapt a specific synchronization-optimistic class, giffire adaptation strategy described in Section 0.6.3.
OpenC++ then compiles these metaclasses (and variousrsingpirary classes) to produce the custom
compiler.

Notice that the Translator Generator requires an “as*buibidel of the synchronization-optimistic classes.
By “as-built,” we mean that the model reflects the implemgaotastructure of these classes, including the
names and types of all declared instance variables and &myitance relationships. This model must be
derived from the program itself; in fact, we harnessed Opentd generate a program that extracts it au-
tomatically (not depicted in the figures). Moreover, thebagt model must be a consistent refinement of
the unit-class model that was supplied in the Szumo desigeflyg each a class in the as-built model must
have a counterpart of the same name in the design model,landeaitance relationships must be preserved.
Classes in the as-built and the design model may have natapping sets of attributes, as the attributes in
the design model are used to define condition variables,hdrie a part of the synchronization concern and
which should not appear in the synchronization-optimistagram.

Finally, the generated compiler is used to rewrite, compited link the synchronization-optimistic pro-
gram, yielding a synchronization-aware program that msatesSzunoFr ane. Recall our goal was to
completely separate synchronization concerns at the imgai¢ation level. The ability to compile & m
pl eFr ane instantiation againssz unoFr ane contributes significantly to the accomplishment of thislgoa
but cannot completely separate synchronization concexoasuse the classes that instantBaemoFr ane
require code that is generated from the synchronizationifspations. With SzumoSzep, we are able to
automatically generate this code and translate the sytsjegtam to use it, thus achieving our larger goal.

8 Related Work

Many others have worked on approaches, which automatieailsite base programs to exploit synchroniza-
tion based on some separated synchronization concern [28, 82, 7]. The work most closely related to
ours is the D Framework, which uses an aspect-like languadled COOL, for expressing the coordination
requirements of classes separately from their primarytfanality [18]. COOL associates classes withor-
dinatorsin much the same way that Szumo uses synchronization ummigever, coordinator specifications
lack the local and compositional properties of our synclration specifications. For example, each of the
coordinator-based solutions to the dining philosopheoblem must be modified to accommodate a change
in the size of the configuration. That is, a coordinator dpeation is designed to work for a specific number
of three philosophers and must be modified to accommodate ordewer. In Szumo, the synchronization
specification is unaffected by the size of the configuration.

Other related work focuses on the application of off-theHsAOP tools (e.g., AspectJ [16]) to achieve a
separation of synchronization concerns. Rashid et al. AspdctJ to separate data persistence concerns [20],
and Harbulot et al. experimented using AspectJ to sepagatermance (e.g., parallelism) and computational
concerns in scientific computing systems [12]. While thgg@r@aches deal with the separation of synchro-
nization concerns, the class of systems they apply to is magiower than SzumoC++ making them difficult
to compare. Cunha et al. implemented a collection of coeaay patterns in AspectJ [7]. However, as with
any pattern-based approach, the burden of compositioategdlon the developer.

Several approaches separate synchronization concerpsifiposes of verification. Among these, the
most closely related to our work is SyncGen, which employsdatative specification atgion invariants
to generate synchronization code that is then woven intabgsuprogram at predefined join points [8].
Region invariants represent an elegant mechanism forfgpersynchronization in the style of conditional
critical regions. They are not ideally suited for specifysynchronization constraints over sets of resources,
such as are exemplified by the dining philosophers examps®, SyncGen does not fully separate synchro-
nization concerns from the functional code because ther@@malog to an aspect-like language with pointcut
designators. Rather, the programmer must identify joim{sah her code using using stylized comments.

15

Bultan and colleagues synthes@ancurrency controllerfrom an operational action language specifica-
tion [4]. Concurrency controllers implement global padisifor sharing a resource while encapsulating the
low-level synchronization logic required to implementghepolicies. The policies are expressed as collec-
tions of high-level guarded commands based on a set of dieedgatterns. In addition to the policy speci-
fication, for every controller, the designer writes@ntroller interfacedictating the acceptable sequences of
calls the threads may make to the respective resources.Byating interface from implementation, concur-
rency controllers afford modular reasoning, but in a marnim&ris quite different from the compositionality
of synchronization constraints in Szumo.

