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Abstract—In this paper, we report an evaluation study of

predictive models of programmer navigation. In particular, we

compared two operationalizations of navigation from the litera-

ture (click-based versus view-based) to see which more accurately

records a developer’s navigation behaviors. Moreover, we also

compared the predictive accuracy of seven models of programmer

navigation from the literature, including ones based on naviga-

tion history and code-structural relationships. To address our

research goals, we performed a controlled laboratory study of

the navigation behavior of 10 participants engaged in software

evolution tasks. The study was a partial replication of a previous

comprehensive evaluation of predictive models by Piorkowski et

al., and also served to test the generalizability of their results. Key

findings of the study included that the click-based navigations

agreed closely with those reported by human observers, whereas

view-based navigations diverged significantly. Furthermore, our

data showed that the predictive model based on recency was

significantly more accurate than the other models, suggesting

the strong potential for tools that leverage recency-type models.

Finally, our model-accuracy results had a strong correlation with

the Piorkowski results; however, our results differed in several

noteworthy ways, potentially caused by differences in task type

and code familiarity.

I. INTRODUCTION

A key cost during software evolution tasks is in the
navigation of source code. Developers spend considerable
time navigating code dependencies to understand how and
where features are implemented. For example, one study of
developers engaged in debugging found that the developers
spent roughly half of their time foraging for information in
code—a navigation heavy activity [23]. Moreover, two more
studies of developers engaged in software maintenance tasks
found that the developers navigated over 5 times per minute [4]
and spent 35% of their time on the mechanics of navigation
alone [12].

Many promising tools have been proposed to make naviga-
tion more efficient, and these tools are often implicitly based
on predictive models of programmer navigation. That is, each
tool leverages some underlying model to predict where the
programmer wants to go, and based on the prediction, tries to
help the programmer get there more efficiently. For example,
some tools use models that make predictions based on past
navigation behavior (e.g., [2], [9]) or past code modifications
(e.g., [31], [32]). On the other hand, other tools use models
based on other factors, such as structural relationships in
code (e.g., [14]) and lexical properties of code components

(e.g., [29]). Although preliminary evidence has shown that
these tools help developers in efficient navigation, most of
the tools have not been validated for a wide variety of devel-
opment contexts and have not received widespread adoption
in practice.

The success of these tools is closely tied to the predictive
accuracy of their associated models; however, researchers have
only recently begun to systematically compare the accuracy
of different models. One early study by Parnin and Görg
evaluated a set of four predictive models, all based on page-
caching algorithms [20]. These models focused exclusively on
the access history of code components (e.g., how recently or
frequently accessed) to make their predictions. A subsequent
model-evaluation study by Piorkowski et al. expanded the
battery of models to include ones based on code structure
and lexical properties [22]. In both the Parnin and Piorkowski
studies, recency-based models, which favor more recently
visited code components in their predictions, stood out for
their high predictive accuracy.

Although these studies have begun to shed light on the rel-
ative effectiveness of various models, open questions remain.
One open question is how best to operationalize navigation.
That is, how should a system decide when a developer
has navigated from one code component (e.g., method or
subroutine) to another? The most widely used operationaliza-
tion of navigation in tool research has been the click-based
operationalization in which the position of the text caret in
a code editor serves as a proxy for where a developer has
placed his/her attention. However, other operationalizations
of navigation are also possible. For example, Piorkowski
et al. introduced a different operationalization of navigation
called view-based that uses the line of code in middle of
the code editor to approximate where a developer’s attention
is [22]. Although these operationalizations aim to measure the
same phenomenon, they yielded substantial differences in the
Piorkowski model-accuracy results, leaving the question as to
which operationalization more accurately captures developer
navigation.

Another open question is the extent to which these prior
study results generalize. In particular, the most recent and com-
prehensive study to date, reported by Piorkowski et al. [21],
had a very limited sample (one participant) and that participant
worked only on two tasks that involved debugging unfamiliar
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code. However, numerous prior studies have confirmed order-
of-magnitude individual differences in the productivity of
developers [17]. Moreover, a developer’s familiarity with the
source code under development can have a considerable effect
on his/her information needs during tasks, and thus, where
he/she chooses to navigate in the code. Therefore, there is a
question as to whether the Piorkowski results will generalize
to other developers in other development contexts and tasks.

To answer these open questions, we conducted an empiri-
cal study of developers’ navigation behavior during software
evolution tasks. In particular, our study seeks to address the
following research questions:

RQ1: How accurately do the prior operationalizations of
navigation (click-based and view-based) approximate
developers’ actual navigations?

RQ2: (a) Which predictive models of programmer naviga-
tion most accurately predict where a developer will
navigate next, and (b) to what extent do Piorkowski et
al.’s prior evaluation results of such models generalize
to multiple developers performing varied software
evolution tasks on familiar software?

To address RQ1, we applied the prior click- and view-based
operationalizations of navigation (detailed in Section II-A1)
to our participant data, and compared the navigations those
operationalizations recorded with the navigations discerned
by human observers. We chose this comparison, because a
human observer is able to take more information into account
in deciding where the programmer’s attention is than the
more primitive view-based or click-based operationalizations.
Although we do not necessarily expect a human observer to
discern with perfect accuracy where a developer’s attention
is, an observer can see both what the models “see” as well
as additional information such as developer gestures and
utterances. Thus, it stands to reason that a human observer
could provide a reasonable measure of accuracy upon which
to compare the models.

