
Information Foraging Theory for
Collaborative Software Development

Irwin Kwan
School of EECS

Oregon State University
Corvallis, OR 97331 USA

kwan@eecs.oregonstate.edu

Scott D. Fleming
Computer Science Dept.
University of Memphis

Memphis, TN 38152 USA
Scott.Fleming@memphis.edu

David Piorkowski
School of EECS

Oregon State University
Corvallis, OR 97331 USA

piorkoda@eecs.oregonstate.edu

ABSTRACT
Information foraging theory describes how people gather in-
formation based on a cost-benefit model. This theory has
been successfully applied to the web domain and to soft-
ware engineering tools. However, little work has been
done on how information foraging theory can be applied to
information-seeking behavior in a collaborative software en-
gineering setting. This paper discusses how the theory might
apply to information-seeking within collaborative software-
development teams, and how constructs of the theory might
help aid in the design of tools and processes.

Author Keywords
Information foraging theory, collaborative software
engineering, human-centric computing, theory-based
software engineering

ACM Classification Keywords
H.1.2 Information Systems: User/Machine Systems

[Human information processing];

H.5.3 Information Interfaces and Presentation: Group and
Organization Interfaces

[Computer-supported cooperative work]

INTRODUCTION
Software engineering is a communication-intensive activity
that requires interaction with many other collaborative team
members, often over large distances [1, 5]. Information For-
aging Theory (IFT) explains and predicts how people navi-
gate in response to the information in their environment [11].
IFT has been applied to software engineering [6, 9] in re-
sponse to empirical evidence of both IFT’s validity in be-
haviour prediction [11] and its practical utility for web de-
sign [14]. The potential benefit of IFT is that it provides a
theory describing the rationale behind actions of information
seekers and therefore can guide the design of tools and pro-
cesses to improve collaborative software engineering (CSE).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Future of Collaborative Software Engineering’12 in conj. CSCW’12,
February 11, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-1086-4/12/02...$10.00.

To date, IFT in software engineering has been applied pri-
marily to a single developer working alone, and has modeled
how a person seeks information from sources like interface
elements in an IDE, web sites, and documents. Information
sources in CSE, however, are not limited to the computer
screen: a common situation in CSE is when a developer asks
a question of a colleague. This colleague, or informant, will
often help the developer find an answer, perhaps providing
it verbally or referring the developer to another informant.
How does IFT map to CSE? The objective of this paper is
to explore how IFT constructs can be applied to information-
seeking activities that involve multiple people who develop
software.

INFORMATION FORAGING THEORY CONSTRUCTS
In IFT, a person, the forager, seeks information within an in-
formation environment that has a topology. The topology is
made up of information patches (e.g., documents) connected
by traversable links (e.g., hyperlinks, menus, scrolling, etc.).
Each link has a cost (e.g., time to get from one end to the
other, where the time is influenced by system performance
and the human’s cognitive and physical speed). At any mo-
ment, the forager is within a particular patch and can navigate
to another patch by traversing a link. Figure 1 graphically de-
picts information patches and links.

Each patch contains information features (e.g., words,
phrases, diagrams, etc.) that the forager can process. The
forager seeks to find and process a particular set of infor-
mation features, called prey, that fulfills the forager’s infor-
mation goal. Processing each information feature has a cost
(e.g., time to read and understand). Some features, called
cues, are associated with links and provide the forager with
hints about what information features a link leads to.

In searching for prey, the forager is continually faced with

Figure 1. Example of two information patches. Each patch contains
information features (hexagons) with an associated processing cost. The
patches are connected to other patches via traversable links, each with a
traversal cost. Cues are associated with outgoing links (dashed lines).

1

three choices: (1) to process information features in the cur-
rent patch, (2) to move to an adjacent patch via a link, and
(3) to change the environment—called enrichment. An ex-
ample of enrichment is a forager adding a new patch, such as
a Wiki page, to the topology or creating a new link. A forager
may also choose to visit a new patch based on information
scent, which is the predator’s assessment, based on the cues,
of the benefit to be gained by taking the associated navigation
options.

The central prediction of IFT is that the forager attempts to
make optimal choices that maximize valuable information V
(value) gained per cost of interaction C (cost). However, the
forager is not omniscient and cannot always predict the values
of V and C that will his decisions will produce. Thus, the
forager bases decisions on expected values for V and C that
he infers from his knowledge, his previous experience, and
information from the environment.

