
 1

Modeling Programmer Navigation:
A head-to-head empirical evaluation of predictive models

David Piorkowski1, Scott D. Fleming1, Christopher Scaffidi1, Liza John3,
Christopher Bogart1, Bonnie E. John2,3, Margaret Burnett1, Rachel Bellamy2

1Oregon State University
Corvallis, Oregon 97331

{piorkoda,sdf,bogart,cscaffid,burnett}
@eecs.oregonstate.edu

2IBM T.J. Watson Research
Hawthorne, New York 10532
{bejohn,rachel}@us.ibm.com

3Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

liza.john@gmail.com

Abstract—Software developers frequently need to perform code
maintenance tasks, but doing so requires time-consuming
navigation through code. A variety of tools are aimed at easing
this navigation by using models to identify places in the code that
a developer might want to visit, and then providing shortcuts so
that the developer can quickly navigate to those locations. To
date, however, only a few of these models have been compared
head-to-head to assess their predictive accuracy. In particular,
we do not know which models are most accurate overall, which
are accurate only in certain circumstances, and whether
combining models could enhance accuracy. Therefore, we have
conducted an empirical study to evaluate the accuracy of a
broad range of models for predicting many different kinds of
code navigations in sample maintenance tasks. Overall, we found
that models tended to perform best if they took into account how
recently a developer has viewed pieces of the code, and if models
took into account the spatial proximity of methods within the
code. We also found that the accuracy of single-factor models
can be improved by combining factors, using a spreading-
activation based approach, to produce multi-factor models.
Based on these results, we offer concrete guidance about how
these models could be used to provide enhanced software
development tools that ease the difficulty of navigating through
code.

Keywords-software maintenance, debugging, program
investigation, program navigation, information foraging

I. INTRODUCTION
An essential aspect of software engineering is fixing bugs

and adding features. When developers perform such
maintenance tasks on unfamiliar code (or code that they no
longer remember well), they need to gather a great deal of
information before they can begin to edit the code. For
example, they need to find answers to questions about where
certain features are implemented and how different pieces of
the code relate to one another [15]. During this search for
information, developers gradually build up and mentally test
hypotheses about how the code works and how to modify it in
order to complete the maintenance task [8]. Unfortunately, in
gathering this information, developers spend an excessive
amount of time navigating through code. In one laboratory
study, developers engaged in maintenance tasks spent up to
35% of their time merely navigating through the code [8].

Various tools have been provided to accelerate these time-
consuming navigations [2][4][13][14][17][18][20][21].
Internally, each tool uses a model to identify code that the
programmer is likely to need to visit, and the tool then
provides a window of navigational shortcuts to that code.
These models are typically based on a single factor. Some of
them are based on mining logs of how people have edited or
navigated through the code in the past [4][13][17][20][21],
whereas others make predictions based on textual similarity
between methods, call-invocation relationships between
methods, inheritance between classes, and other structural
relationships within code [2][14][18].

One problem is that we do not yet know which of these
models most accurately predicts programmer navigations.
Moreover, we do not yet know if any models work well in
general but work poorly for predicting certain kinds of
navigations. Comparing the accuracy of these models is
important because a tool is unlikely to be useful if its
underlying predictive model is inaccurate. Conducting such an
evaluation requires testing the models head to head on
navigation data from sample maintenance tasks. To date, this
has only been done with a small subset of the models
(specifically, those that can predict when a developer will
revisit methods that were previously viewed) [11].

The contribution of the current paper is to compare how
well a broad range of models can predict different kinds of
navigation actions. We investigate two particular questions:

RQ1: How accurately do different models predict
programmer navigations, overall? We are especially
interested in how well accuracy can be increased by
combining single-factor models into multi-factor models.

RQ2: How does each model’s accuracy vary depending on
the operationalization of programmer navigation? We are
particularly interested in whether accuracy differs between an
operationalization from the literature (e.g., [11]) that is based
on where the programmer clicks and a new operationalization
based on what code is in the programmer’s view.

II. BACKGROUND
Empirical studies have revealed many cases where

developers navigate through code. During maintenance tasks
in a laboratory study, developers spent 35% of their time

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

 2

looking through code to understand it and to plan changes [8].
Even after learning about code, developers often need to
relearn the same information through repeated navigations.
Interruptions are a major cause for these revisits. In field
studies, developers faced major interruptions approximately
once per hour; 40% of interruptions were not immediately
followed by a return to the original task, and restarting a task
typically required going back to locations in code to recover
mental state [3][11]. Overall, code navigation is essential to
finding defects, fixing defects, implementing features, porting
code, documenting code, extracting reusable code, and
virtually every software engineering activity.

Certain code navigations were particularly common,
especially in maintenance tasks. At the start of a task in
laboratory and field studies, a developer usually searched for a
location in the code that could serve as an initial focus point
[15]. These navigations often took the form of keyword-based
queries in the IDE to find code textually related to a bug report
or feature enhancement request. Over the course of a task,
each developer typically began to ask questions about how
pieces of code were related, such as through method-
invocation [4][15]. Following up on these questions broadened
the investigation’s scope to include more code. Eventually,
each developer learned enough to proceed with making edits.
During tasks, developers frequently scrolled between adjacent
locations in code [11][13]. Another frequent navigation was to
revisit previously read code, whether later in the day [11], later
in a particular task [16], or even within seconds of an earlier
visit (i.e., “jitter”) [17]. Revisits were most frequent toward the
end of each task [16].