To address RQ2, we designed our study as a partial replica-
tion of the Piorkowski study. Like the Piorkowski study, ours
observed individual developers engaged in development tasks
in a controlled laboratory environment, and evaluated the same
battery of predictive models (minus one that required bug-
report text, which was not present in our study). In contrast
to the Piorkowski study’s small sample of one developer,
our study involved 10 participants. Instead of working on
an unfamiliar code base, our participants worked on their
own software projects with which they were already familiar.
Instead of working on two researcher-prescribed debugging
tasks, our participants worked on a wide variety of evolution-
ary tasks—chosen by the participants based on the particular
needs of their projects at the time of the study.

The remainder of the paper is organized as follows. Sec-
tion II provides background on the prior operationalizations
of navigation and predictive models. Section III details our
study method. Section IV reports the results of our study.
Section V discusses implications of our findings with respect

to related work as well as limitations of our work. Section VI
concludes with a summary of our findings and the future
research directions they point to.

II. BACKGROUND

The two main research questions of this work center around
two concepts from the literature: (1) operationalizations of
navigation and (2) predictive models of navigation. The oper-
ationalizations of navigation provide different approximations
for recording where a programmer places his/her attention
(often trading off on certain strengths/weaknesses, such as
automatability versus ability to detect certain types of naviga-
tion). Given a sequence of recorded navigations, the predictive
models of navigation that serve as our focus aim to forecast
where the programmer will navigate to next.

A. Operationalizations of Navigation
In addressing our research questions, we applied two op-

erationalizations of programmer navigation from the litera-
ture [22]: the click-based operationalization and the view-
based operationalization. These operationalizations each pro-
vide a method for approximating the sequence of code loca-
tions (Java methods in our case), where a programmer puts
his/her attention.

1) Click-Based Operationalization: A click-based naviga-
tion is operationalized as a change in the code editor’s text-
cursor position from one Java method to another. When a
programmer clicks in a method other than the current method
where the text cursor is, the action is counted as a click-based
navigation. That is, if the current position of a developer’s
cursor is in some method A, and then the developer clicks in
another method B, it is counted as a click-based navigation.
However, if the current position of the developer’s cursor is
in method A, and the developer clicks somewhere else inside
the body of the method A, it is not counted as a click-based
navigation. In particular, the following actions were counted
as click-based navigations:

1) clicking into a method other than the current one,
2) clicking on a tab to make the contents of another file

visible, and
3) opening a file, for example, by clicking on it in the

package explorer.
In the case of a newly opened file, the first method in the
opened file is considered to be the next navigation.

For example, in Fig. 1, the current method under the click-
based operationalization is getBalanceNoSign in which
the text cursor is currently present. If the programmer clicks
somewhere else inside the getBalanceNoSign method,
it will not be counted as a click-based navigation. How-
ever, if programmer clicks in any other method, such as
getLastName, the click-based operationalization records a
navigation to that method.

Although the click-based operationalization is automatable
and has been widely applied (e.g., in [20], [21], [22]), it
has a couple disadvantages. It will fail to record navigations
if a developer scrolls through a file, but does not actually
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Fig. 1. Example of navigations under the click-based versus view-based
operationalizations. The editor depicted is the Eclipse Java editor (the same
type used by our study participants).

click in any of the methods that scroll by. Also, just be-
cause a developer clicked in a method does not necessarily
mean that developer has his/her attention on that method.
In a recent study, these limitations contributed to significant
differences in the navigations recorded by the Mylyn Eclipse
plugin, which uses a click-based approach, and the navigations
recorded by iTrace, a research-prototype system based on eye-
tracking [10].

2) View-Based Operationalization: Unlike the click-based
operationalization of navigation, the view-based operational-
ization does not take the position of the text cursor into account
to operationalize a navigation; instead, it defines the current
method as the one in the middle of the text-editor pane.
For example, in Fig. 1, the current method (view-based) is
getFirstName, which is present in the middle of the text-
editor pane. Furthermore, there were two additional rules in
the recording of view-based navigations. First, if in switching
or opening editor tabs, a method A’s definition becomes
completely visible in the text editor and it is present above
the middle of the screen while method B is in the middle of
the screen, then navigations are recorded in the order of first
a navigation to method A and then to method B. Second, if a
programmer scrolls through a file, navigations to each method
are recorded in the sequence they come to the middle of the
screen.

The chief disadvantage of the view-based operationalization
of navigation is that, if the programmer quickly scrolls through
a file, it records all the methods that pass through the middle
of the screen as navigations—even if the programmer did
not actually place his/her attention to those methods. Another
drawback is that the view-based operationalization has not
been previously automated, and hence, recording view-based
navigations is currently a labor-intensive manual process.

B. Predictive Models of Programmer Navigation
To address the question of which predictive models of

programmer navigation are most accurate (RQ2), we applied
the same battery of predictive models of navigation used by

Piorkowski et al. [22]. These models can be grouped into
three major categories: working set approximation models,
structural similarity models, and lexical similarity models. In
this work, we have evaluated all the models from the prior
work, except for the lexical similarity model, Bug Report
Similarity. That model assumes that the developer is working
on a debugging task with a bug report, which was not the case
in our study.

