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Abstract—Software developers frequently need to perform code 
maintenance tasks, but doing so requires time-consuming 
navigation through code. A variety of tools are aimed at easing 
this navigation by using models to identify places in the code that 
a developer might want to visit, and then providing shortcuts so 
that the developer can quickly navigate to those locations. To 
date, however, only a few of these models have been compared 
head-to-head to assess their predictive accuracy. In particular, 
we do not know which models are most accurate overall, which 
are accurate only in certain circumstances, and whether 
combining models could enhance accuracy. Therefore, we have 
conducted an empirical study to evaluate the accuracy of a 
broad range of models for predicting many different kinds of 
code navigations in sample maintenance tasks. Overall, we found 
that models tended to perform best if they took into account how 
recently a developer has viewed pieces of the code, and if models 
took into account the spatial proximity of methods within the 
code. We also found that the accuracy of single-factor models 
can be improved by combining factors, using a spreading-
activation based approach, to produce multi-factor models. 
Based on these results, we offer concrete guidance about how 
these models could be used to provide enhanced software 
development tools that ease the difficulty of navigating through 
code.  

Keywords-software maintenance, debugging, program 
investigation, program navigation, information foraging 

I. INTRODUCTION 
An essential aspect of software engineering is fixing bugs 

and adding features. When developers perform such 
maintenance tasks on unfamiliar code (or code that they no 
longer remember well), they need to gather a great deal of 
information before they can begin to edit the code. For 
example, they need to find answers to questions about where 
certain features are implemented and how different pieces of 
the code relate to one another [15]. During this search for 
information, developers gradually build up and mentally test 
hypotheses about how the code works and how to modify it in 
order to complete the maintenance task [8]. Unfortunately, in 
gathering this information, developers spend an excessive 
amount of time navigating through code. In one laboratory 
study, developers engaged in maintenance tasks spent up to 
35% of their time merely navigating through the code [8]. 

Various tools have been provided to accelerate these time-
consuming navigations [2][4][13][14][17][18][20][21]. 
Internally, each tool uses a model to identify code that the 
programmer is likely to need to visit, and the tool then 
provides a window of navigational shortcuts to that code. 
These models are typically based on a single factor. Some of 
them are based on mining logs of how people have edited or 
navigated through the code in the past [4][13][17][20][21], 
whereas others make predictions based on textual similarity 
between methods, call-invocation relationships between 
methods, inheritance between classes, and other structural 
relationships within code [2][14][18].  

One problem is that we do not yet know which of these 
models most accurately predicts programmer navigations. 
Moreover, we do not yet know if any models work well in 
general but work poorly for predicting certain kinds of 
navigations. Comparing the accuracy of these models is 
important because a tool is unlikely to be useful if its 
underlying predictive model is inaccurate. Conducting such an 
evaluation requires testing the models head to head on 
navigation data from sample maintenance tasks. To date, this 
has only been done with a small subset of the models 
(specifically, those that can predict when a developer will 
revisit methods that were previously viewed) [11].  

The contribution of the current paper is to compare how 
well a broad range of models can predict different kinds of 
navigation actions. We investigate two particular questions: 

RQ1: How accurately do different models predict 
programmer navigations, overall? We are especially 
interested in how well accuracy can be increased by 
combining single-factor models into multi-factor models. 

RQ2: How does each model’s accuracy vary depending on 
the operationalization of programmer navigation? We are 
particularly interested in whether accuracy differs between an 
operationalization from the literature (e.g., [11]) that is based 
on where the programmer clicks and a new operationalization 
based on what code is in the programmer’s view. 

II. BACKGROUND 
Empirical studies have revealed many cases where 

developers navigate through code. During maintenance tasks 
in a laboratory study, developers spent 35% of their time 
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looking through code to understand it and to plan changes [8]. 
Even after learning about code, developers often need to 
relearn the same information through repeated navigations. 
Interruptions are a major cause for these revisits. In field 
studies, developers faced major interruptions approximately 
once per hour; 40% of interruptions were not immediately 
followed by a return to the original task, and restarting a task 
typically required going back to locations in code to recover 
mental state [3][11]. Overall, code navigation is essential to 
finding defects, fixing defects, implementing features, porting 
code, documenting code, extracting reusable code, and 
virtually every software engineering activity. 

