

Putting Information Foraging Theory to Work:
Community-based Design Patterns for Programming Tools

Tahmid Nabi 1, Kyle M.D. Sweeney 1, Sam Lichlyter 1, David Piorkowski 1,
Chris Scaffidi 1, Margaret Burnett 1, Scott D. Fleming 2

1 Center for Applied Systems and Software

School of Electrical Engineering and Computer Science
Oregon State University

Corvallis, OR, USA
{nabim, sweeneky, lichlyts, piorkoda,

Christopher.Scaffidi, Margaret.Burnett}@oregonstate.edu

2 Department of Computer Science
University of Memphis

Memphis, TN, USA
Scott.Fleming@memphis.edu

Abstract—The design of programming tools is slow and costly. To
ease this process, we developed a design pattern catalog aimed at
providing guidance for tool designers. This catalog is grounded in
Information Foraging Theory (IFT), which empirical studies
have shown to be useful for understanding how developers look
for information during development tasks. New design patterns,
authored by members of the research community for the catalog,
concretely explain how to apply IFT in tool design. In our
evaluation, qualitative analyses revealed the community-written
design patterns compared well in quality to patterns that we had
ourselves published in a smaller, peer-reviewed catalog.

Keywords—tool design; software engineering; applied theory

I. INTRODUCTION
Tools play a central role in enabling developers to find

information efficiently during development tasks. For example,
such tools include search and recommendation functions that
can help a developer find the location of a bug in order to fix it
[20][21], or to leave and view notes for one another [30]. To
date, designers have relied primarily on intuition and empirical
study for tool ideas. For example, one tool embodied the
insight that developers often need to navigate through code
based on what lines of code could be called, and the tool
included a novel static analysis to support navigation [19]. But
this insight was gleaned only after lengthy empirical work [18].

Hence, tool designers could benefit from a synthesis of the
literature in a form that highlights open areas and sparks
insights. We took the first step toward this goal with a literature
review [8] framed by Information Foraging Theory (IFT) [25],
a theory that can explain and predict how developers seek
information [20][21][24]. We examined software engineering
papers and explained how programming tools revealed ways of
applying IFT in practice [8], yielding 12 design patterns
summarizing how those tools applied IFT concepts.

A key limitation of that preliminary catalog is that it only
incorporated our own research group’s perspectives. Our
current paper therefore presents an expansion of this design
pattern catalog through a community-based process.
Researchers from around the world contributed 16 additional
design patterns, which broadened and deepened the range of
ideas for how to apply IFT for tool design. We evaluated these
new design patterns through a qualitative analysis.

II. BACKGROUND AND RELATED WORK
Information Foraging Theory (IFT) offers a framework for

conceptualizing developer behavior [8][17][20][21][24]. To
briefly summarize IFT as it applies to software engineering,
developers hunt like predators for information in a topology,
which consists of patches of code or other views connected by
navigable links. Patches contain information features that have
value in the context of the developer’s current task. A link has
a certain cost, often measured in time or effort. Links may be
annotated with certain cues (e.g., labels) indicating where those
links lead. Developers try to maximize value relative to cost.

Prior empirical work extensively validated the benefits of
applying IFT. For example, tools motivated by IFT can predict
where developers will navigate and offer links to reduce
foraging cost [20][21][24], organize files visually to minimize
navigation cost [12], summarize code to reduce effort of
program understanding [2], help developers find appropriate
versions of programs during reuse [16], and search for needed
API documentation [31].

We seek to go beyond the design of individual tools and
establish how IFT provides broad guidance for tool design in
general. Our approach is to synthesize insights from tools into
design patterns, which are general, reusable solutions to
common design problems [4][9]. Design patterns are abstract
enough to generalize solutions among multiple situations and
approaches [10][23][29], but concrete enough to aid developers
in everyday design work [26]. Design patterns exist for
security-related features [32], agent-based and service-oriented
architectures [15][28], object-oriented systems [3][9][34],
embedded systems [1][7], and visualization tools [13]. Our
literature review extended this list by showing that design
patterns could describe insights to guide programming-tool
design [8]. For example, our catalog included the Dashboard
pattern, which refers to an information patch in which a
developer can become aware of links that lead to continually
changing patches that have high value.