Various tools seek to ease these navigations by providing
shortcuts to places in the code that the developer might go
(e.g., [2][4][13][14][17][18][20][21]). Several tools provide
shortcuts to locations that other developers historically have
visited after the current location [4][13][17]. Other tools
provide shortcuts to code that has historically been modified at
the same time as the current code [19][21]. Still other tools
provide shortcuts to code or other artifacts based on textual
similarity, method-invocation, or other structural relationships
[2][14][18].

Parnin and Gorg noted that the input for generating these
shortcuts is the developer’s current location [11]. In response,
they proposed to use the developer’s recent history of
navigations to help filter, reweight, or otherwise refine the list
of shortcuts offered by tools [11]. For example, they argued
that if a tool could use the developer’s navigation history to
identify places where he or she is likely to go next, then the list
of shortcuts (from any of the tools above) could be filtered to
only include those that the developer is most likely to want
next. In addition, if a tool could identify places where the
developer is likely to go next, then the tool could provide a
shortcut list directly (rather than simply filtering another tool’s
list). Achieving such enhancements therefore requires a model
that can use the developer’s navigation history to predict the
next navigation. Motivated by the Mylar tool (which simply
shows shortcuts to recently visited code) [7], Parnin and Gorg
evaluated four predictive models. In the current paper, we take
Parnin and Gorg’s approach further and evaluate how well

these and a broader range of models can predict the next
navigation based on the developer’s navigation history.

III. MODELS OF PROGRAMMER NAVIGATION
Expanding on Parnin and Gorg’s evaluation, we evaluated

a variety of predictive models of programmer navigation. Each
of the models uses a single factor in making its predictions
(thus we refer to these models as single-factor models). We
focused on factors underlying promising prior approaches. For
instance, recency and frequency of navigation were Parnin and
Gorg’s most predictive factors [11]; working set is a widely
used concept and is emerging as a foundation for important
IDEs (e.g., [7]); and factors of textual similarity and code
structure are also widely used (e.g., [2][10]).

Each of our models represents a developer’s Java
programming session in Eclipse as a sequence of navigations
to methods. More formally, the developer’s navigation history
H for a particular programming session is a sequence of
methods (m1, m2, ..., mn) such that for all mi in H, mi ≠ mi+1.

Given the navigation history up to a certain point in a
session Hj = (m1, m2, …, mj), each model attempts to predict
the next method mj+1. Leading up to the current point in the
session, the programmer will have opened one or more source
files in the Eclipse editor. The set Mj approximates the set of
methods that the programmer currently knows to exist. It
comprises all methods that are defined or referenced in the
previously opened source files (including files that were open
at one time, but have since been closed). Because the
developer must open the source file containing a method
before navigating to that method, the methods in Hj constitute
a subset of the methods in Mj.

In attempting to predict mj+1, the models rank the methods
in Mj – {mj} from least likely to most likely. To produce this
ranking, each model creates a mapping Aj from each method in
Mj – {mj} to an activation value (a real number) such that it is
more likely (according to the model) that the developer will
navigate to methods associated with greater activation. The
models use this activation function to produce a ranking
function Rj such that Rj is Aj with rank-transformed activation
values (from highest to lowest). Activations of equal value are
replaced by the average of the ranks involved. The models
vary primarily in how they calculate Aj.

The Recency model assigns higher activation values to
methods that the programmer visited more recently. Formally,
the model defines Aj such that for each method m in Mj – {mj},
if m has been visited previously by the programmer, then
Aj(m)=the max sequence number for m in Hj; else, Aj(m)=0.

The Working Set model is a variant of the Recency model
that is parameterized by a history length Δ, and assigns an
activation of 1 to the last Δ methods visited and activation of 0
to all other methods. Formally, for all m in Mj – {mj} such that
m is in {mj-1, mj-2, ..., mj-Δ}, Aj(m)=1; else, Aj(m)=0.

The Frequency model assigns higher activation values to
the methods that the programmer has visited the most times in

 3

the past. More formally, for all methods m in Mj – {mj}, Aj(m)
is the number of occurrences of m in Hj.

The Bug Report Similarity model assigns higher activation
values to methods that are textually similar to a bug report.
More formally, for all methods m in Mj – {mj}, Aj(m) is the tf-
idf [1] weight for the words of the bug report with respect to
the text of m. In this computation of tf-idf, the corpus consists
of words taken from the set of methods Mj, including the
current method mj. Stop words, which are short common
words like “the,” are removed prior to the computation.
Additionally, camelCase words are broken up to enable textual
matching on their component words.

The remaining single-factor models incorporate a notion of
the cost of navigating between particular methods, and assign
higher activations to methods that cost less to get to from the
current method. Each such model maintains a graph Gj such
that each method in Mj maps to a different vertex of Gj. Most
of the models vary only in how edges in the graph are defined.
Given the graph for a particular model, for all m in Mj – {mj},
Aj(m) for that model subtracts from |Mj| the length of the
shortest path from m to the current method mj.

The Within-File Distance model constructs Gj such that
edges connect methods that are textually adjacent in a source
file. More formally, for each method m in Mj, an undirected
edge in Gj connects m to the methods contiguous to m (i.e.,
immediately before and after m in the source file).