Following from Piorkowski et al. [22], each of the models
takes as input a sequence of method-to-method navigations
from a developer’s programming session. Such a navigation
history H is a sequence of method-to-method navigations
(m1,m2, . . . ,mn) such that for every method mi in H, mi ,
mi+1. If the navigation history Hj for a programming session
is given up to a particular point where Hj = (m1,m2, . . . ,mj),
each model tries to predict the method mj+1 to be visited next.
At any given point, the developer may have opened multiple
source files. The set of methods known to the developer
at a particular point in time is Mj. Mj contains all the
methods defined and referenced in the previously opened files
irrespective of whether the file is currently open or closed. It
holds that the navigation history Hj must contain a subset of
the methods from Mj, because the developer must open a file
before navigating to one of its methods.

In order for a model to predict the next method mj+1, the
model ranks the methods from the set of known methods
Mj � {mj} from least likely to most likely. For a rank of
a method to be calculated, the model creates an activation
mapping Aj from each method in Mj � {mj} to an activation
value. According to a model’s predictions, the methods with
higher activation values are more likely to be visited next
than ones with lower values. The activation function is used
to create a ranking function Rj such that Rj is actually just
Aj with rank-transformed activation values. The higher the
activation value of the method, the higher the rank number the
method will get (with the rank of 1 being the “highest” rank).
For example, a method with rank 1 is more likely to be visited
next by a developer than a method with rank 3 according to
a model. Also, in the event of tied activation values, if there
are n methods with the same activation value, their ranks are
computed by averaging over n. Every model uses a different
approach for calculating the activation value for methods.

Some models incorporate the notion of a structural related-
ness between methods such that higher activation is assigned
to methods that are more closely related to the current method
than to less closely related methods. Such models maintain
a graph G j such that every method in Mj corresponds to a
different vertex in G j. Given a particular model, for all m in
Mj � {mj}, Aj(m) for that model is |Mj| minus the length of
the shortest path from m to the current method mj.

1) Recency and Working Set Models: The Recency model
ranks more-recently visited methods higher than less-recently
visited methods. Formally, for every method m in the set of
known methods Mj, if the developer already visited m, the
activation function Aj will assign an activation value to the
method m such that Aj(m) = the max sequence number for m



in the programmer’s navigation history Hj; otherwise, if the
method m was not visited previously, the activation Aj(m) = 0.

The Working Set model is similar to the Recency model, but
the difference is that only a fixed number of recently visited
methods are ranked, while all other methods are ranked zero.
Formally, Working Set assumes a window-size �. If a method
m is among last � visited methods in the navigation history
Hj, the activation Aj(m) = 1; otherwise Aj(m) = 0.

2) Frequency Model: The Frequency model assigns higher
ranks to methods visited more frequently than those visited
less frequently. Formally, for every method m in the list of
known methods Mj, the activation Aj(m) = the number of
occurrences of m in the developer’s navigation history Hj.

3) Within-File Distance Model: The Within-File Distance
model assigns higher ranks to methods textually closer to the
current method in the file. The ranking function of this model
is based on an adjacency factor. That is, this model assumes
that the methods closer to the current method are more likely
to be visited next. It creates a graph G j such that there are links
between method nodes, which are textually adjacent in a file.
Formally, for every method m in Mj, there is an undirected
edge from m to the methods adjacent to m in the file in which
m is defined. The adjacent methods may come before or after
method m in the file.

4) Forward Call Depth and Undirected Call Depth Models:
The Forward Call Depth model ranks methods based on a call
graph with unidirectional links. That is, the methods being
called from the current method are ranked higher than the
other methods. Similar to the Within-File Distance model, the
Forward Call Depth model also creates a graph G j; however,
in this case, a directed edge connects each method m to every
method called from within the definition of m. Formally, in the
constructed graph G j, there is a directed edge from method ma
to mb, if and only if the definition of method ma contains a
call to method mb.

The Undirected Call Depth model is similar to the Forward
Call Depth model, with the only difference being that the
methods on both ends of a call are considered in the ranking.
That is, this model ranks both the methods which are being
called from the current method as well as the methods which
call the current method. Formally, in the constructed graph
G j, there is an edge between method ma and mb, if method
ma contains a call to method mb or vice versa.

5) Source Topology Model: The Source Topology model
ranks methods higher which share one or more of several
structural relationships with the method where the devel-
oper’s attention currently lies. The Source Topology model
constructs a source topology graph which is similar to the
graphs constructed by other models, except that in addition to
method nodes, this graph contains nodes for classes, interfaces,
variables, packages, and projects. If there is a calls-a, has-a
or within-file adjacency relationship among these nodes, then
there is an edge between these elements. Formally, for every
element v in Mj

S
C j
S

Vj
S

Pj where C j is the set of classes
or interfaces referenced in the files the programmer has opened
so far, Vj is a set of variables, and Pj is the set of packages,

there is a vertex that maps to v. The source topology graph
has an edge between elements va and vb if va calls vb, if va
has vb, or if va and va are adjacent methods in a file.