Researchers have taken a variety of approaches for
evaluating design pattern catalogs. Some applied qualitative
analyses (e.g., [15][32]), others obtained feedback from pattern
authors (e.g., [6][11]), and still others applied patterns and
observed their benefits and weaknesses (e.g., [14][27]). We
used the first of these three approaches in our evaluation.

This work was sponsored by the National Science Foundation

 978-1-5090-0252-8/16/$31.00 ©2016

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

III. COMMUNITY-BASED APPROACH TO
ESTABLISHING A CATALOG OF DESIGN PATTERNS

Below, we describe how we recruited and trained pattern
authors, then reviewed their work. We also discuss new
insights embodied in the design patterns that they contributed.

A. Recruiting researchers to serve as design pattern authors
To identify potential authors, we used the ACM Digital

Library to search relevant conference proceedings (e.g. ICSE,
FSE/ESEC, ASE and ICSME) for papers that described a
software engineering tool. We used combinations of keywords
related to software engineering and specific development tasks
(“code,” “debugging,” “foraging,” “maintenance,” “navigation,”
“refactoring,” “reuse,” “software,” “source,” “tool,” and
“visualization”). We manually reviewed search results to
confirm relevance, then emailed authors who were not graduate
students. The response rate was 20%, which we consider high
for such a time-demanding task as authoring patterns.

We collected design patterns via a wiki that provided
introductory materials to help authors begin. The Getting
Started page provided links to other pages in a logical
progression from a basic understanding of IFT, to a familiarity
with example IFT-based design patterns, and finally to the
process of how to author a new one. The IFT Primer explained
the key IFT constructs (e.g., patches, links, and value) and
illustrated these with relevant examples. The Walkthrough
consisted of a PowerPoint with embedded videos helping
authors understand how our research team actually constructed
one IFT-based design pattern. The Pattern Description page
explained how to organize information into our design-pattern
format (Table I), which extended the original object-oriented
design patterns format [9] with a new “Connection to IFT”
section. The List of Patterns provided a list of the extant design
patterns, including icons indicating each pattern’s completion
status. The Rules page stated requirements that we enforced—
principally, that each design pattern had to be on-topic,
complete, not a duplicate, and relevant to tool design.

B. Reviewing and revising of design patterns
Authors could start by either authoring new design patterns

or by contributing Known Uses to existing patterns authored by
other people. We frequently logged into the wiki and reviewed
edits. We contacted each person by email if a week went by
between posting new material. We also emailed authors
suggestions for improving patterns, and we answered inquiries
about how to finish the work. Authors either incorporated
feedback or explained a rationale for declining suggestions.
Several iterations of this feedback-modification process
typically occurred until at least two members of the study team
charged with approving the work both agreed that a given
design pattern fulfilled all the rules. Authors received $100 for
every completed design pattern, up to 3, as well as $10 for
every Known Use written (for any design pattern, including
those of other authors), up to 20, with a maximum of up to 3
Known Uses per design pattern.

C. Resulting catalog of IFT-based design patterns
Our 9 authors provided 16 design patterns between April

2015 and January 2016 (Table II).

TABLE I. SECTIONS OF IFT-BASED DESIGN PATTERNS. SEE
http://research.engr.oregonstate.edu/IFT FOR THE PATTERNS THEMSELVES.

Pattern Title: A memorable phrase summarizing the design pattern

Intent: A statement answering: What does the design pattern do? What

is its rationale and intent? What is the information foraging issue?

Motivating Example: A real-life scenario illustrating an information

foraging problem that tools implementing the design pattern solve.

Description: A description of how the pattern works, including: the

pattern’s input(s), how the pattern uses these, and its output(s).

Applicability: In what situations can the design pattern be applied?

Include any assumptions made and all conditions that must be met.

Connection to IFT: Use IFT terms and constructs to explain how the

tool aids with solving the information foraging problem.

Consequences: What are the tradeoffs and the results of this pattern?

Subdivide these into benefits and liabilities (pitfalls of pattern misuse)
Known uses: Examples of the pattern found in real tools, including

descriptions of how they implement or represent the pattern in action.

