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Abstract—The difficulty of learning data science is believed to
arise from its deep prerequisites in statistics, programming, and
machine learning. This poster explores how blocks languages
may be used to reduce the cognitive load of learning data
science. Unlike blocks languages for introductory programming,
blocks languages for data science naturally align with a high
level of abstraction and almost exclusively sequential execution.
However, these gains in simplicity are offset by the high level
of parameterization at the block level. Three designs for blocks
languages are presented and compared, and implications for
abstraction, sequential execution, and parameterization on
cognitive load are discussed.

Index Terms—blocks language, data science, abstraction, cog-
nitive load, R

I. INTRODUCTION

Research over the past decade has increasingly supported
the positive cognitive and motivational effects of blocks lan-
guages for learning introductory programming [1]-[4]. Recent
work on blocks languages has invoked data science, not
as a learning domain but rather as a motivation to learn
introductory programming [5], [6]. Given the positive learning
outcomes of blocks languages on introductory programming,
we propose exploring these effects in the context of learning
data science. In this poster, we present high-level design
issues for such a blocks language, focusing on the statistical
programming language R and Blockly [7], a configurable
open-source library for creating new blocks languages.

II. GENERAL VS DATA SCIENCE PROGRAMMING

General-purpose programming languages typically define a
small set of textual primitives that can be combined in com-
plex ways for general-purpose problem solving. As a result,
both general-purpose programming languages and their blocks
language counterparts have the common control structures of
sequence, iteration, and alternation (cf. selection or choice) to
allow complex combinations of primitives for problem solving.

Data science programming, in contrast, focuses on data
science tasks. This is not to say that languages used for data
science, like R, are not general-purpose languages, but rather
that languages like R are not used in a general-purpose manner
when applied to typical data science tasks. Primary tasks in
data science programming include obtaining data, inspecting
data, transforming data, summarizing data, building models,
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and evaluating models [9]-[11]. These tasks not only have
an internal sequential structure, but these tasks themselves
are typically ordered sequentially in this way. As a result,
data science programming is well suited to development
environments with a linear format like Jupyter notebooks.

Because data science programming focuses on data science
tasks, most programming is done at a high level of abstraction,
i.e., uses libraries extensively. For example, in R, reading data
from a file can be accomplished with read.table rather
than setting up a file stream and reading loop. Similar high-
level calls are used to summarize data, plot data, or build
statistical models. This high level of abstraction is largely
responsible for the lack of iteration and alternation structures
— these control structures are hidden behind the abstraction.
However, the abstraction comes at a price, because fine control
must now be implemented by a high degree of parameter-
ization rather than by complex combinations of primitives.
For example, read.table has 25 possible arguments and
returns a complex object (a data.frame).

III. IMPLICATIONS FOR COGNITIVE LOAD

Cognitive load theory predicts that excessive demands on
working memory will impede learning [12]. In the general-
purpose programming case, blocks languages may reduce
cognitive load by eliminating syntactic errors (e.g., tabs,
semicolons, and closing braces) and only requiring students to
recognize useful blocks rather than the more difficult task of
recalling code, cf. [13]. With general purpose blocks, students
still have high working memory demands to plan through the
complex combinations of primitives needed to achieve their
goals. In contrast, data science programming, by virtue of
its high level of abstraction, typically requires students to
recognize a single block that accomplishes their goal, e.g.,
read.table, and add that block to their workflow pipeline.
However, students must then understand how to parameterize
that block, i.e., what parameters are meaningful for their use
case and what the alternatives for those parameters are.

We argue that parameterization represents an unavoidable
type of cognitive load that comes with a high level of ab-
straction, but we further argue that this particular cognitive
load may actually be conducive to learning data science.
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Fig. 1. The naive design for read.table. Only a quarter of the optional
arguments are shown due to space limitations.

Cognitive load theory distinguishes between intrinsic, or nec-
essary cognitive load, extraneous, or avoidable cognitive load,
and germane, or schema-inducing cognitive load. Cognitive
load is germane and positive to the extent that it creates or
strengthens a schema for future problem solving. Because
parameterization in high-level abstractions necessarily marks
the underlying dimensions along which a class of problems
typically varies (analogous to domain structure, cf. [14]),
repeated exposure to parameterizations may help students learn
options for problems beyond the current problem.

IV. USING BLOCKLY FOR DATA SCIENCE PROGRAMMING
TO PROMOTE GERMANE COGNITIVE LOAD

Given the differences between data science programming
and general-purpose programming discussed above, how to
design data science blocks so that their parameterizations
represent germane cognitive load instead of extraneous cog-
nitive load is an open question. We present three designs that
address our previous example, read.table, which is a high-
level R API for loading data that has 25 arguments with 24
of those being optional (pandas.read_table in Python
is an equivalent example) and consider the cognitive load
implications of each. All designs are implemented in Blockly.

A. Naive Design

The naive design in Figure 1 has a single block that
enumerates all parameters and introduces extraneous cognitive
load in several ways. First, by presenting all options simulta-
neously and without distinguishing importance, it forces the
user to hold multiple options in working memory and engage
in a search through the option space. Second, it does not
communicate the default value for each option, even though
the default may be correct for a particular use.

B. Mutator Dropdown Design

The mutator dropdown design in Figure 2 addresses the first
limitation of the naive design by displaying only the obligatory
argument £ilename and hiding the option arguments behind
a mutator bubble. A mutator bubble is a Blockly convention
for variable argument lists that opens a pop-up configuration
window to allow the user to reconfigure a block, which keeps
complexity hidden until needed. Each optional argument in
this design has a fixed dropdown for its name, allowing the
user to get exposure to the various options without forcing
them to select settings for each option. This design should
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Fig. 2. The mutator dropdown design for read.table. The initial block
(A) expands to allow addition of options (B), which appear as a dropdown in
the initial block (C). Added options may be parameterized to yield the final
block (D).
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Fig. 3. The mutator dropdown default design for read.table. As in

Figure 2, the initial block (A) expands to allow addition of options to yield the
final block (D). Default arguments for options are automatically instantiated.

reduce extraneous load by hiding options and encouraging the
user to address a single option at a time when they are added.
However, the user must still recall acceptable parameters.

C. Mutator Dropdown Default Design

The mutator dropdown default design in Figure 3 addresses
both the first and second limitations of the naive design.
Like the mutator dropdown design, it hides option arguments
behind a mutator bubble. However, when options are added or
their values are changed in the dropdown, this design updates
the parameter value with the default option. By providing
default values, this design reduces the cognitive load of
determining a value and also introduces germane cognitive
load by fostering a schema that associates each option with
its default value. Alternatively, Blockly shadow blocks can
be used for setting defaults.

V. CONCLUSION

Blocks languages used for learning introductory program-
ming hold promise for learning data science. However, our
preliminary design work suggests that a naive implementation
of blocks languages for data science will create extraneous
cognitive load. By incorporating design elements that hide API
complexity until needed and then provide default suggestions
for using the API, we believe that we can reduce extraneous
cognitive load and foster germane (schema-inducing) cog-
nitive load that will generalize learning to novel problems.
If these hypotheses are correct, then learning data science
programming with appropriately designed blocks languages
may be substantially easier than learning general-purpose
programming with blocks languages. The major limitation of
our work is that it focuses on functions rather than objects
(e.g., data. frame). Incorporating objects into data science
blocks languages is a subject for future work.
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