III. STUDY METHOD

To address our research questions, we conducted a lab-
oratory study of developers engaged in software evolution
tasks. To evaluate the accuracy of prior operationalizations
of navigation (RQ1), we applied the prior operationalizations
(i.e., click-based and view-based, detailed in Section II-A)
to our participant data, and compared the navigations those
operationalizations recorded with the navigations discerned by
human observers. To address the question of model accuracy
(RQ2), we used our navigation data as input to the battery of
predictive models from the Piorkowski study [22] (detailed
in Section II-B) and compared how accurately the models
predicted the code locations to which our participants actually
navigated during their tasks.

A. Participants
Our study participants consisted of 10 graduate students

(8 male, 2 female) enrolled in a graduate-level software
engineering course at the University of Memphis. They had an
average of 6.75 years of programming experience (SD = 2.51).
Seven of the ten participants also had experience programming
professionally (M = 2.93 years, SD = 1.54).

B. Tasks and Environment
Each participant took part in an individual study session in

which the participant worked on a team software project from
the software engineering course. Each project team had 4–5
members, and worked collaboratively to develop the project.
Although our study sessions involved only one participant
per session, the participant was free to communicate with
teammates via phone or internet. The software projects under
development were Java EE based web applications to help
university students and advisors track student progress through
the degree program. The applications included features to
manage course and grade information, and to monitor and
visualize students’ fulfillment of degree requirements. On
average, the project code bases consisted of 9344 lines of Java
code spread across 84 code files.

During the study sessions, the participants were free to work
on the project tasks of their choice—mainly depending on the
needs of their particular projects at the time of the session. The
tasks on which participants worked could be loosely classified
as adding new features to the system or fixing bugs in the
source code; however, the specific features and bugs varied
widely. Most of the participants worked on four or more
distinct tasks during their sessions.

The programming environment used by participants con-
sisted of a Windows PC with the Eclipse integrated de-
velopment environment (IDE) and other software for web
application development (e.g., web browsers, a version control
system, and a database management system). The computer
was also outfitted with several technologies for recording the



participant sessions: screen-capture software, an HD webcam,
and a headset with microphone.

C. Procedure

Each study session lasted roughly 135 minutes. For the
first 15 minutes of the session, the participant completed a
background questionnaire and took part in a short study-
training exercise. For the remaining 120 minutes, the partici-
pant worked on his/her development tasks.

To better understand where participants placed their atten-
tion, we employed the think-aloud method [28]. The think-
aloud method is a well-validated empirical method by which
participants externalize their inner dialogue by continuously
uttering their thoughts as they perform a task. It has been
widely used in psychology and human–computer interaction
to gain insight into a person’s goals and intentions. Following
the method, we asked our participants to “think aloud” while
working on their tasks. If a participant fell silent for three
minutes, an attending researcher asked the participant to
“please keep talking.” Using this method has been shown to
be minimally disruptive to cognition during mentally intensive
tasks, such as programming [3].

D. Qualitative Analysis Method

To understand what navigations a human would discern
from observing a developer at work, we applied a qualitative
coding method [25]. In particular, our human analysts applied
a set of coding rules to identify when a programmer navigated
to a Java method (i.e., subroutine). The analysts coded navi-
gations to a method based on criteria, such as the programmer
talking about the method, the programmer creating/editing the
method, and the programmer copying/selecting/highlighting
the contents of the method. In a few special situations, the
analysts ignored certain programmer actions that might have
otherwise been coded as navigations. These cases generally
involved the programmer bringing code into view, but then
not giving any indication of actually looking at the code.
Some common scenarios included times when the programmer
switched to an editor tab only to execute the code file using
an IDE feature, times when he/she clicked on a tab clearly by
mistake, and times when he/she closed a tab causing a random
tab to gain focus.

To ensure our qualitative codes could be reproduced reliably
by other researchers, we used a standard inter-rater reliability
method [25]. Following the method, two researchers analyze
20% of the total data independently and then check their level
of agreement. If their results agree 80% or more using the
Jaccard index, they can divide the remaining data and analyze
it separately. In our study, two researchers independently
analyzed the same 4 hours of video data (20% of our 20 hours
of video), and they achieved 86% agreement. Because this
exceeded the 80% threshold, they divided up and separately
coded the remaining 16 hours of video.
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Fig. 2. On average, the navigation sequences produced by the click-based
operationalization (blue bar) had significantly lower edit distances from the
human-reported navigation sequences than did the sequences produced by
the view-based operationalization (green bar). Shorter bars indicate fewer
differences, with zero indicating no difference. Whiskers denote standard error.

IV. RESULTS

A. RQ1 Results: Operationalizations of Navigation

To understand how accurately prior operationalizations of
navigation (click-based and view-based) measure developers’
navigations (RQ1), we applied the operationalizations to our
study data, and we compared the resulting navigation se-
quences with the results of our qualitative analysis performed
by human observers. As our main metric of comparison,
we compared the edit distance between the human-reported
navigation sequence and each of the click-based and view-
based navigation sequences. Edit distance is a standard method
to quantify the similarity between two strings or graphs by
calculating the minimum number of edits (i.e., insertions and
deletions) needed to transform one graph into the other [30]. In
our edit-distance calculation, each navigation sequence repre-
sented a linear graph with the nodes mapping to the navigation
destinations (i.e., Java methods). Using this approach, we were
able to compare how closely the prior operationalizations’
sequences of methods matched the sequence perceived by our
human analysts.