Extension of IFT to Social Foraging
Pirolli presented mathematical models based on optimal for-
aging theory to predict the effect of various social influences
on IFT [12]. He theorized that diversity would increase the
likelihood of discovery, that cooperative foraging would in-
crease the likelihood of high-value discoveries, and that there
is a point when having too many foragers results in a lower
rate of return for each individual.

Pirolli’s social IFT differs from CSE in two ways. First, the
nature of how cues are exchanged among collaborators dif-
fers. Pirolli’s social model includes calculations that presume
that multiple foragers are cooperative, and are sending each
other hints about useful information. This continuous ex-
change cannot be assumed in CSE because CSE is heavily
specialized and involves a large amount of individual work.
The individual developer might seek information by himself
and contact others only when initial options are exhausted.
Before this contact is made, the useful information that one
developer finds is not necessarily passed on to the others.

Second, one of the sources for information can be elicited
from the informant. If you ask a question to another software
developer, and he provides an answer, he is generating in real
time an information patch for the forager. Informal commu-
nication is an extremely important way that developers gather
information [5, 13]. This differs from traditional IFT because
the patch is elicited from a human informant.

IFT AND THE DESIGN OF COLLABORATIVE SE TOOLS
IFT already applies to many existing software engineering
tools. For instance, the TagSEA tool [15] enables develop-
ers to enrich the environment by leaving cues for themselves
and other developers. Another tool, Codebook [2], provides
developers with a graph of relationships among artifacts and
people, reducing the cost of identifying who to talk with.

The theory not only defines a taxonomy and a rationale for ex-
isting behavior, but can be used to motivate the requirements
for a number of new, not-yet-invented tools. IFT can be used
to develop techniques that consider the effects of the cost and
the benefits of actions. In applying IFT constructs, Budiu et

al. [4] found that a low-cost tagging method (click to tag)
strengthened the forager’s memory of the content compared
to a high-cost tagging method (type to tag). The concepts of
cost and value provided by IFT offer a framework for reason-
ing about a tool’s potential foraging benefits and liabilities.

How IFT May Influence Tool Design
The two fundamental questions are, “How does my tool re-
duce cost C?” and “How does my tool increase value V ?”
Framing tool design in the form of those questions can em-
power the tool designer to discover new ways to achieve these
ends, and using an IFT-based analysis, the tool designer can
verify that her tool in fact affords these benefits. We list some
potential applications of IFT below.

Reducing the cost of contacting others
By providing easily accessible contact information, the cost
of contacting an informant is reduced. One of the reasons that
distributed software development is so difficult is because the
cost of reaching someone is dramatically increased. One ex-
ample of a strategy is using a bridge team: this team can con-
nect two remote sites by being available to both distributed
sites if those two remote sites do not have overlapping work-
ing hours.

Incorporating the “social cost” of requesting information
The concept of cost C differs in a social setting compared to
a non-social one. The simplest measurement of cost in IFT
is time—in this case, the forager’s time, as well as the in-
formant’s time. However there is also a social cost as well,
which may be determined by personality or culture [8]. The
forager may feel that the cost of talking to the informant
might, for example, make him look incapable of doing his
own job [3], or may annoy the informant to the point where
she avoids working with the forager.

Reducing the cost of eliciting information from others
The forager must communicate to the informant his informa-
tion goal set and elicit an information patch from her in a
form the forager can process. By reducing the cost of this
communication and elicitation, a tool may be able to improve
a forager’s effectiveness.

Increasing value of the interaction
An expertise recommendation tool can increase the value of
an interaction by recommending the “right informant” for a
particular question. However, the value of the interaction
can be further increased if the tool also provides information
about the context of the inquiry. For example, if the forager
can transfer his information goal set to the informant using
an expertise recommender, the informant will be better able
to help the forager. Similarly, if the informant is aware of
what information patches the forager has already processed,
then the informant can avoid processing information patches
that have already been visited.

Determining the effort of the respondents
In Pirolli’s description of social IFT based on optimal forag-
ing theory [12], a forager’s selected choice is based on the
optimal benefit per unit of cost. However, in a collaborative
environment, the effort required on the part of the informant

2

is a necessary consideration. Most research on collaborative
software development involving expertise seeking involves
finding the expert, but does not consider cases where the in-
formant is busy, angry at being bothered, or is otherwise in-
capable of answering the question. It is not a secret that peo-
ple can be disgruntled or annoyed by their co-workers asking
questions (e.g., [13]). Optimal information foraging theory
may be able to explain why a person chooses to join another
forager in the hunt for information, and can delve into con-
ceptualizing “social cost”.