Magee and Kramer propose an articulate model-based mdtwdihat separates synchronization and
functional concerns for the purposes of verification andhiéectural design [19]. In this approach, the de-
signer constructs and verifies an explicit model of the syst®©nce verified, elements of the model can
be implemented idiomatically, though not automatically,naonitors in Java. This methodology separates
concerns for the purpose of verification, however the maddinguage is intentionally operational, and the
overall approach does not address the code-tangling proble

Vaziri, Tip, and Dolby proposed a declarative model of syndlization, which is similar in some respects
to Szumo [26]. This model is implemented using Java langex¢ensions whereby programmers declare
sets of data that must be updated atomically. Their mod@igositional and the compiler uses the atomic-
set declarations to generate synchronization logic. Me#dkomic sets nor Szumo synchronization constraints
is strictly more expressive than the other.

9 Discussion and Future Work

In this paper, we presented a new approach to implementifagh\stexclusive applications that separates
synchronization and functional concerns. The approachnelst our prior work on Szumo and combines
several ideas, including:

¢ the use of an explicit design model, which has been verifigldrdrich informs the subsequent imple-
mentation of the functional and synchronization concerns,

e methods for achieving a high level of transparency betwkerdesign model and each of the imple-
mentation artifacts, and

e automated composition tools that exploit this transpareamtd dependence upon a shared design
model.

In this section, we discuss some interesting corollarighisfwork and our thoughts on future directions.

9.1 Explicit Design Modeling

Current best practices in multi-threaded program desigkerhaavy use of models and modeling notations
prior to (or in concert with) implementation [19]. The deasigf thread synchronization logic involves rea-
soning over state spaces that grow non-linearly with the sfzhe program. The virtue of models is that
they are often able to represent the synchronization caratex level of abstraction suitable for coping with
the state-explosion problems that accompany propertfication. Indeed, our Szumo design models are
expressed at a high level of abstraction for precisely #ason [22, 9].

Unfortunately, most model-based approaches do not dirsafiport the verification of conformance be-
tween the design models and their implementation. This m#ke models prone to becoming outdated
during the maintenance phase of a system’s lifecycle in ntnelsame way that documentation does. The
problem is exacerbated when we then attempt to separatédoakcand synchronization concerns in the

16

implementation. Szumo design models are structured in athatyaffords transparency with the imple-
mentation and thus simplifies the problem of conformancekihg and also the composition of separately
specified functional and synchronization concerns.

9.2 Design Transparency

We contend that to support the maintenance and evolutioargéImulti-threaded systems, design trans-
parency is the key. This paper demonstrates how to retaisgeaency when a design is implemented using
techniques for separating concerns. Achieving transggrensuch an environment is not trivial, which is
why our approach uses both OO frameworks and a heavy dos@efalwve programming. Specifically, we
use an OO frameworksS{ npl eFr ane) and a custom synchronization specification language tofam
high level of design transparency on the implementatioh®tf the functional and synchronization concerns.

Currently, we enforce design transparency through a coatibim of auditing procedures, whereby the
developer manually checks his implementation againstélsegd, and automated consistency checks that are
performed by SzumoSzep. Checking the transparency of tiatifunal logic involves verifying that each unit
class inherits from eitheldni t or Root Uni t depending upon the stereotype associated with the class in
the unit-class model and that any inheritance relatiorssiniphe model are preserved in the code. Checking
transparency of the synchronization logic involves cheghkhat there exists a synchronization specification
for each class in the unit-class model, and for each suchfgaion checking that:

e there is a unit variable declaration for each associatigherunit-class model,
e there is a condition variable declaration for each attebntthe unit-class model,

e with respectto a given condition variable, there is a tt@mstlause for each transition in the synchronization-
state model that affects that variable, and

e the synchronization constraints are imported directlyftbe unit-class model.

In future work, we intend to automate both of these auditirmcpdures in the context of an Eclipse-based
UML development tool [11].

To further support our manual auditing procedures, we it SzumoSzep the ability to detect some of
the inconsistencies that might arise by separating thetifumad and synchronization concerns. For example,
design transparency dictates that each unit class in a gymization-optimistic program must have corre-
sponding to a synchronization specification and vice vefsaeveloper could introduce an inconsistency
by mistyping the name of the unit class in the synchronizasipecification. A fully automated technique
for enforcing transparency would catch this problem priocémposition time. However, in absence of this
capability, SzumoSzep detects and reports inconsistebeidveen synchronization specifications and their
associated synchronization-optimistic programs.