Certain code navigations were particularly common, 
especially in maintenance tasks. At the start of a task in 
laboratory and field studies, a developer usually searched for a 
location in the code that could serve as an initial focus point 
[15]. These navigations often took the form of keyword-based 
queries in the IDE to find code textually related to a bug report 
or feature enhancement request. Over the course of a task, 
each developer typically began to ask questions about how 
pieces of code were related, such as through method-
invocation [4][15]. Following up on these questions broadened 
the investigation’s scope to include more code. Eventually, 
each developer learned enough to proceed with making edits. 
During tasks, developers frequently scrolled between adjacent 
locations in code [11][13]. Another frequent navigation was to 
revisit previously read code, whether later in the day [11], later 
in a particular task [16], or even within seconds of an earlier 
visit (i.e., “jitter”) [17]. Revisits were most frequent toward the 
end of each task [16]. 

Various tools seek to ease these navigations by providing 
shortcuts to places in the code that the developer might go 
(e.g., [2][4][13][14][17][18][20][21]). Several tools provide 
shortcuts to locations that other developers historically have 
visited after the current location [4][13][17]. Other tools 
provide shortcuts to code that has historically been modified at 
the same time as the current code [19][21]. Still other tools 
provide shortcuts to code or other artifacts based on textual 
similarity, method-invocation, or other structural relationships 
[2][14][18]. 

Parnin and Gorg noted that the input for generating these 
shortcuts is the developer’s current location [11]. In response, 
they proposed to use the developer’s recent history of 
navigations to help filter, reweight, or otherwise refine the list 
of shortcuts offered by tools [11]. For example, they argued 
that if a tool could use the developer’s navigation history to 
identify places where he or she is likely to go next, then the list 
of shortcuts (from any of the tools above) could be filtered to 
only include those that the developer is most likely to want 
next. In addition, if a tool could identify places where the 
developer is likely to go next, then the tool could provide a 
shortcut list directly (rather than simply filtering another tool’s 
list). Achieving such enhancements therefore requires a model 
that can use the developer’s navigation history to predict the 
next navigation. Motivated by the Mylar tool (which simply 
shows shortcuts to recently visited code) [7], Parnin and Gorg 
evaluated four predictive models. In the current paper, we take 
Parnin and Gorg’s approach further and evaluate how well 

these and a broader range of models can predict the next 
navigation based on the developer’s navigation history. 

III. MODELS OF PROGRAMMER NAVIGATION 
Expanding on Parnin and Gorg’s evaluation, we evaluated 

a variety of predictive models of programmer navigation. Each 
of the models uses a single factor in making its predictions 
(thus we refer to these models as single-factor models). We 
focused on factors underlying promising prior approaches. For 
instance, recency and frequency of navigation were Parnin and 
Gorg’s most predictive factors [11]; working set is a widely 
used concept and is emerging as a foundation for important 
IDEs (e.g., [7]); and factors of textual similarity and code 
structure are also widely used (e.g., [2][10]).   

Each of our models represents a developer’s Java 
programming session in Eclipse as a sequence of navigations 
to methods. More formally, the developer’s navigation history 
H for a particular programming session is a sequence of 
methods (m1, m2, ..., mn) such that for all mi in H, mi ≠ mi+1. 

Given the navigation history up to a certain point in a 
session Hj = (m1, m2, …, mj), each model attempts to predict 
the next method mj+1. Leading up to the current point in the 
session, the programmer will have opened one or more source 
files in the Eclipse editor. The set Mj approximates the set of 
methods that the programmer currently knows to exist. It 
comprises all methods that are defined or referenced in the 
previously opened source files (including files that were open 
at one time, but have since been closed). Because the 
developer must open the source file containing a method 
before navigating to that method, the methods in Hj constitute 
a subset of the methods in Mj.  

In attempting to predict mj+1, the models rank the methods 
in Mj – {mj} from least likely to most likely. To produce this 
ranking, each model creates a mapping Aj from each method in 
Mj – {mj} to an activation value (a real number) such that it is 
more likely (according to the model) that the developer will 
navigate to methods associated with greater activation. The 
models use this activation function to produce a ranking 
function Rj such that Rj is Aj with rank-transformed activation 
values (from highest to lowest). Activations of equal value are 
replaced by the average of the ranks involved. The models 
vary primarily in how they calculate Aj. 

The Recency model assigns higher activation values to 
methods that the programmer visited more recently. Formally, 
the model defines Aj such that for each method m in Mj – {mj}, 
if m has been visited previously by the programmer, then 
Aj(m)=the max sequence number for m in Hj; else, Aj(m)=0.  

The Working Set model is a variant of the Recency model 
that is parameterized by a history length Δ, and assigns an 
activation of 1 to the last Δ methods visited and activation of 0 
to all other methods. Formally, for all m in Mj – {mj} such that 
m is in {mj-1, mj-2, ..., mj-Δ}, Aj(m)=1; else, Aj(m)=0.  