The Forward Call Depth model constructs Gj such that
each method m is connected by a directed edge to each method
called in the body of m. More formally, for all pairs of
methods ma, mb in Mj, Gj contains a directed edge from ma to
mb if and only if the method text of ma contains a call to mb.

The Undirected Call Depth model is identical to the
directed version, except the directed edges in Gj are replaced
with undirected edges.

The Source Topology model constructs Gj as a source
topology graph that, in addition to method vertices, includes
vertices for projects, packages, classes, interfaces, and
variables as well. The source topology graph includes edges
for “has a” relationships between these elements (e.g., class
inheritance), for “calls a” relationships, and for within-file
adjacency relationships. More formally, the set of classes Cj
includes every class or interface referenced in a file that the
programmer has opened so far. Similarly, the set of variables
Vj, and the set of packages Pj, include every variable and
package, respectively, referenced in a file so far. For every
element e in Mj  Cj  Vj  Pj, the source topology graph
contains a unique vertex that maps to e. The graph contains an
edge between two elements ea and eb if ea calls eb, ea has eb, or
ea and eb are both methods and are adjacent in a source file.

IV. OBSERVATIONAL METHOD
We observed a programmer debugging two different open-

source software applications in two separate sessions. We
opted to collect rich, in-depth data (hours of audio and video)
from this one participant as opposed to sparser data from a
group. Observing a single participant limits the generality of

our results, but since even a single participant generates
numerous behaviors to be encoded and analyzed in detail, this
is a common approach in understanding complex human
behavior.

The participant was a senior-level undergraduate student
majoring in computer science. He had 3 years total of
programming experience (with an emphasis on Java), had 1.5
years of experience programming as an undergraduate
research assistant, and was a skilled user of Eclipse. He had
never seen the bugs or source code he was asked to modify.

We recorded audio of what was said, video of the
participant, and screen-capture video. Additionally, we
configured the participant’s Eclipse environment to log actions
and the contents of opened files with the PFIG plugin [10].

A. jEdit Session
For the first session, the participant’s task was to fix a bug

in jEdit, a text editor for programmers. jEdit is a relatively
mature software project, comprising 98,652 non-comment
lines of Java code. The bug (Figure 1) was still open (not yet
fixed by jEdit maintainers). We did not explicitly use the
think-aloud method for this session, but our data collection did
include audio and video of anything the participant happened
to say.

BUG: Problem with character-offset counter.
In the lower left corner of the jEdit window, there are two counters that describe

the position of the text cursor. The first counter gives the number of the line that cursor
is on. The second counter gives the character offset into the line.

The character-offset counter is broken. When the cursor is at the beginning of a
line (i.e., before the first character in the line), jEdit shows the offset as 1. However, the
offset should begin counting from 0. Thus, when the cursor is at the end of the line, it
will display the number of characters in the line rather than the number of characters
plus 1.

Figure 1. Bug report text for the jEdit task.

Prior to the task, the jEdit source code was loaded into an
Eclipse environment, the bug report was provided on paper,
and the participant was asked to fix the bug using whatever
procedure he would normally employ, except directly asking
another person (e.g., he had access to the internet). He
successfully fixed the bug in 29 minutes.

B. Memoranda Session
For the second session, the participant worked on a bug in

Memoranda, a diary manager and tool for scheduling personal
projects. The program comprised 13,906 non-comment lines
of Java code. This time, the bug (Figure 2) was a closed bug
(1108171), so we could obtain the developers’ patch for the
bug to compare to our participant’s fix.

BUG: Note lost when switching projects - ID: 1108171
Details:

When a note A (date A) for project A is active, switch project. Note B (date A) in
project B is totally replaced by note A and note B is LOST forever!

note B is the first note of project B on date A.
Additional Comments:

This only happens if note A and note B are of the same date

Figure 2. Bug report text for the Memoranda task.

In this session, we used the think-aloud method [6] to elicit
a verbal protocol from the participant. Regarding the
possibility of effects on our measures, numerous studies have
shown that instructing participants to “verbalize their inner

 4

dialogue” (as opposed to asking them to “explain” what they
are doing) elicits comparable performance to when the
participants are not thinking aloud [5].

The Memoranda source code containing the bug was
loaded into an Eclipse environment, the bug report was
provided on paper, and the participant was instructed to fix the
bug using whatever procedure he would normally employ,
except asking another person or, since the bug had been
closed, accessing the Memoranda project’s bug tracker and
SVN logs. He successfully fixed the bug in just under 1 hour
and 25 minutes. However, his fix introduced a new defect into
the code.

V. ANALYSIS METHOD

A. Coding Navigations
We used both an automatic process and a manual process

to encode navigations to methods made by the participant. We
also coded navigations according to their context in Eclipse
(Table I).

A click-based navigation is a change in text cursor position
from one method to another method caused by the developer
clicking a button or clicking in the Java Editor. Our PFIG
Eclipse extension logged both the position of the text cursor
when the participant clicked within source code files and the
textual content of that source code. As with other IDEs,
Eclipse’s affordances can influence developer navigations
(e.g., closing a tab jumps the cursor to another open file).
Since modern IDEs were our context of interest, we expected
such behaviors and did not attempt to control for them.