9.3 Further Separation of Concerns

Anecdotal evidence suggests, and our experience affiraisptie cannot achieve a truly complete separation
of synchronization and functional concerns. Rather, we@polutions that provide a clean separation and
one that is robust under change. It is worth noting wherepimapproach, there is the potential for tangling
of synchronization and functional concerns. The obvioustas in the synchronization-specification lan-
guage, where the condition variable triggering and camggi$ bound to pointcuts in the functional program.
These pointcuts tend to be tightly coupled with the funaidogic such that changes to this logic require
re-examining and possibly modifying the pointcut designatn the synchronization specification. For ex-
ample, a simple change to the name of e | osopher methodeat would result in the need to change
the pointcut designator in tHehi | osopher synchronization specification. This problem is largelysz

17

by our use of syntax-level pointcut designators, which &@ eommon to many general aspect-oriented pro-
gramming tools (e.g., AspectC++ and AspectJ). There has ineeh interest in developing more expressive
pointcut designators [20, 10, 13], with the apparent goaatfieving pointcut designators that are closer to
the semantic level and would reduce the tangling describedea

We plan to expand and improve the expressiveness of thegobithtsignators accepted by the synchro-
nization aspect language. Initially, this would be prirhatd increase the usability of our synchronization
specifications; recall that at present, our pointcut degtigns can only express calls to methods with a partic-
ular name. An obvious improvement to our pointcut desigrsatmuld be to enable distinguishing between
calls by pattern-matching against the arguments, in amtit the name of the function. For example, point-
cut descriptors of the forms

call(eat(*))
call(eat(x,y))

could be used to designate callsstat with any combination of arguments, and argumen#dy, respec-
tively. We also intend to implement pointcut descriptors $pecifying assignments to member variables,
which also incorporate pattern matching to improve thepressiveness. As we develop more expressive
pointcut designators, we plan to increase our focus on exgi@ointcut designators that are more semantic
in nature, and thereby, less tightly coupled with functiamuale. However, an open question is the degree of
power needed with regard to our pointcut designator langaag consequent coupling of concerns. More-
over, there is also an open question of whether enablingqdsto refer to entities not represented in the
design model will negatively impact design transparendh@the implementation.

9.4 Implementation Issues

That our synchronization specification language includg®et-like concepts begs the question: Why did
we use OpenC++ rather than an AOP tool, such as AspectC++ Y2d]now briefly describe our rationale
and explain what we perceived to be the pros and cons of bctinédogies.

The factor that weighed most heavily on our decision was #edrto check for inconsistencies be-
tween the synchronization-optimistic program and the bymization specifications at composition time.
OpenC++’'s metaprogramming facilities support introsjgegtwhich provides a natural way to implement
these checks. We were unable to find any support in Aspect@rthit type of base-program analysis. That
said, we believe this deficiency could be addressed by eimmAspectC++ with a feature such as AspectJ’s
decl ar e war ni ng or statically executable advice as proposed by Liebertiexr §7].

Another requirement of SzumoSzep that was straightfortaedidress in OpenC++, but was obscure in
AspectC++, was the need to weave in interdependent advigeeXample, consider a variant of tRai | -
osopher class given earlier, whosEat method returns the number of times the philosopher has saten
far. Assume theat is called as follows.

int count = eat();

Now, consider the same statement in a synchronizationeggvagram produced by SzumoSzep based on the
original Phi | osopher synchronization specification.

int count = (eating = true ,
notify holder() ,
tmp_var = eat() ,
eating = false ,
notify holder() ,
tmp_var);

18

Because the call teat is embedded in an assignment expression, its return valist baustored in a
temporary variablet np_var . This is done so thatat 's after advice (i.e., setat i ng to false and call

not i f y_hol der) can execute after the call &at , but before the assignment expression is evaluated. The
temporary variable is given at the end of the parenthetigatession, so it will be used by the assignment
expression (as opposed to the value returneddtyi f y_hol der).

The need for interdependent advice arises because the tempariable must be declared before it
can be used; however this declaration cannot appear inéyedfier, or around advice to the call éat .3
Essentially, the declaration involves another advicemnmadt precede the statement in whesdt was called
(e.g., in our implementation, we place the declaration tleabeginning of the enclosing method). We were
unable to find a clean way to apply such interdependent advidspectC++. By contrast, OpenC++ enables
the metaprogrammer to manipulate the parse tree repréiserda method, which allows one to implement
highly context-sensitive advice weaving, which is needethis case to handle interdependent advice. We
think this could be addressed in AspectC++ with a more esprepointcut designator language.