The Frequency model assigns higher activation values to 
the methods that the programmer has visited the most times in 
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the past. More formally, for all methods m in Mj – {mj}, Aj(m) 
is the number of occurrences of m in Hj.  

The Bug Report Similarity model assigns higher activation 
values to methods that are textually similar to a bug report. 
More formally, for all methods m in Mj – {mj}, Aj(m) is the tf-
idf [1] weight for the words of the bug report with respect to 
the text of m. In this computation of tf-idf, the corpus consists 
of words taken from the set of methods Mj, including the 
current method mj. Stop words, which are short common 
words like “the,” are removed prior to the computation. 
Additionally, camelCase words are broken up to enable textual 
matching on their component words. 

The remaining single-factor models incorporate a notion of 
the cost of navigating between particular methods, and assign 
higher activations to methods that cost less to get to from the 
current method. Each such model maintains a graph Gj such 
that each method in Mj maps to a different vertex of Gj. Most 
of the models vary only in how edges in the graph are defined. 
Given the graph for a particular model, for all m in Mj – {mj}, 
Aj(m) for that model subtracts from |Mj| the length of the 
shortest path from m to the current method mj.  

The Within-File Distance model constructs Gj such that 
edges connect methods that are textually adjacent in a source 
file. More formally, for each method m in Mj, an undirected 
edge in Gj connects m to the methods contiguous to m (i.e., 
immediately before and after m in the source file).  

The Forward Call Depth model constructs Gj such that 
each method m is connected by a directed edge to each method 
called in the body of m. More formally, for all pairs of 
methods ma, mb in Mj, Gj contains a directed edge from ma to 
mb if and only if the method text of ma contains a call to mb.  

The Undirected Call Depth model is identical to the 
directed version, except the directed edges in Gj are replaced 
with undirected edges.  

The Source Topology model constructs Gj as a source 
topology graph that, in addition to method vertices, includes 
vertices for projects, packages, classes, interfaces, and 
variables as well. The source topology graph includes edges 
for “has a” relationships between these elements (e.g., class 
inheritance), for “calls a” relationships, and for within-file 
adjacency relationships. More formally, the set of classes Cj 
includes every class or interface referenced in a file that the 
programmer has opened so far. Similarly, the set of variables 
Vj, and the set of packages Pj, include every variable and 
package, respectively, referenced in a file so far. For every 
element e in Mj  Cj  Vj  Pj, the source topology graph 
contains a unique vertex that maps to e. The graph contains an 
edge between two elements ea and eb if ea calls eb, ea has eb, or 
ea and eb are both methods and are adjacent in a source file. 

IV. OBSERVATIONAL METHOD 
We observed a programmer debugging two different open-

source software applications in two separate sessions. We 
opted to collect rich, in-depth data (hours of audio and video) 
from this one participant as opposed to sparser data from a 
group. Observing a single participant limits the generality of 

our results, but since even a single participant generates 
numerous behaviors to be encoded and analyzed in detail, this 
is a common approach in understanding complex human 
behavior. 

The participant was a senior-level undergraduate student 
majoring in computer science. He had 3 years total of 
programming experience (with an emphasis on Java), had 1.5 
years of experience programming as an undergraduate 
research assistant, and was a skilled user of Eclipse. He had 
never seen the bugs or source code he was asked to modify. 

We recorded audio of what was said, video of the 
participant, and screen-capture video. Additionally, we 
configured the participant’s Eclipse environment to log actions 
and the contents of opened files with the PFIG plugin [10]. 

A. jEdit Session 
For the first session, the participant’s task was to fix a bug 

in jEdit, a text editor for programmers. jEdit is a relatively 
mature software project, comprising 98,652 non-comment 
lines of Java code. The bug (Figure 1) was still open (not yet 
fixed by jEdit maintainers). We did not explicitly use the 
think-aloud method for this session, but our data collection did 
include audio and video of anything the participant happened 
to say.  

BUG: Problem with character-offset counter. 
In the lower left corner of the jEdit window, there are two counters that describe 

the position of the text cursor. The first counter gives the number of the line that cursor 
is on. The second counter gives the character offset into the line. 

The character-offset counter is broken. When the cursor is at the beginning of a 
line (i.e., before the first character in the line), jEdit shows the offset as 1. However, the 
offset should begin counting from 0. Thus, when the cursor is at the end of the line, it 
will display the number of characters in the line rather than the number of characters 
plus 1. 

Figure 1.  Bug report text for the jEdit task. 

Prior to the task, the jEdit source code was loaded into an 
Eclipse environment, the bug report was provided on paper, 
and the participant was asked to fix the bug using whatever 
procedure he would normally employ, except directly asking 
another person (e.g., he had access to the internet). He 
successfully fixed the bug in 29 minutes. 