Determining changing information goal sets
One aspect of IFT that can use more development is reactive
IFT [7], which examines how acquiring information changes
one’s information goal set. For example, if a forager asks
a question to an informant, the informant may start her own
information search with the intention of helping the forager.
Though they are both looking for the same information, their
goals are different—one wants to find information and the
other wants to find information to transmit it to the original
forager. One way to accomplish this is to enable sharing or
monitoring of another person’s visited information patches.

Future Areas in Which to Apply IFT
Predictions of behavior
There is evidence that IFT can predict developer foraging be-
havior [6, 10]. By examining situations when software en-
gineers seek information and eventually look for information
from peers directly, we may be able to generate a model that
identifies the likelihood that a software engineer will go to
colleagues for information.

Crowdsourced software engineering
Rich sources of information are forums, social networks, and
collaborative documents written by groups that are not nec-
essarily collaborating [16]. Identifying the cost of eliciting
crowdsourced data should be weighed against other choices.

CONCLUSION
The constructs of IFT are useful for highlighting principles
around which to build improvements to CSE tools and pro-
cesses. By viewing interactions and information in terms of
cost, value, and features, a tool designer can choose different
aspects to optimize for. In addition, the theory’s constructs
enabled us to identify situations that occur in a collaborative
setting but not in an individual setting.

Understanding and using these principles as a design guide-
line is a first step toward using IFT for CSE. The next step
would be to use the principles to attempt to predict forag-
ing behaviour—for example, to identify if certain individuals
are likely to be contacted first based on optimal foraging the-
ory. IFT is an extremely promising theory that can model not
only information seeking through documents and computer
screens, but also information seeking through interpersonal
communications.

REFERENCES
1. J. Aranda and G. Venolia. The secret life of bugs: Going

past the errors and omissions in software repositories. In
Proc. ICSE ’09, pages 298–308, 2009.

2. A. Begel, K. Y. Phang, and T. Zimmermann. Codebook:
Discovering and exploiting relationships in software
repositories. In Proc. ICSE ’10, 2010.

3. A. Begel and B. Simon. Novice Professionals: Recent
Graduates in a First Software Engineering Job,
chapter 26, pages 495–516. in Making Software: What
Really Works, and Why We Believe It. O’Reilly Media,
Inc., 2011.

4. R. Budiu, P. Pirolli, and L. Hong. Remembrance of
things tagged: How tagging effort affects tag production
and human memory. In Proc. CHI ’09, 2009.

5. A. J. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In Proc.
ICSE ’07, pages 344–353, 2007.

6. J. Lawrance, C. Bogart, M. Burnett, R. Bellamy,
K. Rector, and S. Fleming. How programmers debug,
revisited: An information foraging theory perspective.
IEEE Trans. Softw. Eng., 2011. To appear.

7. J. Lawrance, M. Burnett, R. Bellamy, C. Bogart, and
C. Swart. Reactive information foraging for evolving
goals. In Proc. CHI ’10, pages 25–34, 2010.

8. K. Nakakoji, Y. Ye, and Y. Yamamoto. Supporting
Expertise Communication in Developer-Centered
Collaborative Software Development Environments,
chapter 11. Collaborative Software Engineering.
Springer-Verlag, 2010.

9. N. Niu, A. Mahmoud, and G. Bradshaw. Information
foraging as a foundation for code navigation (NIER
track). In Proc. ICSE ’11, pages 816–819, 2011.

10. D. Piorkowski, S. D. Fleming, C. Scaffidi, L. John,
C. Bogart, B. E. John, M. Burnett, and R. Bellamy.
Modeling programmer navigation: A head-to-head
empirical evaluation of predictive models. In Proc.
VL/HCC ’11, pages 190–116, 2011.

11. P. Pirolli. Information foraging theory: adaptive
interaction with information. Oxford Univ. Press, 2007.

12. P. Pirolli. An elementary social information foraging
model. In Proc. CHI ’09, pages 605–614, 2009.

13. A. Schröter, J. Aranda, D. Damian, and I. Kwan. To talk
or not to talk: Factors that influence communication
around changesets. In Proc. CSCW ’12, 2012.

14. J. M. Spool, C. Perfetti, and D. Brittan. Designing for
the Scent of Information. User Interface Engineering,
2004.

15. M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng,
and M. Muller. How software developers use tagging to
support reminding and refinding. IEEE Trans. Softw.
Eng., 35:470–483, July 2009.

16. C. Treude, O. Barzilay, and M.-A. Storey. How Do
Programmers Ask And Answer Questions on the Web?
(NIER track). In Proc. ICSE ’11, 2011.

3