As Fig. 2 shows, the click-based navigation sequences
were considerably closer to the human-reported navigation
sequences than were the view-based ones. In fact, the average
edit distance for the view-based navigations was over three
times the average distance of the click-based ones. Indeed, a
paired t-test detected a significant difference between the click-
based and view-based edit distances (t(9) = 4.32, p = 0.002).
(A Shapiro-Wilk test for normality indicated that the t-test was
appropriate in this case.)

To understand how the discrepancies reflected by the edit
distances affected the other qualities of the navigation se-
quences, we analyzed several higher-level characteristics of
navigations. In particular, we analyzed for each recorded
navigation sequence the rate of navigation (navigations per
minute; Fig. 3), the number of different places visited (dif-
ferent methods per hour; Fig. 4), and proportion of revisits



(percentage of navigations that revisited previously visited
places; Fig. 5).

As Fig. 3 shows, both operationalizations of navigation
tended to record more navigations than the humans reported;
however, the difference for view-based was considerably more
than for click-based. In fact, on average, the view-based
operationalization produced more than twice the number of
navigations reported by the human observers. Not surpris-
ingly, there was a statistically significant difference in rate
of navigation between view-based and the human observer
(Wilcoxon signed-rank test: W = 54, p < 0.01). The difference
in navigation counts recorded by the click-based operational-
ization versus by the human observers also rose to the level
of statistical significance (Wilcoxon signed-rank test: W = 48,
p < 0.05); however, the magnitude of the difference was
comparatively small (only 15% larger).

As Fig. 4 shows, the number of different methods that
the operationalizations recorded participants navigating to fol-
lowed similar trends as total counts of navigations. Again,
both operationalizations recorded more different methods nav-
igated to than the human analysts reported, with the view-
based operationalization producing significantly more (over
1.5 times as many on average; Wilcoxon signed-rank test:
W = 55, p < 0.01). However, in this case, the difference
in counts reported by the click-based operationalization and
those reported by the human analysts did not rise to the level
of statistical significance.

Interestingly, as Fig. 5 shows, the discrepancies in the nav-
igation sequences recorded by the operationalizations and hu-
man observers had little effect on the proportion of navigations
that participants made to methods already visited. In particular,
both operationalizations agreed with the human observers that
a substantial proportion (over 80%) of participant navigations
were revisits. Moreover, no statistically significant difference
could be detected between the percentages recorded by the
operationalizations of navigation and those reported by the
human analysts.

B. RQ2 Results: Model Accuracy
To evaluate our battery of predictive models of navigation

(Section II-B) and test the generalizability of Piorkowski et
al.’s findings [22] (RQ2), we ran each of the models on
our navigation data, and compared the accuracy of their
predictions both with respect to each other as well as to the
Piorkowski results. We report only predictive-model results
using our human-reported and click-based navigation data,
because our results for RQ1 showed that the view-based
operationalization diverged considerably from the observations
of human analysts.

Following the method from the Piorkowski study, we used
a hit-rate metric to compare the accuracy of the various
predictive models. The predictive accuracy of a model is
determined by the model’s ability, at a given moment in time,
to predict a programmer’s next navigation. A model is said
to get a hit if the programmer’s actual navigation is among
the model’s top-W predictions, where W is a variable window
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Fig. 3. On average, the view-based operationalization (green bar) recorded
significantly more navigations than the human observers, whereas the dif-
ference for click-based (blue bar), although also statistically significant, was
substantially less. Inner bars denote the overlap in count with the human-
reported navigations. Whiskers denote standard error.
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Fig. 4. On average, the view-based operationalization (green bar) recorded
significantly more different methods visited than did the human observers,
whereas no significant difference was found between the click-based naviga-
tions (blue bar) and human-reported ones. Inner bars denote the overlap in
count with the human-reported navigations. Whiskers denote standard error.
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Fig. 5. On average, the percentage of navigations to previously visited
methods recorded by both the click-based (blue) and view-based (green) op-
erationalizations were similar to the percentage reported by human observers
(no significant differences). Inner bars denote the overlap in percentage with
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Fig. 6. Predictive accuracy of each model for our human-reported navigation
data. Following from [22], the hit-rate computation used a window size W =
10. Whiskers denote standard error.

size. For example, consider a model that predicts five methods,
m1, m2, m3, m4 and m5, as its top-five predictions, where m1
is the top most prediction with rank 1 and m5 is ranked 5 as
its lowest prediction. If the next method that the programmer
navigates to is m4, then the model would get a hit for window
size W � 4, but a miss for W  3. An additional complication
that the metric addresses is that some of the models’ rankings
were only partially ordered. To address the issue of ties, we
refined the definition of a hit as follows: if R is the rank of
the navigated-to method and T is the number of ties at that
rank, then a hit is recorded if bT/2c+ bRc < W. Following the
Piorkowski study, we used window-size W = 10 for purposes
of our comparisons.