B.  Memoranda Session 
For the second session, the participant worked on a bug in 

Memoranda, a diary manager and  tool for scheduling personal 
projects. The program comprised 13,906 non-comment lines 
of Java code. This time, the bug (Figure 2) was a closed bug 
(1108171), so we could obtain the developers’ patch for the 
bug to compare to our participant’s fix.  

BUG: Note lost when switching projects - ID: 1108171 
Details: 

When a note A (date A) for project A is active, switch project. Note B (date A) in 
project B is totally replaced by note A and note B is LOST forever! 

note B is the first note of project B on date A. 
Additional Comments: 

This only happens if note A and note B are of the same date 

Figure 2.  Bug report text for the Memoranda task. 

In this session, we used the think-aloud method [6] to elicit 
a verbal protocol from the participant. Regarding the 
possibility of effects on our measures, numerous studies have 
shown that instructing participants to “verbalize their inner 
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dialogue” (as opposed to asking them to “explain” what they 
are doing) elicits comparable performance to when the 
participants are not thinking aloud [5].  

The Memoranda source code containing the bug was 
loaded into an Eclipse environment, the bug report was 
provided on paper, and the participant was instructed to fix the 
bug using whatever procedure he would normally employ, 
except asking another person or, since the bug had been 
closed, accessing the Memoranda project’s bug tracker and 
SVN logs. He successfully fixed the bug in just under 1 hour 
and 25 minutes. However, his fix introduced a new defect into 
the code. 

V. ANALYSIS METHOD 

A. Coding Navigations 
We used both an automatic process and a manual process 

to encode navigations to methods made by the participant. We 
also coded navigations according to their context in Eclipse 
(Table I).  

A click-based navigation is a change in text cursor position 
from one method to another method caused by the developer 
clicking a button or clicking in the Java Editor. Our PFIG 
Eclipse extension logged both the position of the text cursor 
when the participant clicked within source code files and the 
textual content of that source code. As with other IDEs, 
Eclipse’s affordances can influence developer navigations 
(e.g., closing a tab jumps the cursor to another open file). 
Since modern IDEs were our context of interest, we expected 
such behaviors and did not attempt to control for them.  

In addition to clicking, the participant often navigated to 
methods without explicitly clicking in the source code. For 
example, he used the mouse wheel to scroll down through a 
long file, pausing to read methods. We extracted these actions 
manually using video annotation software. We first imported 
the PFIG logs into the video annotation software and anchored 
them to coincide with observable clicks in the video. We then 
annotated each action, with four attributes: action (left click, 
right click, typing a key on the keyboard, etc.), target (what 
button or word was clicked on, etc.), target location (in which 
window or pane the target was located, e.g., Package 
Explorer), and destination (which location was active after the 
action). This procedure resulted in an annotation for every user 
action (about 2500 hand annotations in roughly 2 hours of 
video) and had the side-effect of verifying the automatically 
recorded click-based navigations. 

We used these annotations to code view-based navigations, 
which are user actions (involving any mechanism) that cause a 
new method to appear on screen. Specifically, we coded a 
view-based navigation as arriving at method m if: (1) the 
definition of m (including Javadoc comments) was in the 
vertical center of a visible source code tab; or (2) the entire 
definition of m was visible on the screen; or (3) the participant 
talked about m and the method was visible on the screen; or 
(4) the participant clicked in m. If multiple methods were 
visible when a new source code file was opened or a tab was 
switched to, we coded navigations to all fully visible methods 
in order from top to bottom. 

B. Evaluating predictions  
We evaluated a model’s predictions by assessing whether it 

included the correct method (i.e., got a “hit”) in its top-N 
predictions. If a model produced more than N predictions with 
rank < N, we ignored the predictions with the lowest rank.  
Formally, given the correct method m, Rj(m) < N, and the 
number T of methods tied at rank Rj(m) in Rj, 
floor(T/2)+floor(Rj(m)) < N indicated a hit. 

VI. RESULTS: SINGLE-FACTOR MODELS 
We used both click-based and view-based navigations to 

assess the accuracy of each single-factor model in predicting 
programmer navigation during debugging and to understand 
what accounted for the accuracy of the various models.  

A. Analysis of Click-Based Navigation 
To evaluate the models’ predictive accuracy, we counted 

the number of times that the top-N ranked methods returned by 
a model included the method to which the programmer 
actually navigated next. We tested values of N from 1 to 20 (a 
reasonable size for a shortcut list in a development 
environment). Figure 3 aggregates the results for each model 
from the jEdit and Memoranda sessions. 