In addition to clicking, the participant often navigated to
methods without explicitly clicking in the source code. For
example, he used the mouse wheel to scroll down through a
long file, pausing to read methods. We extracted these actions
manually using video annotation software. We first imported
the PFIG logs into the video annotation software and anchored
them to coincide with observable clicks in the video. We then
annotated each action, with four attributes: action (left click,
right click, typing a key on the keyboard, etc.), target (what
button or word was clicked on, etc.), target location (in which
window or pane the target was located, e.g., Package
Explorer), and destination (which location was active after the
action). This procedure resulted in an annotation for every user
action (about 2500 hand annotations in roughly 2 hours of
video) and had the side-effect of verifying the automatically
recorded click-based navigations.

We used these annotations to code view-based navigations,
which are user actions (involving any mechanism) that cause a
new method to appear on screen. Specifically, we coded a
view-based navigation as arriving at method m if: (1) the
definition of m (including Javadoc comments) was in the
vertical center of a visible source code tab; or (2) the entire
definition of m was visible on the screen; or (3) the participant
talked about m and the method was visible on the screen; or
(4) the participant clicked in m. If multiple methods were
visible when a new source code file was opened or a tab was
switched to, we coded navigations to all fully visible methods
in order from top to bottom.

B. Evaluating predictions
We evaluated a model’s predictions by assessing whether it

included the correct method (i.e., got a “hit”) in its top-N
predictions. If a model produced more than N predictions with
rank < N, we ignored the predictions with the lowest rank.
Formally, given the correct method m, Rj(m) < N, and the
number T of methods tied at rank Rj(m) in Rj,
floor(T/2)+floor(Rj(m)) < N indicated a hit.

VI. RESULTS: SINGLE-FACTOR MODELS
We used both click-based and view-based navigations to

assess the accuracy of each single-factor model in predicting
programmer navigation during debugging and to understand
what accounted for the accuracy of the various models.

A. Analysis of Click-Based Navigation
To evaluate the models’ predictive accuracy, we counted

the number of times that the top-N ranked methods returned by
a model included the method to which the programmer
actually navigated next. We tested values of N from 1 to 20 (a
reasonable size for a shortcut list in a development
environment). Figure 3 aggregates the results for each model
from the jEdit and Memoranda sessions.

Looking at only the top-ranked method predicted by each
model (i.e., N=1), no single-factor model was particularly
accurate (max hit ratio of 4.1%). However, with N=3, the hit
ratio for Recency and Working Set rose to above 20%, and
with N=10, these models had hit ratios near or above 50%.

The low accuracy of Bug Report Similarity is rather
surprising because a prior study [9] found that during
debugging programmers tended to navigate to methods with
similar text to the bug report. The cause of the discrepancy
remains an open question; for instance, it may arise from
differences in the wording of the bug.

To better understand why some models were more
accurate than others, we analyzed the individual navigation
actions that the participant performed and the Eclipse interface
contexts (i.e., distinct elements or Perspectives in the Eclipse
GUI) in which he performed those actions. Table II depicts the
number of times that the participant performed a navigation
action in each context and gives the hit ratio (N=10) of each
model for predicting the navigations in each context.

Table II shows that the overall high accuracy of Recency
and Working Set largely resulted from their accurate
predictions of navigations in the context of Eclipse’s Debug
view and Java Editor tabs. These models were able to
accurately predict navigations in the Java Editor tabs context
because tab close and tab select actions always take the

TABLE I. ECLIPSE CONTEXTS AND ASSOCIATED NAVIGATION ACTIONS.

Context Navigation Actions
Debug view Run to breakpoint, step over, step into
Java Editor tabs Tab select, tab close
Java Editor Click in method, scroll, Open Call Hierarchy
Package Explorer view Open element
Call Hierarchy view Open element
Find Utility Find next
Java Outline view Open element

 5

programmer to locations that he has previously visited. The
two models were also able to accurately predict navigations in
the Debug view because the participant used the debugger to
repeatedly step over the same sections of code.

The modeling results presented so far both agree with and
expand upon the work of Parnin and Gorg [11]. Two of their
models, Least-Recently Used (LRU) and Least-Frequently
Used (LFU), correspond to our Recency and Frequency
models, and our results for those models are consistent with
those of Parnin and Gorg (i.e., Recency was more accurate
than Frequency). We expand on Parnin and Gorg’s work by
evaluating models that go beyond caching (e.g., Bug Report
Similarity and Source Topology). However, as with Parnin and
Gorg’s results, the most accurate model overall was Recency.

B. Analysis of View-Based Navigations
When we extended the analysis to include all 676 view-

based navigations (a considerable increase from the 123 click-
based navigations), model accuracy shifted noticeably from
both our results for click-based navigations and the results of
Parnin and Gorg. In particular, Within-File Distance and
Source Topology exhibited a substantial improvement in
accuracy. Figure 4 depicts view-based results.

As with the click-based navigations, all single-factor
models exhibited low accuracy at N=1 with none exceeding a
hit ratio of 4%. However, for N=3, the hit ratio of the Within-
File Distance model jumped to 83.4%, just 3.4% shy of its
N=20 hit ratio of 86.8%.