Related Patterns: What design patterns are related to this one? Note

similarities and differences. With what other patterns can it be used?

TABLE II. NAMES OF DESIGN PATTERNS CONTRIBUTED BY PARTICIPANTS,
WITH CORRESPONDING INTENTS (EDITED FOR SUCCINCTNESS)

Documentation Processing: Give developers a high level description

of source code, without having to navigate through the code.

Extract Method Refactoring: Restructure the topology by extracting

statements that are highly related into a separate method and

creating a new patch.

Fault Localization: Identify the sections of code that are responsible for

an undesired behavior of software.

Heuristics-based Code Completion: Group a set of functions by their

relatedness to the current coding context

Impact Location: Identify source code affected by the alteration of a

different section of code.

Online Feedback Miner: Extract from forum discussions API features

that have caused problems for developers

Patch Prevalence: Provide information foragers more prevalent

patches so as to more quickly arrive at a potentially profitable patch.

Patch Profitability: Indicate how much value an entire information

patch yields for fulfilling information-seeking goals

Path Search: Search a path in a topology, collapsing the topology to a

list of prey containing cues matching the predator's information goal.

Recollection: Find a previously known class or method that is relevant

to the task at hand.

Reduce Duplicate Information: Reduce the size of the topology by

eliminating nodes with duplicate information.

Rename Refactoring: Rename methods to reflect information

contained, highlighting aspects relevant to expected future foraging

Shopping Cart: Allowing developers to accumulate a list of patches for

extra vetting

Software Visualization: Characterize domain elements, e.g. structural

program elements, by visualizing metrics and properties

Test Coverage: Monitor coverage of a unit test suite to ease software

maintenance and evolution

Visualize Topology: Reveal the structure of the topology, helping

developers to move along relationships and choose patches to visit

Their contributions covered a variety of topics that our
earlier catalog of design patterns, published in TOSEM [8], had
not addressed.

For example, our preliminary catalog included few patterns
showing how to reduce the cost of processing information
patches—an objective addressed by several novel design
patterns from the new contributors. For instance, the
Documentation Processing design pattern referred to tools that
automatically parse and extract information from
documentation into summative patches. The Online Feedback
Miner pattern described tools, such as Haystack [33], that
automatically digest online conversations to provide
summative information to developers.

Our earlier catalog also lacked substantial coverage of
patterns describing how tools could assist developers in
making sense of large topologies, a topic covered better by the
new design patterns. For example, the Shopping Cart cited
TraCter, a tool for traceability analysts to collect patches in a
topology so they can subsequently view those patches and
examine them in detail [22], and the Visualize Topology design
pattern referred to tools that depicted the relationships among
patches. One pattern, Patch Prevalence, described an approach
for decreasing cost by increasing the density (“prevalence”) of
high-value patches through, in essence, compressing or
otherwise transforming the topology. It cited, as an example,
Code Bubbles, which enables the visual juxtaposition of high-
value patches within a window offering low-cost between-
patch navigations [5]. The Patchworks code editor supports a
related approach with a similar effect [12].

Finally, the new design patterns also discussed how tools
can reduce cost in situations where developers face a sequence
of foraging episodes—which our own patterns did not address.
For instance, the Recollection design pattern explained how
tools can help developers find their way back to places that
they have visited before. The Rename Refactoring and Extract
Method Refactoring design patterns discussed tools that enable
the developer to modify the topology in order to reduce the
cost of future foraging activities by improving maintainability.
Although our preliminary work had explained how tools can
aid developers in finding information needed before
performing refactoring tasks, we (unlike our community
authors) had not made the connection between the act of
refactoring and the future cost of foraging.

IV. EVALUATION
We assessed how well the 16 community-generated design

patterns met general quality criteria, relative to our preliminary
collection of 12 published in TOSEM [8]. Our logic was if the
new patterns matched our peer-reviewed patterns in quality,
then they were also suitable for publication.