As the bars in Fig. 6 show, the predictive model, Recency,
achieved the greatest accuracy (hit rate) on our human-reported
navigation data. Its mean hit rate of 77% was 9–10 percentage
points above the next greatest models, Frequency and Working
Set, and towered over the other models, the closest of which,
Within-File Distance, was 60 percentage points behind. A
Kruskal–Wallis test confirmed this difference, detecting a
statistically significant difference between the model hit rates
(�2(6) = 58.96, p < 0.0001).

Similar to our human-reported data, Recency also achieved
the greatest accuracy on our click-based data. As the yellow
bars in Fig. 7 show, the predictive accuracies of the models on
our click-based navigation data were almost identical to those
on our human-reported navigation data (reported in Fig. 6). A
Spearman’s rank correlation coefficient calculation confirmed
this correlation between the click-based and human-reported
model results, reporting a “very strong” correlation (rs(5) =
1.00, p = 0.0004).
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Fig. 7. Predictive accuracy of each model for our click-based data (yel-
low bars) juxtaposed with the predictive accuracy the click-based data
of Piorkowski et al. [22] (purple bars). Following from [22], the hit-rate
computation used a window size W = 10. Whiskers denote standard error.
The Piorkowski bars lack whiskers because their sample size was 1 (variance
undefined).

Comparing our model hit rates with those of the Piorkowski
study (purple bars in Fig. 7), a strong correlation between the
Piorkowski results and ours is apparent. Indeed, the rankings
of the models by performance are almost identical between
the Piorkowski hit rates and ours, with only Working Set
and Frequency being swapped. A Spearman’s rank correla-
tion coefficient calculation further confirmed this correlation,
reporting a “very strong” correlation (rs(5) = 0.93, p = 0.007).

However, a key difference between the Piorkowski results
and ours was also apparent for the three most accurate models.
For Recency, Working Set, and Frequency, the hit rates for
our navigation data were noticeably greater than those for
the Piorkowski data. In fact, our hit rates for those models
were greater than the Piorkowski hit rates by 21–34 percentage
points. (No statistical test could be performed to confirm these
differences, because the Piorkowski sample size of 1 made the
data inappropriate for such tests.)

To shed light on the reason for these differences between
the Piorkowski results and ours, we also compared several
characteristics of their navigation data with ours. In particular,
we compared how much participants navigated (Fig. 8), how
many different methods they navigated to (Fig. 9), and what
proportion of their navigations were revisits (Fig. 10).

Several key differences in the navigation characteristics of
our participants and the Piorkowski participant stand out. Our
participants, on average, navigated nearly twice as much as the
Piorkowski participant (Fig. 8), but despite navigating more,
our participants visited noticeably fewer different methods
than the Piorkowski participant (Fig. 9). While these differ-
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Fig. 8. On average, our participants navigated at a substantially higher
rate than the Piorkowski participant. Whiskers denote standard error. The
Piorkowski bar lacks whiskers because their sample size was 1 (variance
undefined).
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Fig. 9. On average, our participants navigated to noticeably fewer different
methods than the Piorkowski participant. Whiskers denote standard error. The
Piorkowski bar lacks whiskers because their sample size was 1 (variance
undefined).
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Fig. 10. On average, a greater proportion of our participants’ navigations were
revisits than were the Piorkowski participant’s. Whiskers denote standard error.
The Piorkowski bar lacks whiskers because their sample size was 1 (variance
undefined).

ences are telling, perhaps most noteworthy is the difference
of over 20 percentage points between the Piorkowski partic-
ipant’s proportion of revisits and our participants’ proportion
(Fig. 10). Our participants’ greater proportion of revisits
directly explains the greater accuracy of the Recency model
for our participants’ data. (Similar to above, no statistical
tests could be run to confirm these differences because of the
Piorkowski study’s sample size of 1.)

V. DISCUSSION

A. Click-Based Navigations Agree Closely with Humans

As our data showed, the click-based operationalization of
navigation recorded navigations very similar to the ones re-
ported by our human observers. For instance, the edit distance

between the click-based sequences of navigations and the
human-reported ones was comparatively low—roughly one
edit for every two human-reported navigations (Fig. 2). Fur-
thermore, the click-based navigations had very similar high-
level characteristics to the human-reported ones in terms of
frequency of navigation (Fig. 3), variety of different methods
visited (Fig. 4), and proportion navigations that revisited
recently visited methods (Fig. 5).

These click-based results hold great promise for the design-
ers of software engineering tools that aim to track developers’
navigations. The click-based operationalization is relatively
easy to implement, with many code editors already providing
text cursor location via a plug-in API (e.g., as in Eclipse and
Visual Studio). In fact, a number of tools already use the click-
based operationalization to track navigations. For example,
recommender systems, such as Mylyn [9], NavTracks [26],
Piorkowski et. al’s recommender based on information forag-
ing theory [21], and Team Tracks [2], have leveraged click-
based logs of navigations to provide recommendations to the
programmer. Furthermore, code-visualization tools, such as
Stacksplorer [8] and Blaze [13], have also used click-based
navigation tracking to provide visualizations relevant to the
current code element.