Looking at only the top-ranked method predicted by each 
model (i.e., N=1), no single-factor model was particularly 
accurate (max hit ratio of 4.1%). However, with N=3, the hit 
ratio for Recency and Working Set rose to above 20%, and 
with N=10, these models had hit ratios near or above 50%.   

The low accuracy of Bug Report Similarity is rather 
surprising because a prior study [9] found that during 
debugging programmers tended to navigate to methods with 
similar text to the bug report. The cause of the discrepancy 
remains an open question; for instance, it may arise from 
differences in the wording of the bug. 

To better understand why some models were more 
accurate than others, we analyzed the individual navigation 
actions that the participant performed and the Eclipse interface 
contexts (i.e., distinct elements or Perspectives in the Eclipse 
GUI) in which he performed those actions. Table II depicts the 
number of times that the participant performed a navigation 
action in each context and gives the hit ratio (N=10) of each 
model for predicting the navigations in each context.  

Table II shows that the overall high accuracy of Recency 
and Working Set largely resulted from their accurate 
predictions of navigations in the context of Eclipse’s Debug 
view and Java Editor tabs. These models were able to 
accurately predict navigations in the Java Editor tabs context 
because tab close and tab select actions always take the 

TABLE I.  ECLIPSE CONTEXTS AND ASSOCIATED NAVIGATION ACTIONS. 

Context Navigation Actions 
Debug view Run to breakpoint, step over, step into 
Java Editor tabs Tab select, tab close 
Java Editor Click in method, scroll, Open Call Hierarchy 
Package Explorer view Open element 
Call Hierarchy view Open element 
Find Utility Find next 
Java Outline view Open element 
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programmer to locations that he has previously visited. The 
two models were also able to accurately predict navigations in 
the Debug view because the participant used the debugger to 
repeatedly step over the same sections of code. 

The modeling results presented so far both agree with and 
expand upon the work of Parnin and Gorg [11]. Two of their 
models, Least-Recently Used (LRU) and Least-Frequently 
Used (LFU), correspond to our Recency and Frequency 
models, and our results for those models are consistent with 
those of Parnin and Gorg (i.e., Recency was more accurate 
than Frequency). We expand on Parnin and Gorg’s work by 
evaluating models that go beyond caching (e.g., Bug Report 
Similarity and Source Topology). However, as with Parnin and 
Gorg’s results, the most accurate model overall was Recency. 

B. Analysis of View-Based Navigations 
When we extended the analysis to include all 676 view-

based navigations (a considerable increase from the 123 click-
based navigations), model accuracy shifted noticeably from 
both our results for click-based navigations and the results of 
Parnin and Gorg. In particular, Within-File Distance and 
Source Topology exhibited a substantial improvement in 
accuracy. Figure 4 depicts view-based results. 

As with the click-based navigations, all single-factor 
models exhibited low accuracy at N=1 with none exceeding a 
hit ratio of 4%. However, for N=3, the hit ratio of the Within-
File Distance model jumped to 83.4%, just 3.4% shy of its 
N=20 hit ratio of 86.8%. 

Our analysis of view-based navigations, as seen in 
Table III, highlights the importance scrolling operations 
(which account for the vast majority of our 676 view-based 
navigations). The Within-File Distance model benefited most 
from the profusion of scrolling navigations because the 
majority of scrolling navigations were to the method above or 
below the current one.  

Table III shows that Source Topology owes its accuracy to 
scrolling navigations in the Java Editor as well. For 
navigations in the Java Editor, the model’s hit ratio was 

83.1%. This result makes sense because the Source Topology 
graph contains edges that represent within-file adjacency 
relationships. However, the graph also contains edges 
representing other relationships, such as call relationships, that 
detracted from the model’s accuracy in predicting the view-
based navigations. 

In summary, the type of navigation made a considerable 
difference in the number of navigations and the accuracy of 
certain models. Previous work did not account for the broad 
number of ways that programmers can navigate. In particular, 
the view-based navigations captured a multitude of scrolling 
navigations not logged by the click-based navigations 
considered in related work. These scrolling navigations led 

TABLE II.  MODEL ACCURACY (CLICK-BASED DATA) BROKEN DOWN BY THE 
CONTEXT IN WHICH NAVIGATION ACTIONS OCCURRED AT N=10. CONTEXTS 

INCLUDE INDIVIDUAL ELEMENTS (MIDDLE 7 ROWS) AND TWO ECLIPSE 
“PERSPECTIVES” ENCOMPASSING MULTIPLE ELEMENTS (BOTTOM 2 ROWS). 