A. Methodology
We performed a series of qualitative analyses that blended

theoretically derived code sets with qualitative coding and
focused on three areas.

a) Coverage of IFT: How well do design patterns, together,
cover IFT-related objectives? For this analysis, we

categorized design patterns based on a code set derived
from the constructs of IFT.

b) Abstraction & generalizability: How abstract is each design
pattern, and how well does it generalize across development
tasks? Here, we categorized design patterns based on an
adapted code set from Yskout et al [32] and a second code
set developed through open coding.

c) Evidence of usage: To what extent has each design pattern
found actual use? For this analysis, we categorized Known
Uses using a code set from open coding.

Reliability: Two researchers defined rules for applying
code sets, then independently coded 20% of instances. A code
set was considered reliable if had an agreement of at least 80%
using the Jaccard index. In situations where we did not meet
this criterion, we revised our rules and repeated the evaluation
until converging to a reliable coding scheme. Subsequently,
one researcher coded remaining data. While coding the 28
design patterns, we did not pay attention to whether each was
authored by us or by our recruited authors.

B. Results
1) Coverage of IFT
We constructed a code set by considering the constructs

present in IFT and how a tool might modify these constructs to
assist either in the present (as the developer is foraging) or in
the future (when the developer might have to forage again).
This led to identification of 10 IFT-related objectives:

• Improve alignment of expected value with actual value
• Decrease current cost of navigation
• Locate the prey of interest for the predator
• Decrease current cost of processing a patch
• Decrease future cost of navigation
• Increase the future value of information features
• Decrease the future cost of processing a patch
• Draw developer’s attention to certain cues
• Increase current value of information features
• Improve alignment of expected cost with actual cost

In contrast to our TOSEM catalog, which only addressed 8
of the 10 objectives, the community-generated design patterns
covered all 10. Moreover, for any given level of coverage
(expressed as a number of design patterns addressing each
objective), the community-generated patterns met or exceeded
ours (Fig. 1). Thus, we concluded the community-generated
patterns covered objectives as well as our preliminary catalog.

2) Abstraction and generalizability
Yskout et al. previously assessed their catalog of security-

related design patterns in terms of 6 levels of abstraction [32].
When we applied the code set to our catalog, we found all of
the design patterns were in only 2 of their 6 categories. If a
design pattern had a well-defined context indicating one or
more specific situation where the solution could apply, and if
the design pattern also contained implementation details, then
we refer to it as “Concrete.” Otherwise, in the absence of a
defined context and/or implementation details, we coded it as
“Non-Concrete.” (Yskout et al. referred to these codes as
“Algorithm” and “Technique,” but we feel that our own labels
here are more reflective of the two codes’ definitions.)

Based on these criteria, we categorized 25% of our TOSEM
design patterns as Concrete and 75% as Non-Concrete. In
contrast, we categorized 56% of community-generated design
patterns as Concrete and only 44% as Non-Concrete. In the
sense that a Concrete pattern is more specific than a Non-
Concrete pattern, these results suggest the community-
generated patterns offered some advantages our own lacked.

As a measure of generalizability, we categorized each
design pattern based on whether it supported multiple
development tasks. We identified 6 tasks through open coding:
coordinating developers, understanding code, mapping
functionality to code, refactoring, and testing/debugging. To
qualify as applying to a task, a design pattern had to give an
example scenario or a Known Use for that task.

We found 50% of our TOSEM design patterns generalized
across multiple development tasks. In contrast, only 25% of
community-generated design patterns applied to multiple tasks.

Thus, community-generated design patterns tended to be
more concrete but less generalizable than our own. Our
analysis suggests the complementary strengths of community-
based and literature-review approaches.

3) Evidence of use in practice
For each Known Use, we searched online to find

information about the use, which we classified as follows:

• Same-group research tool: Applied to a prototype created
by same research group as the design pattern’s author

• Other-group research tool: Applied to a prototype created
by another research group

• Industrial tool: Available commercially, and/or open source
but under continuous development and in use by an active
online community

We considered these categories to represent increasing
evidence of the design pattern’s practical utility.