Our analysis of view-based navigations, as seen in
Table III, highlights the importance scrolling operations
(which account for the vast majority of our 676 view-based
navigations). The Within-File Distance model benefited most
from the profusion of scrolling navigations because the
majority of scrolling navigations were to the method above or
below the current one.

Table III shows that Source Topology owes its accuracy to
scrolling navigations in the Java Editor as well. For
navigations in the Java Editor, the model’s hit ratio was

83.1%. This result makes sense because the Source Topology
graph contains edges that represent within-file adjacency
relationships. However, the graph also contains edges
representing other relationships, such as call relationships, that
detracted from the model’s accuracy in predicting the view-
based navigations.

In summary, the type of navigation made a considerable
difference in the number of navigations and the accuracy of
certain models. Previous work did not account for the broad
number of ways that programmers can navigate. In particular,
the view-based navigations captured a multitude of scrolling
navigations not logged by the click-based navigations
considered in related work. These scrolling navigations led

TABLE II. MODEL ACCURACY (CLICK-BASED DATA) BROKEN DOWN BY THE
CONTEXT IN WHICH NAVIGATION ACTIONS OCCURRED AT N=10. CONTEXTS

INCLUDE INDIVIDUAL ELEMENTS (MIDDLE 7 ROWS) AND TWO ECLIPSE
“PERSPECTIVES” ENCOMPASSING MULTIPLE ELEMENTS (BOTTOM 2 ROWS).

THE BEST HIT RATIO FOR EACH CONTEXT IS SHOWN IN BOLD.

Na
vig

at
io

n
Ac

tio
n

Co
nt

ex
t

Nu
m

be
r o

f
ac

tio
ns

Single-Factor Model

Re
ce

nc
y

W
or

kin
g

Se
t

(Δ
=N

)

Fr
eq

ue
nc

y

Bu
g

Re
po

rt
Si

m
ila

rit
y

W
ith

in
-F

ile

Di
st

an
ce

Fo

rw
ar

d
Ca

ll
De

pt
h

Un
di

re
ct

ed

Ca
ll D

ep
th

So

ur
ce

To

po
lo

gy

Overall 123 54% 49% 36% 4% 27% 1% 11% 8%
Debug view 45 62% 60% 33% 0% 38% 0% 4% 9%
Java Editor
tabs

32 69% 53% 50% 3% 0% 3% 22% 3%

Java Editor 23 52% 39% 39% 9% 57% 0% 9% 9%
Package
Explorer view

10 10% 40% 10% 10% 0% 0% 0% 0%

Call Hierarchy
view

7 14% 14% 14% 14% 0% 0% 29% 14%

Find Utility 5 40% 20% 40% 0% 60% 0% 0% 40%
Java Outline
view

1 0% 100% 0% 0% 0% 0% 0% 0%

Java
Perspective

75 48% 43% 36% 7% 19% 1% 15% 8%

Debug
Perspective

48 63% 58% 35% 0% 40% 0% 4% 8%

Figure 3. Model accuracy for click-based navigations, indicating the

percentage of navigations that fell in the top-N predictions of each model.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

Hi
t R
at
io
 g
ive
n T
op
-N
Pr
ed
ict
io
ns

N

Recency Working Set (?=N)
Frequency Bug Report Similarity
Within-File Distance Forward Call Depth
Undirected Call Depth Source Topology

Figure 4. Model accuracy for view-based navigations.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20

Hi
t R
at
io
 g
ive
n T
op
-N
Pr
ed
ict
io
ns

N

Recency Working Set (?=N)
Frequency Bug Report Similarity
Within-File Distance Forward Call Depth
Undirected Call Depth Source Topology

 6

Within-File Distance to achieve an overall hit ratio
approaching 90%.

VII. RESULTS: MULTI-FACTOR MODELS
Given that different single-factor models did better at

predicting different kinds of navigation (as shown in Tables II
and III), it stands to reason that composite models, which
combine multiple single-factor models, might predict
programmer navigations more accurately than individual
single-factor models. However, it is not obvious which
combinations of single-factor models can provide the greatest
improvement in accuracy. To gain insights into this question,
we investigated the maximum accuracy that composite models
might reasonably be expected to produce for our participant
data.

A. Optimal Composite Models
To understand the potential of composite models, we

computed the results for an optimal composition of every
possible combination of the single-factor models. For each
attempted prediction, an optimal composite model yields a hit
if any of its component models would yield a hit. Table IV
shows the results for combinations of five single-factor models
using the click-based and view-based navigation data
(considering only the models’ top-10 predictions). (We elided
from the table the Working Set model because its predictions
largely overlapped with Recency, and the Forward and
Undirected Call Depth models because they exhibited low
accuracy all around.)

For the click-based navigations, a composition of Recency
and Within-File Distance yielded the most accurate predictions
(63.4%), an improvement of 9.8% over the most accurate
single-factor model, Recency. Adding Bug Report Similarity

to this composite yielded the most accurate 3-model
composition, further improving the accuracy by 3.2%. The
most accurate compositions of more than 3 models yielded
comparatively minor improvements in accuracy.

For the view-based navigations, a composition of Recency
and Within-File Distance again yielded the greatest accuracy
(91.9%), improving over the most accurate single-factor
model, Within-File Distance, by 5.2%. Adding additional
models to this composite yielded only minor improvements in
accuracy: +1% by adding Frequency and another +0.5% by
adding Bug-Report Similarity.