Despite these benefits, OpenC++ was not without its own oltiesy Because SzumoSzep involves
both the generation and weaving of code, the most naturatevagganize the compiler involved translation
in a sequence of consecutive stages. Unfortunately, thaabgtct protocol provided by OpenC++ made
it difficult to implement a truly staged translation of thesbagprogram, and our implementation of this is
admittedly unclean. We considered trying to remedy thastin by reifying the stages as mixin layers [23],
but our early experiments suggested that such advancedf @setotemplates would lead to a brittle and
unmaintainable compiler. On the other hand, AspectC++ audptaged transformations at a much higher
level through advice ordering. Using AspectC++, one carienan aspect for each type of translation and
declaratively specify the order that aspects apply theiticedto common join points. This functionality
makes generating aspects from synchronization specifitathuch simpler than the technique we currently
use for generating metaclasses that perform staged trameions.

9.5 Longer Term Future Work

As longer-term future work, we are investigating extension enhancements to Szumo to accommodate
different categories of multi-threaded systems, i.e egaties that differ from the strictly exclusive. In par-
ticular, we would like to support systems that currently tessed-write locks. To accomplish this will require

a variant ofSzunoFr ane that (1) enables programmers to express whether an entaileds needed for
writing or for reading only, and (2) to negotiate using nelWwestuling policies that distinguish between read-
ers and writers. We are specifically interested in buildnagifeworks that inculcate specific design decisions
that simplify development using features that are diffitoluse in general. So, for example, while there
are known fairness issues inherent to the readers-writdxiggm in the abstract, implementations often make
simplifying decisions, such as giving priority to writersthe interest of keeping data as current as possible.
Thus a new category of systems might be those that exhildersawriter style sharing where the writers
have priority.

Another interesting subset of the larger multi-threadegmating problem concerns high-performance
computing applications, which exhibit a radically diffatesynchronization profile than exclusive systems.
An interesting question is whether a SzumoC++-like appndzased on a different fundamental model of
concurrency and synchronization would be feasible. Toghi we are looking at the abstractions provided
in IBM’s X10 language [5] among others.

Acknowledgements: Partial support for this research was provided by the Offfcdaval Research grant
N00014-01-1-0744 and by NSF grants EIA-0000433 and CCR}B28.

Sbecause this assignment expression could be embedded withiger expression.

19

References

[1] R. Behrends.Designing and Implementing a Model of Synchronization @Gt in Object-Oriented
LanguagesPhD thesis, Michigan State University, East Lansing, Mjah USA, December 2003.

[2] R. Behrends and R. E. K. Stirewalt. The Universe Model: aaproach for improving the modularity
and reliability of concurrent programs. Rroc. of FSE’20002000.

[3] R. Behrends, R. E. K. Stirewalt, and L. K. Dillon. A selfganizing component model for the de-
sign of safe multi-threaded applications. Proc. of the ACM SIGSOFT International Symposium on
Component-Based Software Engineering (CBSE'2G05.

[4] Aysu Betin-Can and Tevfik Bultan. Verifiable concurrenbgramming using concurrency controllers.
In Automated Software Engineeririz04.

[5] P. Charles et al. X10: An object-oriented approach to-noiform cluster computing. IRroc. of the
ACM 2005 OOPSLA conferend@ctober 2005.

[6] Shigeru Chiba. A metaobject protocol for C++. Pnoceedings of OOPSLA995.

[7] C. A. Cunha, J. L. Sobral, and M. P. Monteiro. Reusablesaspriented implementations of concur-
rency patterns and mechanisms. A@SD '06: Proceedings of the 5th international conferenoe o
Aspect-oriented software developmett06.

[8] X.Deng etal. Invariant-based specification, synthemisl verification of synchronization in concurrent
programs. IrProc. of the IEEE International Conference on Software Begring (ICSE’02)2002.

[9] L. K. Dillon, R. E. K. Stirewalt, B. Sarna-Starosta, ands Fleming. Developing an Alloy framework
akin to OO frameworks. IRroc. of the First Alloy Workshq006. co-located with FSE'2006.

[10] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jearrdvidenaud, Marc Ségura-Devillechaise, and
Mario Sudholt. An expressive aspect language for systeplicgions with arachne. IAOSD '05:
Proceedings of the 4th international conference on Aspéetted software developme@005.

[11] E. Gamma and K. BeckContributing to Eclipse: Principles, patterns, and plugsi Addison-Wesley,
2004.