As shown in Fig. 2, our TOSEM catalog averaged 3.17
Known Uses per design pattern, slightly exceeding the 3.13 per
design pattern that our community authors provided. However,
we provided slightly fewer industrial use cases per design

pattern, at 1.08 compared to 1.38 for community-generated
design patterns. We did not provide any Known Uses regarding
our own prior tools; in contrast, approximately 1/3rd of
research tools cited by community authors were created by
their own groups. Overall, these results suggest that
community-generated design patterns compared well to our
own in terms of their evidence for use in practice.

V. LIMITATIONS AND THREATS TO VALIDITY
A key limitation uncovered by our work is that the

community-generated design patterns tended to be of lower
generalizability than our own. When applying a similar
procedure with other theories in the future, a literature review
or a post-processing step could yield complementary design
patterns and ensure generalizability. Another risk to
generalizability is that we recruited pattern authors based on
software engineering publications; recruiting more pattern
authors who have a background in HCI could be beneficial.

We did not ask programmers to implement tools using
design patterns, so our evaluation of pattern quality might not
match measurements of utility in practice. Future work could
investigate the extent to which tool designers benefit from our
design pattern catalog when turning designs into working code.
Such additional evaluation could lead to valuable new insights
for expanding and for applying the pattern catalog in practice.

VI. CONCLUSIONS
We have presented a community-generated design pattern

catalog that expands our initial collection of IFT-based design
patterns for programming tools. We now know (1) members of
the research community can distill effective tool design
patterns from literature when provided theory-based guidance;
and (2) their patterns explained how to design tools aiding
information-foraging objectives that our TOSEM patterns
poorly covered. Most importantly, however, our work
illustrates a path toward connecting a scientific theory of
behavior with the practice of tool design.

ACKNOWLEDGEMENT
This work is supported by an IBM PhD Fellowship and by

the National Science Foundation (Grants 1101107, 1302113,
and 1314384). Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsor.

Fig. 1. Community-generated design patterns covered IFT-related

objectives more thoroughly than did our own preliminary collection [8]

0.0 1.0 2.0 3.0

TOSEM

community

Industrial tool # Other-group research tool

Same-group research tool
Fig. 2. Average numbers of Known Uses cited per design pattern (categorized

according to whether each Known Use’s tool was industrial, was created by the
pattern author’s research group, or was created by another research group)

REFERENCES
[1] Armoush, A, Salewski, F, and Kowalewski, S. (2008) Effective pattern

representation for safety critical embedded systems. IEEE International
Conference on Computer Science and Software Engineering, 91-97.

[2] Athreya, B., and Scaffidi, C. (2014) Towards aiding within-patch
information foraging by end-user programmers. IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 13-20.

[3] Beck, K., Crocker, R., Meszaros, G., Coplien, J. O., Dominick, L.,
Paulisch, F., and Vlissides, J. (1996) Industrial experience with design
patterns. ACM/IEEE International Conference on Software Engineering
(ICSE), 103-114.

[4] Borchers, J. (2000) A pattern approach to interaction design. ACM
International Conference on Designing Interactive Systems, 369–378.

[5] Bragdon, A., Reiss, S., Zeleznik, R., Karumuri, S., Cheung, W., Kaplan,
J., Coleman, C., and Adeputra, F. (2010) Code Bubbles: Rethinking the
user interface paradigm of integrated development environments.
ACM/IEEE International Conference on Software Engineering (ICSE),
455-464.

[6] Coplien, J., and Woolf, B. (1997) A pattern language for writers'
workshops. C Plus Plus Report, 9, 51-60.

[7] Fant, J. (2011) Building domain specific software architectures from
software architectural design patterns. ACM/IEEE International
Conference on Software Engineering (ICSE), 1152-1154.

[8] Fleming, S., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R.,
Lawrance, J., and Kwan, I. (2013) An Information Foraging Theory
perspective on tools for debugging, refactoring, and reuse tasks. ACM
Trans. Software Engineering and Methodology (TOSEM), 22(2), 14.

[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994) Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley.

[10] Gamma, E., Helm, R., Johnson, R. and O’Brien, L. (2009) Design
patterns 15 years later: An interview with Erich Gamma, Richard Helm,
and Ralph Johnson. InformIT. .
http://www.informit.com/articles/article.aspx?p=1404056

[11] Harrison, N. (1999) The language of shepherding. Pattern Languages of
Program Design, 5, 507-530.