B. View-Based Navigations Poorly Approximate Humans
In contrast to the click-based navigations, the view-based

navigations differed considerably from the ones reported by
our human analysts. On average, the edit distance between
the click-based navigations and the human-reported ones was
substantial—for every 2 human-reported navigations, over 3
edits were required to make the click-based navigations agree
(Fig. 2). These differences also carried over into higher-level
characteristics of the navigations: the view-based operational-
ization recorded more than double the number of navigations
reported by human observers (Fig. 3), as well as a significantly
greater variety of different methods visited (Fig. 4).

A key reason that the view-based navigations differed so
greatly from the human-reported ones was that rapid scrolling
through a file resulted in many spurious view-based navi-
gations. For example, P2’s navigation behavior yielded 766
view-based navigations, whereas human observers reported
only 194 for the same session. In one representative 45-
second episode, P2 quickly scrolled through two code files,
Publications.java and PublicationsDAO.java, both of which
contained numerous short methods. For this episode, the
view-based operationalization recorded 31 navigations versus
only 4 reported by the human observers. The view-based
operationalization’s tendency to overestimate navigations may
be especially problematic in practice. For example, previous
studies have shown that developers often resorted to scrolling
through code during maintenance tasks [11] and that devel-
opers frequently performed excessive back-and-forth scrolling
while trying to find a particular method of interest in files [6].

It remains an open question as to whether the view-based
operationalization would perform better if it was modified
to account for rapid scrolling. For example, if the method



body had to remain in the center of the screen for more
than 3 seconds in order to be counted as a navigation, the
number of spurious navigations might be reduced consid-
erably. However, such a change would further increase the
complexity of the view-based operationalization, which is
already more difficult to implement in most code editors
than, for example, the click-based operationalization. In any
case, the high level of disagreement we observed between the
view-based operationalization and our human analysts’ reports
leaves considerable doubt as to the practical utility of the view-
based operationalization as it is currently defined.

C. Recency Makes the Best Predictor
Of the seven predictive models of navigation evaluated,

the Recency model stood out as producing significantly more
accurate predictions than the others. For both our human-
reported and click-based navigation data sets, the Recency
model had a hit rate approaching 80%, whereas no other
model achieved a hit rate greater than 70%, and the majority
had hit rates below 30% (Figs. 6 and 7). A key reason
for Recency’s high accuracy was that our participants did
a substantial amount of revisiting, of which the Recency
model takes considerable advantage. For example, on average,
over 80% of our participants’ click-based navigations revisited
recently accessed methods (Fig. 10).

Triangulating with prior research, there is mounting evi-
dence as to the high accuracy of the Recency model. The head-
to-head model evaluations conducted by Parnin and Görg [20]
and by Piorkowski et al. [22] both found that recency-based
predictions yielded the highest accuracy. (The Parnin study’s
most accurate predictor, the Least Recently Used algorithm
(LRU), was essentially equivalent to our Recency model.)
Furthermore, the most accurate versions of the PFIS [15] and
PFIS2 [16], [22] multi-factor models of programmer naviga-
tion relied heavily on recency to make their predictions. Still
other studies of developers, although not direct evaluations of
predictive models, reported high rates of revisiting (e.g., [4],
[11]), which would strongly favor the accuracy of the Recency
model.

These strong results in favor of Recency suggest a consider-
able opportunity for contemporary development environments
to do more to support the revisiting of recent methods. In most
code editors, tabs are the main feature that supports revisiting
recently visited code (generally at the granularity of files).
However, researchers have pointed out numerous weaknesses
with the design of tabbed editors, especially in terms of
usability. For example, tabs have been found to undermine
spatial memory by becoming hidden when too many are open
and by repositioning themselves in ways that are difficult for
developers to predict [19]. Moreover, they do not provide
sufficient information to help developers accurately recall their
contents [19], and as a result, developers often forget what
code tabs contain and have to search through their contents to
find the desired code [26].

Indeed, a number of promising tool designs have been
proposed that leverage Recency-type models. Of these designs,

the Mylyn [9] tool (formerly Mylar) has perhaps had the
greatest success, having become a standard feature in the
Eclipse IDE. Mylyn tracks a developer’s activity and uses
a degree-of-interest model to both identify code relevant to
the developer’s task and to make revisiting that code more
convenient and efficient for the developer. Following a similar
approach, the Team Tracks tool tracks and shares the naviga-
tion patterns of team members to facilitate efficient revisiting
of code previously visited by members of the team [2]. Other
tools have aimed to directly address the problems with tabs.
The Autumn Leaves tool addressed these problems using a
Recency-based model that automatically grays out or closes
tabs that are unlikely to be used in the future [24]. On the
other hand, the Patchworks code editor replaces tabs entirely
with a timeline-like interface that facilitates revisiting of open
code fragments while overcoming the usability problems of
tabs [6]. Still other tools have integrated Recency-type models
into complex recommender systems. For example, one recom-
mender system based on information foraging theory made the
highest quality recommendations when it incorporated recency
into its recommendation algorithm [21]. Although these tool
designs have all shown considerable promise in studies, they
have yet to achieve widespread adoption in practice.

D. Piorkowski Results Correlate, but with Key Differences
Comparing our model-accuracy results with those of Pi-

orkowski et al.’s evaluation study [22], there was clearly a
strong correlation (Fig. 7). For instance, a ranking of the
models by hit rate produced exactly the same ranks for both
our data and the Piorkowski data, except in one case (swapped
Working Set and Frequency models). Indeed, the statistical
correlation between our results and those of the Piorkowski
study was deemed “very strong”.