Regardless of the type of navigations, the trend for
increasing composite size was one of diminishing returns in
accuracy. Compositions of all 5 models yielded improvements
of only +4.8% (click-based) and +1.8% (view-based) over the
most accurate 2-model composites.

In summary, our investigation of optimal composite
models reveals the potential of considerably improving the
accuracy of the best performing single-factor models. Our
results show that a composition of Recency and Within-File
Distance is a particularly promising avenue for future research.
However, optimal composites are theoretical in nature, and it

TABLE III. MODEL ACCURACY (VIEW-BASED DATA) BROKEN DOWN BY THE
CONTEXT IN WHICH NAVIGATION ACTIONS OCCURRED FOR N=10.

Na
vig

at
io

n
Ac

tio
n

Co
nt

ex
t

Nu
m

be
r o

f
ac

tio
ns

Single-Factor Model

Re
ce

nc
y

W
or

kin
g

Se
t

(Δ
=N

)
Fr

eq
ue

nc
y

Bu
g

Re
po

rt
Si

m
ila

rit
y

W
ith

in
-F

ile

Di
st

an
ce

Fo

rw
ar

d
Ca

ll
De

pt
h

Un
di

re
ct

ed

Ca
ll D

ep
th

So

ur
ce

To

po
lo

gy

Overall 676 45% 35% 21% 7% 87% 4% 15% 72%
Debug view 46 59% 57% 11% 0% 37% 2% 22% 13%
Java Editor
tabs 33 55% 46% 39% 0% 0% 0% 6% 0%
Java Editor 574 44% 34% 21% 8% 99% 4% 16% 83%
Package
Explorer
view

10 0% 0% 10% 30% 0% 0% 0% 0%

Call
Hierarchy
view

7 29% 29% 29% 0% 0% 0% 0% 0%

Find Utility 5 20% 20% 40% 20% 60% 0% 0% 40%
Java Outline
view 1 0% 0% 0% 0% 0% 0% 0% 0%
Java
Perspective 559 40% 29% 22% 9% 89% 3% 13% 76%
Debug
Perspective 117 69% 64% 14% 0% 74% 5% 22% 52%

TABLE IV. RESULTS FOR OPTIMAL COMPOSITIONS OF FIVE SINGLE-FACTOR
MODELS (TOP-10 PREDICTIONS) ON THE CLICK-BASED AND VIEW-BASED
NAVIGATION DATA. BOLDED VALUES INDICATE MAXIMUMS FOR A GIVEN
COMPONENT SIZE AND DATA SET.

Co
m

po
sit

e S
ize

Re

ce
nc

y
Fr

eq
ue

nc
y

W
ith

in
-F

ile
 D

ist
an

ce

Bu
g

Re
po

rt
Si

m
ila

rit
y

So
ur

ce
 T

op
ol

og
y

Click-Based
Navigations

View-Based
Navigations

Hit Ratio
given Top-10
Predictions

Diff. with
Recency
(53.7%)

Hit Ratio
given Top-10
Predictions

Diff. with
Within-File
Distance
(86.7%)

2

P P 55.3% +1.6% 49.1% -37.6%
P P 63.4% +9.8% 91.9% +5.2%
P P 57.7% +4.1% 49.9% -36.8%
P P 56.9% +3.3% 83.6% -3.1%
 P P 52.0% -1.6% 89.6% +3.0%
 P P 39.0% -14.6% 27.1% -59.6%
 P P 41.5% -12.2% 76.5% -10.2%
 P P 30.1% -23.6% 87.1% +0.4%
 P P 29.3% -24.4% 87.0% +0.3%
 P P 12.2% -41.5% 72.9% -13.8%

3

P P P 65.0% +11.4% 92.9% +6.2%
P P P 58.5% +4.9% 54.0% -32.7%
P P P 58.5% +4.9% 84.8% -1.9%
P P P 66.7% +13% 92.3% +5.6%
P P P 64.2% +10.6% 92.2% +5.5%
P P P 61.0% +7.3% 84.8% -1.9%
 P P P 54.5% +0.8% 90.1% +3.4%
 P P P 52.8% -0.8% 89.9% +3.3%
 P P P 44.7% -8.9% 77.5% -9.2%
 P P P 32.5% -21.1% 87.4% +0.7%

4

P P P P 67.5% +13.8% 93.3% +6.7%
P P P P 65.9% +12.2% 93.2% +6.5%
P P P P 61.8% +8.1% 85.8% -0.9%
P P P P 67.5% +13.8% 92.6% +5.9%
 P P P P 55.3% +1.6% 90.4% +3.7%

5 P P P P P 68.3% +14.6% 93.6% +7.0%

 7

remains an open question how to compose models to achieve
high accuracy.

B. PFIS3 Multi-Factor Models
To investigate the question of how to compose models, we

looked to a family of four multi-factor models from our prior
work. The models, known collectively as PFIS3 [10], are
based on Information Foraging Theory [12] and combine
factors via spreading activation, a technique that has been
successfully used in modeling both programming and web-
based navigation (e.g., [10][12]). (The PFIS3 models were
originally called PFIS2, but we have since updated how the
models combine factors, described below.)