[12] Henley, A., Singh, A., Fleming, S., and Luong, M. (2014) Helping
programmers navigate code faster with Patchworks: A simulation study.
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 77-80.

[13] Hundhausen, C. (2005) Using end-user visualization environments to
mediate conversations: A “Communicative Dimensions” framework.
Journal of Visual Languages and Computing, 16(3), 153–185.

[14] Iacob, C. (2012) Using design patterns in collaborative interaction
design processes. ACM Conf. Computer Supported Cooperative Work
Companion (CSCW), 107-110.

[15] Juziuk, J., Weyns, D., and Holvoet, T. (2014). Design patterns for multi-
agent systems: A systematic literature review. Agent-Oriented Software
Engineering, Springer Berlin Heidelberg, 79-99.

[16] Kuttal, S. (2013) Variation support for end users. IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 183-184.

[17] Kuttal, S., Sarma, A., and Rothermel, G. (2013) Predator behavior in the
wild web world of bugs: An Information Foraging Theory perspective.
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 59-66.

[18] LaToza, T., and Myers, B. (2010) Developers ask reachability questions.
ACM/IEEE International Conference on Software Engineering (ICSE),
185-194.

[19] LaToza, T., and Myers, B. (2011) Visualizing call graphs. IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 117-124.

[20] Lawrance, J., Bellamy, R., and Burnett, M. (2007) Scents in programs:
Does Information Foraging Theory apply to program maintenance?
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 15-22.

[21] Lawrance, J., Bellamy, R., Bumett, M., and Rector, K. (2008) Can
information foraging pick the fix? A field study. IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 57-64.

[22] Mahmoud, A., and Niu, N. (2011) TraCter: A tool for candidate
traceability link clustering. IEEE International Requirements
Engineering Conference, 335-336.

[23] May, D., and Taylor, P. (2003) Knowledge management with patterns.
Communications of the ACM, 46(7), 94-99.

[24] Piorkowski, D., Fleming, S., Scaffidi, C., John, L., Bogart, C., John, B.,
Burnett, M., and Bellamy, R. (2011) Modeling programmer navigation:
A head-to-head empirical evaluation of predictive models. IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 109-116.

[25] Pirolli, P., and Card, S. (1995) Information foraging in information
access environments. ACM Conference on Human Factors in
Computing Systems (CHI), 51-58.

[26] Prechelt, L., Unger, B., Tichy, W., Brossler, P., and Votta, L. (2001) A
controlled experiment in maintenance: Comparing design patterns to
simpler solutions. IEEE Transactions on Software Engineering, 27(12),
1134-1144.

[27] Ramirez, A., and Cheng, B. (2010) Design patterns for developing
dynamically adaptive systems. ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, 49-58.

[28] Rischbeck, T., and Erl, T. (2009) SOA Design Patterns, Prentice Hall.
[29] Rising, L. (2007) Understanding the power of abstraction in patterns.

IEEE Software, 24(4), 46-51.
[30] Storey, M., Cheng, L., Singer, J., Muller, M., Myers, D., and Ryall, J.

(2007) How programmers can turn comments into waypoints for code
navigation. IEEE International Conference on Software Maintenance,
265-274.

[31] Stylos, J., and Myers, B. (2006) Mica: A web-search tool for finding
API components and examples. IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), 195-202.

[32] Yskout, K., Heyman, T., Scandariato, R., and Joosen, W. (2008)
Security patterns: 10 years later. Technical Report CW 514, Department
of Computer Science, Katholieke Universiteit Leuven, Belgium,
https://lirias.kuleuven.be/bitstream/123456789/183886/1/CW514.pdf

[33] Zhang, Y., and Hou, D. (2013) Extracting problematic API features
from forum discussions. IEEE International Conference on Program
Comprehension (ICPC), 142-151.

[34] Zimmermann, O., Zdun, U., Gschwind, T., and Leymann, F. (2008)
Combining pattern languages and reusable architectural decision models
into a comprehensive and comprehensible design method. IEEE/IFIP
Conference on Software Architecture (WICSA), 157-166.