[12] Bruno Harbulot and John R. Gurd. Using AspectJ to sépa@ncerns in parallel scientific Java code. In
AOSD '04: Proceedings of the 3rd international conferenneAspect-oriented software development
2004.

[13] Matti Hiltunen, Francois Taiani, and Richard Schting. Reflections on aspects and configurable
protocols. INAOSD '06: Proceedings of the 5th international conferenaeédspect-oriented software
developmen2006.

[14] Yutaka Ishikawa. MPC++ approach to parallel computmgironment. ACM SIGAPP Applied Com-
puting Review4(1), 1996.

[15] R. E. Johnson and B. Foote. Designing reusable claskmsrnal of Object-Oriented Programming
pages 22-35, June/July 1988.

[16] G. Kiczales et al. An overview of Aspect/J. Rroc. of the European Conference on Object-Oriented
Programming 2001.

[17] Karl Lieberherr, David H. Lorenz, and Pengcheng Wu. Aecfor statically executable advice: checking
the law of demeter with AspectJ. WOSD '03: Proceedings of the 2nd international conference o
Aspect-oriented software developmett03.

[18] Cristina Videira Lopes and Gregor Kiczales. D: A langadramework for distributed programming.
Technical Report SPL97-010, P9710047, Palo Alto, CA, USfrlary 1997.

20

[19] J. Magee and J. KrameEoncurrency: State Models and Java Progrardshn Wiley and Sons, 2000.

[20] Awais Rashid and Ruzanna Chitchyan. Persistence aspati INAOSD '03: Proceedings of the 2nd
international conference on Aspect-oriented softwareettigyment2003.

[21] J. Rumbaugh, I. Jacobson, and G. Boorde Unified Modeling Language Reference ManAaldison—
Wesley, second edition, 2004.

[22] B. Sarna-Starosta, R. E. K. Stirewalt, and L. K. Dilldhmodel-based design-for-verification approach
to checking for deadlock in multi-threaded applicatiomsPtoc. of 18" Intl. Conf. on Softw. Eng. and
Knowledge Eng.2006.

[23] Yannis Smaragdakis and Don Batory. Mixin layers: aneebpriented implementation technique for
refinements and collaboration-based desigGM Trans. Softw. Eng. Methodol.1(2), 2002.

[24] Olaf Spinczyk, Andreas Gal, and Wolfgang Schrodesif&schat. AspectC++: an aspect-oriented ex-
tension to the C++ programming language.Pliroc. of the Fortieth International Conference on Tools
Pacific 2002.

[25] R. E. K. Stirewalt, R. Behrends, and L. K. Dillon. Safedaeliable use of concurrency in multi-threaded
shared memory sytems. Rroc. of the29** Annual IEEE/NASA Software Engineering Workst2§D5.

[26] Mandana Vaziri, Frank Tip, and Julian Dolby. Assogigtsynchronization constraints with data in an
object-oriented language. Rrinciples of Programming LanguageZ006.

21

A Synchronization-Specification Language Grammar

Below we present the grammar for our synchronization-gigetion language. The grammar ustadic font

for nonterminals and ypewr i t er font for terminals. Note that braces, colons, commas andcsdoms
are all terminal symbols. Brackets are metasymbols thatmgetements, and may be followed by one of two
special metasymbols. The first metasymbol is a superseriwhich indicates that the preceding group of
elements may repeat zero or more times. The second metakignalgubscripbpt, which indicates that the
preceding group of elements may occur zero or one times.

syncSpec
syncSpecHead
syncSpecBody

unitRefDecl
pointcutDecl

condVarDecl
condDeclBody
initDecl
adviceDecl
adviceType
adviceTime

constraintSpec
constrBody

pcdExpr

constrExpr

boolVal

className
unitVar
condVar
pcdVar

fun

syncSpecHead

syncSpecBody} ;

sync_spec className

[unitRefDed*
[pointcutDec]*
[condVarDed*

[constraintSpelG

uni t unitVar ;

sync_poi nt cut pcdVar : pcdExpr ;

condi ti on condVar { condDeclBody}
initDecl [adviceDed*

i ni t (boolVal

3

adviceType adviceTime pcdExpr [, pcdExpt* ;

trigger

| cancel

before | after

constraint {
[constrExpr ;]*

constrBody }

cal I (fun) | pcdVar

true
unitVar
condVar

0
1
true
fal se

==> unitVar

alegal C++ class name
a legal C++ variable name
a legal C++ variable name

a variable name

a legal C++ function name

22