THE BEST HIT RATIO FOR EACH CONTEXT IS SHOWN IN BOLD. 
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Overall 123 54% 49% 36% 4% 27% 1% 11% 8% 
Debug view 45 62% 60% 33% 0% 38% 0% 4% 9% 
Java Editor 
tabs 

32 69% 53% 50% 3% 0% 3% 22% 3% 

Java Editor 23 52% 39% 39% 9% 57% 0% 9% 9% 
Package 
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7 14% 14% 14% 14% 0% 0% 29% 14% 
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view 

1 0% 100% 0% 0% 0% 0% 0% 0% 

Java 
Perspective 

75 48% 43% 36% 7% 19% 1% 15% 8% 

Debug 
Perspective 

48 63% 58% 35% 0% 40% 0% 4% 8% 
 

 
Figure 3.  Model accuracy for click-based navigations, indicating the 

percentage of navigations that fell in the top-N predictions of each model. 
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Figure 4. Model accuracy for view-based navigations. 
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Within-File Distance to achieve an overall hit ratio 
approaching 90%. 

VII. RESULTS: MULTI-FACTOR MODELS 
Given that different single-factor models did better at 

predicting different kinds of navigation (as shown in Tables II 
and III), it stands to reason that composite models, which 
combine multiple single-factor models, might predict 
programmer navigations more accurately than individual 
single-factor models. However, it is not obvious which 
combinations of single-factor models can provide the greatest 
improvement in accuracy. To gain insights into this question, 
we investigated the maximum accuracy that composite models 
might reasonably be expected to produce for our participant 
data. 

A. Optimal Composite Models 
To understand the potential of composite models, we 

computed the results for an optimal composition of every 
possible combination of the single-factor models. For each 
attempted prediction, an optimal composite model yields a hit 
if any of its component models would yield a hit. Table IV 
shows the results for combinations of five single-factor models 
using the click-based and view-based navigation data 
(considering only the models’ top-10 predictions). (We elided 
from the table the Working Set model because its predictions 
largely overlapped with Recency, and the Forward and 
Undirected Call Depth models because they exhibited low 
accuracy all around.) 

For the click-based navigations, a composition of Recency 
and Within-File Distance yielded the most accurate predictions 
(63.4%), an improvement of 9.8% over the most accurate 
single-factor model, Recency. Adding Bug Report Similarity 

to this composite yielded the most accurate 3-model 
composition, further improving the accuracy by 3.2%. The 
most accurate compositions of more than 3 models yielded 
comparatively minor improvements in accuracy. 

For the view-based navigations, a composition of Recency 
and Within-File Distance again yielded the greatest accuracy 
(91.9%), improving over the most accurate single-factor 
model, Within-File Distance, by 5.2%. Adding additional 
models to this composite yielded only minor improvements in 
accuracy: +1% by adding Frequency and another +0.5% by 
adding Bug-Report Similarity. 

Regardless of the type of navigations, the trend for 
increasing composite size was one of diminishing returns in 
accuracy. Compositions of all 5 models yielded improvements 
of only +4.8% (click-based) and +1.8% (view-based) over the 
most accurate 2-model composites. 

In summary, our investigation of optimal composite 
models reveals the potential of considerably improving the 
accuracy of the best performing single-factor models. Our 
results show that a composition of Recency and Within-File 
Distance is a particularly promising avenue for future research. 
However, optimal composites are theoretical in nature, and it 

TABLE III.  MODEL ACCURACY (VIEW-BASED DATA) BROKEN DOWN BY THE 
CONTEXT IN WHICH NAVIGATION ACTIONS OCCURRED FOR N=10.  
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Overall 676 45% 35% 21% 7% 87% 4% 15% 72% 
Debug view 46 59% 57% 11% 0% 37% 2% 22% 13% 
Java Editor 
tabs 33 55% 46% 39% 0% 0% 0% 6% 0% 
Java Editor 574 44% 34% 21% 8% 99% 4% 16% 83% 
Package 
Explorer 
view 

10 0% 0% 10% 30% 0% 0% 0% 0% 

Call 
Hierarchy 
view 

7 29% 29% 29% 0% 0% 0% 0% 0% 

Find Utility 5 20% 20% 40% 20% 60% 0% 0% 40% 
Java Outline 
view 1 0% 0% 0% 0% 0% 0% 0% 0% 
Java 
Perspective 559 40% 29% 22% 9% 89% 3% 13% 76% 
Debug 
Perspective 117 69% 64% 14% 0% 74% 5% 22% 52% 