Each PFIS3 model builds upon the basic PFIS3 model
(referred to simply as PFIS3). PFIS3 uses a source
topology+words graph Gj that extends the source topology
graph used by the Source Topology model. Formally, Wj is the
set of words that occur in all the source files that the
programmer has opened thus far. As with the Bug Report
Similarity model, the words are processed to break up camel
case words and remove stop words. The graph Gj is
constructed the same way as the source topology graph, except
that it also contains a unique vertex for each word in Wj.
Additionally, it contains an edge from a word vertex w to a
non-word vertex x if the text associated with x (be it name,
definition, or Javadoc) contains w.

The basic PFIS3 model combines two factors, source-code
topology and method-text similarity, using an algorithm based
on spreading activation [12]. Formally, each vertex in Gj has
an activation value, initially 0. The activation of the current
method vertex mj is set to 1. The model spreads activation for
two iterations using a standard spreading activation algorithm
with α=0.85 and edge weights=1; however, on the first
iteration, only word vertices receive activation, and on the
second iteration, only non-word vertices receive activation.
Thus, each vertex receives activation only once.

Building on this spreading-activation approach, three
variants of PFIS3 add additional factors to the basic model.
The variants add their factors by initializing certain vertices in
Gj with additional activation. One variant, PFIS3+Recency,
adds a recency factor by initially activating vertices associated
with methods that have been previously visited, with more
recently visited methods receiving greater activation.
Formally, for method mk in Hj such that 1 ≤ k ≤ j, the mk vertex
is initialized to 0.9j-k+1. Another variant, PFIS3+Bug, adds a
bug-text similarity factor by initializing the activation of word
vertices corresponding to words in the bug report. Formally,
for all w in Wj, if w is in the bug report, then the activation of
the w vertex in Gj is initialized to 1. The final variant,
PFIS3+Recency+Bug, adds both recency and bug-text
similarity factors by employing the activation initializations of
both PFIS3+Recency and PFIS3+Bug.

We evaluated the PFIS3 models on the click-based and
view-based navigation data and compared their results with the
single-factor models. Figure 5 depicts the results.

The results demonstrated that spreading activation could
help to slightly increase accuracy. For the click-based
navigations, the PFIS3+Recency model yielded slightly

greater accuracy than the most accurate single-factor model,
Recency. However, the other PFIS3 models showed less
promise, failing to achieve the accuracy of Recency on the
click-based navigations. Moreover, for predicting the view-
based navigations, none of the PFIS3 models equaled Within-
File Distance in accuracy, although the basic PFIS3 model did
come close.

Although PFIS3+Recency was the most accurate model for
the click-based navigations, its accuracy fell well below the
potential displayed by the optimal composite models. Looking
at only the optimal models of size 2 (recall that
PFIS3+Recency combines 3 factors), all such optimal models
involving Recency were more accurate than PFIS3+Recency
(with differences in hit ratio (N=10) from 0.8% to 8.9%).

PFIS3+Recency’s predictions stood out as being consistent
in their hit ratios across the click- and view-based navigations.
PFIS3+Recency was the most accurate model for the click-

(a) Click-Based Navigations

(b) View-Based Navigations

Figure 5. Accuracy for the PFIS3 variants for (a) click-based and (b) view-
based navigations. For comparison, each graph includes the results of the most

accurate single-factor model.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

Hi
t R
at
io
 g
ive
n T
op
-N
Pr
ed
ict
io
ns

N

PFIS3
PFIS3+Bug
PFIS3+Recency
PFIS3+Recency+Bug
Recency

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 5 10 15 20

Hi
t R
at
io
 g
ive
n T
op
-N
Pr
ed
ict
io
ns

N

PFIS3 PFIS3+Bug
PFIS3+Recency PFIS3+Recency+Bug
Within-File Distance

 8

based navigations, and only two single-factor models were
more accurate for the view-based navigations (Within-File
Distance and Source Topology).

Considering only the models’ top prediction (i.e., N=1),
PFIS3 and PFIS3+Recency were considerably more accurate
than the single-factor models for both the click- and view-
based navigations. The greatest hit ratio that any single-factor
model reached for either data set at N=1 was 4.1%. In contrast,
PFIS+Recency exhibited a hit ratio of 20.3% for the click-
based data and 13.5% for view-based, and PFIS3 exhibited a
hit ratio of 8.9% for the click-based data and 21.6% for the
view-based data.

In summary, PFIS3’s spreading activation based approach
for composing factors demonstrated promise for one
composition in particular, PFIS3+Recency. The model
exhibited the greatest accuracy of any model in the context of
click-based navigations. Furthermore, the model’s predictions
were reasonably robust across navigation types, and the
model’s top prediction was correct substantially more often
than any of the single-factor models. However, the other
PFIS3 models’ spreading activation based approach was less
successful in composing other factors to yield accurate
models. Thus, our results both suggest the potential of a
spreading activation based approach and motivate the
investigation of new approaches to composing factors.