However, despite this strong correlation, our three most
accurate models (Recency, Working Set, and Frequency)
produced substantially better hit rates than they did in the
Piorkowski study. In fact, these models’ hit rates for our
data were 21–34 percentage points higher than they were
for the Piorkowski data (Fig. 7). Clearly implicated in these
differences was the fact that our participants revisited code
substantially more than the Piorkowski participant (Fig. 10).
Such high revisiting behavior strongly favors these three mod-
els. However, the question remains as to why our participants
revisited more than the Piorkowski participant.

One possible reason that our participants revisited code
more than the Piorkowski participant was that they were
familiar with the code bases they worked on, as opposed to the
Piorkowski participant, who was unfamiliar with the code base
he worked on. As one indicator of this difference in familiarity,
our participants navigated at nearly double the rate that the
Piorkowski participant did (Fig. 8); however, the Piorkowski
participant visited a substantially wider variety of methods
than did our participants (Fig. 9). These patterns suggest that
the Piorkowski participant may have had to survey more code
in order to gain an understanding of the project, whereas our
participants were more able to focus in on the code relevant



to their tasks. Moreover, the Piorkowski participant may have
had to spend longer in methods in order to understand them,
which slowed his rate of navigation.

Another possible reason for the differences between our
model hit rates and those from the Piorkowski study had to
do with the types of tasks performed. Our participants worked
on their own software-evolution tasks, which mainly consisted
of feature enhancements, whereas the Piorkowski participant
worked on debugging tasks. For our participants’ feature-
enhancement tasks, they may have tended to navigate back and
forth between methods while they implemented, for example,
method calls and returns. On the other hand, the Piorkowski
participant’s debugging work involved considerable time spent
just reading different parts of the code without actually modi-
fying anything. Indeed, the Piorkowski participant made very
few changes to the code and spent the majority of his time
navigating. Thus, the differences in revisiting between our
participants and the Piorkowski participant may have stemmed
from the differences in the types of tasks they worked on.

E. Limitations

Our study had several limitations that are common in lab
studies and that should be addressed in future work. Our
participants were graduate students, and thus, may not be rep-
resentative of professional programmers. However, as graduate
students, 70% of them had some professional development
experience. Additionally, the tasks and code bases were related
to a course project, and thus, may not be representative of
large software projects. However, our participants’ tasks were
less artificial than those in most lab studies of programmers
(e.g., the Piorkowski study), because our participants were
performing their own tasks on their own projects. Thus, we
reduced some threats to generalizability and ecological validity
arising from unfamiliarity with a code base or unrealistic tasks.

VI. CONCLUSION

In this paper, we have presented an empirical evaluation
of predictive models of programmer navigation. In particular,
our study aimed to understand the extent to which existing
operationalizations of navigation (click-based versus view-
based) accurately measure programmer navigation behavior,
and to reveal which previously proposed predictive models
of programmer navigation produce the most accurate fore-
casts. Additionally, our study evaluated the generalizability
of findings from the most comprehensive prior evaluation of
predictive models by Piorkowski et al. [22]. Key findings of
our study included the following:
• The click-based operationalization of navigation recorded

navigations that were highly similar to those reported
by human observers, suggesting the operationalization’s
appropriateness for use in tools.

• In contrast, the view-based operationalization diverged
significantly from our human evaluators’ perceptions,
suggesting that the operationalization may be poorly
suited for tools.

• The predictive model based on recency stood out as the
most accurate model, producing a significantly higher hit
rate than all the other models, and motivating the potential
for tool features based on the model.

• The model-accuracy results from the Piorkowski study
correlated very strongly with our results, providing a
strong confirmation of the models’ relative accuracies.

• However, our data yielded considerably higher hit rates
than the Piorkowski data for the three most accurate
models, suggesting potential effects of code familiarity
and task on navigation behavior.

The findings of our study hold important implications for
future work. They advance the efficacy of using the click-based
operationalization to automatically detect developer naviga-
tions. However, since the click-based operationalization was
not a perfect match with our human observers’ perspectives,
they also suggest the potential for improved operationaliza-
tions. For example, researchers outside of software engineering
have found that mouse-cursor location correlates with eye-
tracking data [1], [5], [7], [27], thus potentially providing an
even better estimator of a programmers’ attention. Further-
more, software engineering researchers have been utilizing
psychophysiological sensors to better understand the physical
and mental state of programmers (e.g., [10], [18], [33]),
which could lead to exciting new means of understanding pro-
grammers. Additionally, our findings, along with triangulated
findings from the literature, show the importance of supporting
the revisiting behavior of programmers. As we discussed
(Section V-C), researchers have proposed numerous tools that
aim to provide such benefits; however, few or none have yet to
receive widespread adoption in practice. Our findings further
make the case that such innovations can lead to a qualitative
difference in the work of software developers, and we hope
that they will spur the field’s evolution beyond the increasingly
inadequate revisiting support offered by current development
environments.
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[33] M. Züger and T. Fritz, “Interruptibility of software developers and its
prediction using psycho-physiological sensors,” in Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems
(CHI ’15). ACM, 2015, pp. 2981–2990.