 
TABLE IV.  RESULTS FOR OPTIMAL COMPOSITIONS OF FIVE SINGLE-FACTOR 
MODELS (TOP-10 PREDICTIONS) ON THE CLICK-BASED AND VIEW-BASED 
NAVIGATION DATA. BOLDED VALUES INDICATE MAXIMUMS FOR A GIVEN 
COMPONENT SIZE AND DATA SET. 
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Diff. with 
Recency 
(53.7%) 

Hit Ratio 
given Top-10 
Predictions 

Diff. with 
Within-File 
Distance 
(86.7%) 

2 

P P    55.3% +1.6% 49.1% -37.6% 
P  P   63.4% +9.8% 91.9% +5.2% 
P   P  57.7% +4.1% 49.9% -36.8% 
P    P 56.9% +3.3% 83.6% -3.1% 
 P P   52.0% -1.6% 89.6% +3.0% 
 P  P  39.0% -14.6% 27.1% -59.6% 
 P   P 41.5% -12.2% 76.5% -10.2% 
  P P  30.1% -23.6% 87.1% +0.4% 
  P  P 29.3% -24.4% 87.0% +0.3% 
   P P 12.2% -41.5% 72.9% -13.8% 

3 

P P P   65.0% +11.4% 92.9% +6.2% 
P P  P  58.5% +4.9% 54.0% -32.7% 
P P   P 58.5% +4.9% 84.8% -1.9% 
P  P P  66.7% +13% 92.3% +5.6% 
P  P  P 64.2% +10.6% 92.2% +5.5% 
P   P P 61.0% +7.3% 84.8% -1.9% 
 P P P  54.5% +0.8% 90.1% +3.4% 
 P P  P 52.8% -0.8% 89.9% +3.3% 
 P  P P 44.7% -8.9% 77.5% -9.2% 
  P P P 32.5% -21.1% 87.4% +0.7% 

4 

P P P P  67.5% +13.8% 93.3% +6.7% 
P P P  P 65.9% +12.2% 93.2% +6.5% 
P P  P P 61.8% +8.1% 85.8% -0.9% 
P  P P P 67.5% +13.8% 92.6% +5.9% 
 P P P P 55.3% +1.6% 90.4% +3.7% 

5 P P P P P 68.3% +14.6% 93.6% +7.0% 
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remains an open question how to compose models to achieve 
high accuracy. 

B. PFIS3 Multi-Factor Models 
To investigate the question of how to compose models, we 

looked to a family of four multi-factor models from our prior 
work. The models, known collectively as PFIS3 [10], are 
based on Information Foraging Theory [12] and combine 
factors via spreading activation, a technique that has been 
successfully used in modeling both programming and web-
based navigation (e.g., [10][12]). (The PFIS3 models were 
originally called PFIS2, but we have since updated how the 
models combine factors, described below.)  

Each PFIS3 model builds upon the basic PFIS3 model 
(referred to simply as PFIS3). PFIS3 uses a source 
topology+words graph Gj that extends the source topology 
graph used by the Source Topology model. Formally, Wj is the 
set of words that occur in all the source files that the 
programmer has opened thus far. As with the Bug Report 
Similarity model, the words are processed to break up camel 
case words and remove stop words. The graph Gj is 
constructed the same way as the source topology graph, except 
that it also contains a unique vertex for each word in Wj. 
Additionally, it contains an edge from a word vertex w to a 
non-word vertex x if the text associated with x (be it name, 
definition, or Javadoc) contains w. 

The basic PFIS3 model combines two factors, source-code 
topology and method-text similarity, using an algorithm based 
on spreading activation [12]. Formally, each vertex in Gj has 
an activation value, initially 0. The activation of the current 
method vertex mj is set to 1. The model spreads activation for 
two iterations using a standard spreading activation algorithm 
with α=0.85 and edge weights=1; however, on the first 
iteration, only word vertices receive activation, and on the 
second iteration, only non-word vertices receive activation. 
Thus, each vertex receives activation only once.  

Building on this spreading-activation approach, three 
variants of PFIS3 add additional factors to the basic model. 
The variants add their factors by initializing certain vertices in 
Gj with additional activation. One variant, PFIS3+Recency, 
adds a recency factor by initially activating vertices associated 
with methods that have been previously visited, with more 
recently visited methods receiving greater activation. 
Formally, for method mk in Hj such that 1 ≤ k ≤ j, the mk vertex 
is initialized to 0.9j-k+1. Another variant, PFIS3+Bug, adds a 
bug-text similarity factor by initializing the activation of word 
vertices corresponding to words in the bug report. Formally, 
for all w in Wj, if w is in the bug report, then the activation of 
the w vertex in Gj is initialized to 1. The final variant, 
PFIS3+Recency+Bug, adds both recency and bug-text 
similarity factors by employing the activation initializations of 
both PFIS3+Recency and PFIS3+Bug. 