VIII. DISCUSSION AND CONCLUSION
Our investigation of models of programmer navigation

found that (1) Recency was the most accurate model for
predicting click-based navigations, which was consistent with
prior work [11]. However, (2) scrolling actions were strikingly
common, and accounting for them with a view-based
operationalization of navigation revealed much higher
accuracy for Within-File Distance and lower relative accuracy
for Recency than previously reported. (3) Bug Report
Similarity exhibited low accuracy all around—a surprising
finding given that many approaches use bug reports as input
(e.g., [2]). Our evaluation of optimally composed multi-factor
models revealed (4) the high potential of composing Recency
and Within-File Distance to enhance accuracy. Finally, (5) our
spreading activation based multi-factor model,
PFIS3+Recency, stood out as demonstrating consistent
performance across both click- and view-based navigations.

Our work suggests the potential for more accurate models
in the future. It is too early to say how accurate models must
be to be useful to tools: we are still in the formative stages of
our model research. Our analysis of optimal composite models
suggests that hit ratios of 68%–94% (given top-10 predictions)
may be possible by composing single-factor models, and we
anticipate still more potential for improvement with context-
aware models.

Although our models’ raw predictions are not intended to
be immediately useful suggestions for programmer navigation,
our overarching goal is to predict programmer navigations
accurately enough to reduce navigation cost (1) by offering
ways to skip steps in a developer’s navigation path and (2) by
bringing information from the predicted places directly to the
developer. For example, a tool might combine model

predictions with code summarization to deliver summaries of
code that programmers would likely visit. Alternatively, the
model predictions might be used to impose an ordering on
existing lists such as to-dos. These and similar tools would
leverage the ability to predict where a developer will navigate
next to proactively retrieve, synthesize, and visualize
information from those locations, ultimately helping to
accelerate information-foraging during software maintenance.

IX. ACKNOWLEDGMENTS
This work has been supported in part by IBM OCR grants

to Oregon State Univ. and Carnegie Mellon Univ., and by
AFOSR grants FA9550-09-1-0213 and FA9550-10-1-0326.

X. REFERENCES
[1] Baeza-Yates, R., Ribeiro-Neto, B. Modern Information Retrieval,

Addison Wesley Longman, 1999.
[2] Cubranic, D, and Murphy, G. Hipikat: Recommending pertinent

software development artifacts. In ACM/IEEE ICSE, 408-418, 2003.
[3] Czerwinski, M, Horvitz, E, and Wilhite, S. A diary study of task

switching and interruptions. In Proc. ACM CHI, 175-182, 2004.
[4] DeLine, R, Khella, A, Czerwinski, M, and Robertson, G. Towards

understanding programs through wear-based filtering. In Proc. ACM
Softvis, 183-192, 2005.

[5] Ericsson, K. A. Valid and non-reactive verbalization of thoughts during
performance of tasks. J. Consciousness Studies, 10, 1-18, 2003.

[6] Ericsson, K. A. and Simon, H. A. Protocol Analysis: Verbal Reports as
Data,. MIT Press, 1993.

[7] Kersten, M, and Murphy, G. Mylar: A degree-of-interest model for
IDEs. In Proc. ASOD, 159-168, 2005.

[8] Ko, A, Myers, B, Coblenz, M, and Aung, H. An exploratory study of
how developers seek, relate, and collect relevant information during
software maintenance tasks. IEEE Trans. Soft. Eng, 32, 971-987, 2006.

[9] Lawrance, J, Bellamy, R, and Burnett, M. Scents in Programs: Does
Information Foraging Theory apply to program maintenance? In Proc.
IEEE VL/HCC, 15-22, 2007.

[10] Lawrance, J, Burnett, M, Bellamy, R, Bogart, C, Swart, C. Reactive
information foraging for evolving goals. In ACM CHI, 25-34, 2010.

[11] Parnin, C, and Gorg, C. Building usage contexts during program
comprehension. In Proc. IEEE ICPC, 13-22, 2006.

[12] Pirolli, P. Information Foraging Theory: Adaptive Interaction with
Information. Oxford University Press, 2007.

[13] Robillard, M, and Murphy, G. Automatically inferring concern code
from program investigation activities. In IEEE ASE, 225-234, 2003.

[14] Schummer, T. Lost and found in software space. In Proc. HICSS, 2001.
[15] Sillito, J, Murphy, G, and De Volder, K. Questions programmers ask

during software evolution tasks. In Proc. ACM FSE, 23-34, 2006.
[16] Sillito, J, De Voider, K, Fisher, B, and Murphy, G. Managing software

change tasks: An exploratory study. In Proc. ISESE, 1-10, 2005.
[17] Singer, J, Elves, R, and Storey, M. Navtracks: Supporting navigation in

software maintenance. In Proc. IEEE ICSM, 325-334, 2005.
[18] Sinha, V, Karger, D, and Miller, R. Relo: Helping users manage context

during interactive exploratory visualization of large codebases. In Proc.
IEEE VL/HCC, 187-194, 2006.

[19] Storey, M, Ryall, J, Bull, R, Myers, D, and Singer, J. TODO or to bug:
Exploring how task annotations play a role in the work practices of
software developers. In Proc. ACM/IEEE ICSE, 251-260, 2008.

[20] Ying, A, Murphy, G, Ng, R, and Chu-Carroll, M. Predicting source
code changes by mining change history. IEEE Trans. Soft. Eng., 30,
574-586, 2004.

[21] Zimmermann, T, Weißgerber, P, Diehl, S and Zeller, A. Mining version
histories to guide software changes. IEEE Trans. Soft. Eng., 30, 429-
445, 2005.