We evaluated the PFIS3 models on the click-based and 
view-based navigation data and compared their results with the 
single-factor models. Figure 5 depicts the results. 

The results demonstrated that spreading activation could 
help to slightly increase accuracy. For the click-based 
navigations, the PFIS3+Recency model yielded slightly 

greater accuracy than the most accurate single-factor model, 
Recency. However, the other PFIS3 models showed less 
promise, failing to achieve the accuracy of Recency on the 
click-based navigations. Moreover, for predicting the view-
based navigations, none of the PFIS3 models equaled Within-
File Distance in accuracy, although the basic PFIS3 model did 
come close. 

Although PFIS3+Recency was the most accurate model for 
the click-based navigations, its accuracy fell well below the 
potential displayed by the optimal composite models. Looking 
at only the optimal models of size 2 (recall that 
PFIS3+Recency combines 3 factors), all such optimal models 
involving Recency were more accurate than PFIS3+Recency 
(with differences in hit ratio (N=10) from 0.8% to 8.9%). 

PFIS3+Recency’s predictions stood out as being consistent 
in their hit ratios across the click- and view-based navigations. 
PFIS3+Recency was the most accurate model for the click-

 
(a) Click-Based Navigations 

 

 
(b) View-Based Navigations 

Figure 5. Accuracy for the PFIS3 variants for (a) click-based and (b) view-
based navigations. For comparison, each graph includes the results of the most 

accurate single-factor model. 
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based navigations, and only two single-factor models were 
more accurate for the view-based navigations (Within-File 
Distance and Source Topology).  

Considering only the models’ top prediction (i.e., N=1), 
PFIS3 and PFIS3+Recency were considerably more accurate 
than the single-factor models for both the click- and view-
based navigations. The greatest hit ratio that any single-factor 
model reached for either data set at N=1 was 4.1%. In contrast, 
PFIS+Recency exhibited a hit ratio of 20.3% for the click-
based data and 13.5% for view-based, and PFIS3 exhibited a 
hit ratio of 8.9% for the click-based data and 21.6% for the 
view-based data.  

In summary, PFIS3’s spreading activation based approach 
for composing factors demonstrated promise for one 
composition in particular, PFIS3+Recency. The model 
exhibited the greatest accuracy of any model in the context of 
click-based navigations. Furthermore, the model’s predictions 
were reasonably robust across navigation types, and the 
model’s top prediction was correct substantially more often 
than any of the single-factor models. However, the other 
PFIS3 models’ spreading activation based approach was less 
successful in composing other factors to yield accurate 
models. Thus, our results both suggest the potential of a 
spreading activation based approach and motivate the 
investigation of new approaches to composing factors. 

VIII. DISCUSSION AND CONCLUSION 
Our investigation of models of programmer navigation 

found that (1) Recency was the most accurate model for 
predicting click-based navigations, which was consistent with 
prior work [11]. However, (2) scrolling actions were strikingly 
common, and accounting for them with a view-based 
operationalization of navigation revealed much higher 
accuracy for Within-File Distance and lower relative accuracy 
for Recency than previously reported. (3) Bug Report 
Similarity exhibited low accuracy all around—a surprising 
finding given that many approaches use bug reports as input 
(e.g., [2]). Our evaluation of optimally composed multi-factor 
models revealed (4) the high potential of composing Recency 
and Within-File Distance to enhance accuracy. Finally, (5) our 
spreading activation based multi-factor model, 
PFIS3+Recency, stood out as demonstrating consistent 
performance across both click- and view-based navigations.  

Our work suggests the potential for more accurate models 
in the future. It is too early to say how accurate models must 
be to be useful to tools: we are still in the formative stages of 
our model research. Our analysis of optimal composite models 
suggests that hit ratios of 68%–94% (given top-10 predictions) 
may be possible by composing single-factor models, and we 
anticipate still more potential for improvement with context-
aware models. 

Although our models’ raw predictions are not intended to 
be immediately useful suggestions for programmer navigation, 
our overarching goal is to predict programmer navigations 
accurately enough to reduce navigation cost (1) by offering 
ways to skip steps in a developer’s navigation path and (2) by 
bringing information from the predicted places directly to the 
developer. For example, a tool might combine model 

predictions with code summarization to deliver summaries of 
code that programmers would likely visit. Alternatively, the 
model predictions might be used to impose an ordering on 
existing lists such as to-dos. These and similar tools would 
leverage the ability to predict where a developer will navigate 
next to proactively retrieve, synthesize, and visualize 
information from those locations, ultimately helping to 
accelerate information-foraging during software maintenance.   
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